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The angular dependence of the quasielastic magnetic scattering has been measured in MnI 2 in the
critical region T)Tq~. The temperature dependence of the inverse correlation range and the staggered mode

susceptibility for both transverse and longitudinal spin fluctuations were observed as a function of incident
neutron energy over the range 56&Ep&134 meV. The validity of the quasielastic approximation for this

energy region was verified. The data for the longitudinal fluctuations were found to follow simple power laws

with the critical exponents v =0.634+0.02 y = 1.24~0.02. An q fitted to the data closest to TN gave q =0.05
%0.02. The transverse fluctuations are not divergent at T~, although for T)T& they can be described. by
power-law fits taken with respect to a temperature Ti =66'K by indices vj =0.63+0,08, yi. =1.47~0.1
The actual critical temperature is T~=67.458+0.008.

I. INTRODUCTION

'AXGAXESE fluoride can be considered as a
classical example of a uniaxial antiferromagnetic

material. The material has been studied extensively by
a variety of experimental techniques. ' ' Our interest is
centered on its behavior near its critical point, in par-
ticular the behavior of the spatial dependence of the
critical fluctuation above its Keel point. In contrast
to neutron experiments on cubic antiferromagnets, '
RbMnFS, for example, it is possible to separate out the
longitudinal and transverse components of the spin
fluctuations and to compare their behavior with each
other and the equivalent measurements in the cubic
cases.

Experimentally, we measure the quasielastic scatter-
ing in the neighborhood of the transition point. The
interpretation of this scattering in terms of evaluating
the staggered susceptibility is straightforward, pro-
vided we can establish that the inelasticity in the neu-
tron scattering is not a complicating factor. In particu-
lar, we require that the change in wave vector of the
scattered neutron due to the inelastic scattering be
small compared to the range of the wave vectors over

* Work performed under the asupices of the U. S. Atomic Energy
Commission.

f Supported by U. S. Air Force Grant Xo. AF 68-1480.
f. Work supported by Advanced Research Projects Agency

Contract Xo. SD-90.' P. Belier, Phys. Rev. 146, 403 (1966).
~ O. W. Dietrich J. Pllys. C. (to be publislled) ' M. A11tonini,

J. Phys. Chem. Solids 28, 11 (1967); G. Parette, K. U. Deniz,
J. Appl. Phys. 39, 1232 (1968); B. H. Torrie, Proc. Phys. Soc.
(London) 89, 77 (1966);K. C. Turberheld, A. Okazaki, and R. N",
H. Stevenson, ibid. 85, 743 (1965).' M. J. Cooper and R. Nathans, J. Appl. Phys. 37', 1041 (1966);
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which the scattering is appreciable. This condition is a

more stringent one than the usually stated requirement
that @inelastic+4~incident.

Since the relative momentum transfer in the neutron

scattering experiments will depend on the incident neu-

tron wave vector (or energy), we have repeated the mea-

surements for incident neutron energies varying be-

tween 56 and 134 meV. As shown in the Appendix, we

can estimate the upper limit of the effect of neutron

inelasticity on our determinations of &, the inverse

correlation range for different incoming energies. The
invariance of our results in the face of the large change
in incoming neutron energies, combined with the analy-

sis in the Appendix, strongly suggests that our results

do indeed satisfy the quasielastic approximation.

A theoretical calculation given by Moriya, on the
basis of a molecular-field assumption, predicts the
divergency of the longitudinal staggered susceptibility
and corresponding correlation range at the phase transi-
tion. The perpendicular susceptibility, however, should

remain finite at all temperatures. Our results qualita-

tively support this prediction, although quantitatively,
our results are inconsistent with the molecular-field
calculation.

II. THEORY

The theory of neutron scattering by magnetic sys-
tems in the critical region was originally given by Van
Hove' as an extension of the Ornstein-Zernike formula-
tion for simple fluids. The detailed theory has been

4 T. Moriya, Progr. Theoret. Phys. (Kyoto) 28, 871 (1962).
' L. Van Hove, Phys. Rev. 9S, 249 (1954); 95, 1374 {1954).
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covered in articles by Marshall, ' deoennes, and
Heller 8

If the fluctuations in the magnetization occur in a
time that is long compared with the transit time of a
neutron through a region of correlated spins, and also
if the inelasticity is smaller than the magnitude of the
thermal fluctuations in the system, then we can relate
the angular dependence of the scattering to the wave-
length-dependent static susceptibility through the
relation

the angular dependence of the scattering is then given by

do—=const
dQ 3 (T) siz+q'

We expect that the components of X will be given by

Ail&(T) ~t(T)'+q'
1

X.(q, T) =
A, (T) Ki, (T)'+q'

kpT
XQ (as —k kp) X s(K).

AP g p~

F(K) is the ionic form factor normalized to unity at
K=O, and n, P refer to the cartesian coordinates of the
lattice. The 5 function in the curly brackets simply
says that we see only those components of the fluctua-
tions perpendicular to the scattering vector K, defined

by the incident and final neutron wave vectors k; and
k~ through the relation

K=k,—kg.

As we near the critical temperature, X„(O,T) will be

divergent, with X, (O, T) remaining finite. In the molec-

ular-field theories describing these phenomena a plot of

1/X„(T) falls linearly to zero at T& while a plot of

1/X, (T) extrapolates to zero at a temperature Ti(T~.
According to a calculation by Moriya' for MnF2,

2'&—I'~= 1.36'K. Since we do not expect molecular

field theory to be valid in the critical region, we shall

not assume this value in the analysis of our data. Also,

in molecular-field theory we expect that

By looking at a reflection where the spin axis is along
the scattering vector, we see only fluctuations perpen-
dicular to the anisotropy axis. When we look at a re-
flection where the spin axis is at right angles to the
scattering vector, we see a known admixture of longi-
tudinal and perpendicular fluctuations. By combining
the two results we can find X„(K)and X,(K) separately.
From these data, we can evaluate the temperature de-

pendence of the staggered susceptibility X(K=Es) and
also determine how X depends on K; that is, at each
temperature we obtain a correlation length for both the
parallel and perpendicular components. These data are
usually expressed as a function of the distance in re-
ciprocal space corresponding to the change in neutron
wave vector.

A. Results for Simyle Ornstein-Zernike Theory

For a material with cubic symmetry, X is a scalar
(X„=X»——X,), and X(q) depends on ~q~ as

1 1
X(q) =

-4 (T) ~is+q'

where A (T) is a slowly varying function of temperature.
This statement is equivalent to saying that the static

pair distribution function G(R) is a decaying exponen-
tial in E divided by E. In the quasielastic approximation

' W. Marshall, R. D. Lowde, Rept. Progr. Phys. 21, 705 (1968).' P. G. deGennes, in iVagnetisns, edited by G. T. Rado and H.
Suhl (Academic Press Inc. , ¹wYork, 1963).' P. Heller, Rept. Progr. Phvs. 30, 806 (1967).

Again, this was not an explicit assumption in our data

analysis.
For a noncubic material such as MnF2, we expect

that the longitudinal and transverse fluctuations will

have different temperature dependencies; i.e., X is a

tensor having the tetragonal symmetry of the MnF2

lattice. We then have to inquire into the form of X"(T,q)
and X' (T,q), which we will denote by X„(T,q) and

X~(T,q), respectively (a, c denote the crystallographic

axes).
Each component of X will depend on the direction of

q as well as the magnitude. Following Moriya, we shall

assume the X(q) is constant on ellipsoidal surfaces in

q space. That means X(q) depends only on the quantity'

q*= Lq'+q-'+ (c/')'q'7".

B. Results for Modified Ornstein-Zernike Theory

Fisher has shown' that we may expect deviations

from the simple 0—Z form close to T~. This leads to a

modification in our expectation for X(q,T) as follows:

where q is predicted by Fisher to be a small number for

' The physics of q* can be seen if we imagine that the magnetic

fields in the crystal are described by wave vectors. I,et g, be along

the (100) and (010) directions and q» along the (001). Then if a

~qi~ =c~ g" ~, the relative polarizations of neighboring spins will

be the same. Thus we would expect X(qff) =y(qq).I M. E. Fisher, J. Math, Phys. 5, 944 (1964).
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Measurements of the critical scattering were made
around the (100) and (001) reciprocal points. For the
(001) reflection, the spin axis is parallel to the scatter-
ing vector, and only transverse fluctuations are ob-
served. For scattering around the (100) reflection, we
see a sum of the longitudinal and transverse fluctuations.

The spectrometer is diagrammed in the upper part of
Fig. 1, Neutrons from the reactor are monochromated
by a deformed germanium crystal. The wave-vector
directions are defined by soller slit collimators. Twenty-
minute divergences in the horizontal and vertical
directions were used before and after the sample. A
10-min horizontal collimator was placed before the
monochromator.

/
& I —r'tt g ~ ~p& I
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SPACE
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Pro. 1. Diagram of the two-crystal neutron spectrometer. Lower
portion gives the equivalent scattering in reciprocal space.

three-dimensional systems. In fact, we find that this
modification does give a better fit to the data on the
longitudinal fluctuations near T~. Since the transverse
Quctuations do not become singular, this modification
is not particularly important, although the data were
tested to look for evidence of this e6ect.

III. EXPERIMENTAL APPARATUS

A. Sample and Spectrometer

Manganese fluoride has a body-centered tetragonal
structure (rutile) with the manganese spins (ss) aligned
along the c axis in a simple antiferromagnetic manner. "
The dominant exchange interactions are for next-nearest
neighbors (Js———1.76'K), while nearest neighbors are
weakly coupled (J&——0.3'K)." The periodicity of the
lattice gives a vanishing structure factor for the lowest-
order nuclear reGections, so magnetic scattering is ob-
servable without an accompanying nuclear peak or the
presence of acoustic phonons.

The Neel temperature was determined from a mea-
surement of the disappearance of the magnetic Bragg
peak at the (100) reflection. This gave a TED=67.465
&0.01'K, which agrees quite well with the result found
from the analysis of the critical scattering above T&.

"The crystal was grown from the melt in a pure helium atmo-
sphere (Czochralski technique) by Dr. D. Gabby and R. Mills.
The measured mosaic spread was less than 1-min full width.

~~ G. G. Low, A. Okazaki, R. W. H. Stevenson, and K. C. Tur-
ber6eld, J. Appl. Phys. 35, 998 (1964).
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Fro. 2. Critical scattering around the (100) reciprocal lattice
point. Experimental points and computer iit (solid line) to data
are given. Dashed lines are the separated longitudinal and trans-
verse components.

"G. White, Ex~eri mental Techni gles in Low-Temperatlre
Physics (Oxford University Press, New York, 1968), p. 125.

B. Temperature Control

Critical scattering measurements require that the
sample be maintained at a uniform temperature dur-
ing the course of the experiment (typically 8 h).
For this purpose, the sample was mounted in a con-
trolled-temperature Dewar similar to one used by one
of us in an earlier experiment. ' The actual sample tem-
perature was monitored independently of the servo
thermometer by a separate platinum resistance ther-
mometer (PRT) mounted in the base of the sample
holder and in good thermal contact with the crystal.
This PRT (Leeds and Northrup) was calibrated, using
its known resistance at the ice and helium points and
using a computer fit to the Z function given by White
for interpolation. " White estimates that the errors in
this process are less than 50 m'K absolute.

The high-gain servo loop used with the control tem-
perature Dewar provided a measured temperature con-
trol at the sample crystal of less than &0.001 deg over
the time of any one measurement. A check for thermal
gradients in the crystal was made by masking the inci-
dent neutron beam so that only selected portions of the
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crystal were illuminated and measuring the intensity of
a magnetic Bragg peak below T~ (proportional to the
square of the magnetization). The agreement between
the upper, lower, and bulk crystal at several tempera-
tures (normalized to the lowest temperature) showed
that any thermal gradients present were less than (0.002
&0.003) 'K.

10 I I I
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Iillf I I I
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CORRELATION RANGE
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I I I
l

I I Ill

C. Resolution Limitations

The resolution limit of the spectrometer can be de-
scribed as an ellipsoid in reciprocal space where any
cross section through the ellipse has a Gaussian intensity
profile. " If q, q„, q, define a set of coordinate axes
centered around qp, then the resolution function R(qp)
describes the probability that a neutron having @=qo
+dq will be counted by the detector. We define

~(qp) +p exp[ s (~11$ +~12/ gp

+~ssq, '+~spy, ')$,
where M,, are matrix elements that describe the size
and orientation of the ellipse.

The actual resolution function was mapped out using
the (100) magnetic Bragg peak, and least-square fitted
to the form above. The experimental M;, 's were com-
pared with theoretical values calculated from the mea-
sured instrumental parameters. The good agreement
between the two methods gave confidence that the
theoretical resolution function used to correct the data
from the (001) reflection (where there is no Bragg peak)
was correct.

The experimentally measured data are a convolution
of the intrinsic cross section with the instrumental reso-
lution. At temperatures far above T~ the angular dis-

R
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Fre. 4. Longitudinal inverse correlation range. Kappa is in
same units as g*, solid line is best fit to power law in T~.

o'= — —Q o1,[I,(observed) —I,(calculated)]'.
Ã —3f

tribution is broad and the correction needed small. As
T —+ T~ the lines become sharp and the effects due to
resolution become quite serious. Corrections to the data
were made by folding the resolution function with the
the modified I.orentzian cross section given earlier on
a point-by-point basis. The parameters in the cross sec-
tion A, z~, g and background were treated as variables
in a weighted least-squares fit.

The weighted variance o-' was calculated for each set
of data, where

CI

(9
O

IOOO

100—

IO—

Here E is the number of data points, 3f is the number of
free parameters, and counting statistics were used for
the weights co;. All values of a' were found to vary typi-
cally between 0.9 and 1.3. Figure 2 shows data taken at
the intermediate wavelength and an intermediate tem-
perature around the (100) reflection, where both com-
ponents of the fluctuations are seen. The open circles are
experimental points, and the solid line is the best fit to
the theoretical cross section folded with the instru-
mental resolution. The upper dashed curve is the cor-
rected cross section for the longitudinal component, and
the lower dashed curve is the transverse component.

IV. RESULTS

I

O. OI O. I

(T- TN) K

"M. J. Cooper and R. Nathans, Acta Crypt. A24, 619 (1968).

FrG. 3. Longitudinal staggered susceptibility as a function of
temperature. Data were taken at three incident neutron energies.
Solid line is best 6t to a simple power law, in T~.

Measurements were made in the temperature range
T111+0.04'K to T1v+8'K for incident neutron momenta
of 5.2, 6.1, and 8.2 A ' (56, 77, and 134 meV, respec-
tively). The data taken around the (001) reflection were
fitted with a cross section of the form

( & (T) )' ""

dQPP1 (K11 +g
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I I I I is in the same units as q*. The solid line is a fit to a sim-

ple power law with respect to T~'.
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FIG. 5. Transverse staggered susceptibility as a function of Tz
with best 6t to a power law. Tq is a parameter of the fit and given
in the text.

where 8 incorporates all of the constant terms given
in the complete expression of Sec. II. The data around
the (100) reflection were fitted with

&dQ, pp &K„P+g*' Kii +g
In principle 8,' can be calculated from 8& and the

ratio of the form factors for the (100) and (001) reflec-
tions. In practice this is difficult since we cannot guaran-
tee that the neutron illumination remains constant over
the crystal when rotating from one reliection to another.
The data were analyzed by first fitting the transverse
data and finding the value of T& that best described a
power-law fit for ~ii. Then Bi'/B~~ TN/T, 1.05 wa——s-
used in the fits to the data from the mixed (100) reflec-
tion. This ratio was varied over a 30% range, and it was
found that the exponents y&t and v&1 were unaffected.
If Bi'/Bu 2, then Bi~ is found to——be very temperature-
dependent.

The experimental data for the longitudinal suscepti-
bility of the staggered mode are given in Fig. 3. The
solid line represents a least-squares fit to the simple
power law

X(q=0)-(T TN) &, —

where p, T~ and the constant of proportionality are all
fitted parameters. We find that

~= 1.238W0.02,
T~ ——67.457&0.004.

Figure 4 shows the corresponding longitudinal inverse
correlation length as a function of temperature.

where the parameters that best describe the data are
given by

v =0.634~0.02,
T~——67.459~0.007,

A = 0.459+0.009= (2.237&0.044)/a.

The values of T~ found from the data in the critical
region agree quite well with the results from the mag-
netization measurement below (TN= 67.465+0.01).

It is evident from the data that over the energy range
investigated, we do not observe an energy dependence.
This result is important if we are to believe that the
quasielastic approximation provides a correct descrip-
tion of the scattering observed in this kind of experi-
ment. Given in the Appendix is an estimate of the mag-
nitude of the inelasticities required for us to observe a
shift in the data with changing neutron energy.

The sensitivity of the data to an g in the modified
Lorentzian cross section was highest in the region closest
to T~. The best value found was

q = 0.05+0.02.

We also note that the values of y and v given above are
consistent with the scaling relation

v= (2-n)~

for an g equal to 0.047.
These exponents are too large to be consistent with

the molecular-held values of

However, the magnetization in the region below T~ is
known to depart from the molecular field form, and
there is no reason why it should be valid above. Fisher
and BurforcV' have calculated the critical indices to be
expected for an Ising model antiferromagnet with
nearest-neighbor interactions on a bcc or sc lattice.
They find

y = 1.25&0.007,
v =0.643&0.003,
g =0.056+0.008,

which are close to the values we obtain experimentally,
although the model of an Ising system is certainly not
valid for manganese fluoride.

Figures 5 and 6 present the measurements of the
transverse staggered susceptibility and corresponding
correlation range. As expected, these quantities remain
finite, although the dependence on temperature in the
critical region may be expressed as divergences with

'5 M. E. Fisher and R. Surford, Phys. Rev. 156, 583 I'1967).
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TABLE I. Results of data analysis at all values of incident neutron energy. Exponents are given for each of the power-law fits described'
The combined data represents a 6t to all the measured values. y is found from the longitudinal data closest to T~. Best fit to q =0.05
+0.02. Combined data longitudinal values of y, v consistent with q=2 —p/v=0. 047.

Neutron
energy
(meV)

Experimental results
77 134

Combined
data

TN

0.59 &0.02
67.468 +0.005
0.0331&0.0006

1.21 &0.02
67.461 &0.003

0.65 &0.1
64.87 &0.7
0.028 &0.008

1.55 +0.06
64.30 ~0.2

xiii =A (T—TN)"
0.65 &0.01 0.64 ~0.02

67.458 +0.003 67.450 +0.008
0.0306+0.0004 0.0341&0.0008

xll(q=0)-(T —T~) '
1.28 +0.02 1.23 &0.02

67.455 &0.003 67.457 &0.006

scii, ——8 (T—Ti)"
0.73 &0.08 0.51 &0.1

64.31 &0.5 65.62 &0.2
0.024 &0.005 0.040 &0.003

x~4=0)-(T—T~) '
1.43 +0.09 1.41 +0.09

64.47 &0.3 64.49 +0.3

0.634 +0.02
67.459 &0.007
0.0318&0.0008

1.24 &0.02
67.457 &0.004

0.63 &0.08
64.92 &0.7
0.0301&0.007

1.47 +0.1
64.40 &0.5

respect to a temperature T&(T~. The susceptibility
can be fitted to the form

x,(0)- (T—T,)
—7,

and the best fit is found for the values

y = 1.47&0.1,
Ti ——64.40%0.5.

Ke can also fit the perpendicular inverse correlation
range to a power law

As with the longitudinal data, we find no evidence of
a wavelength dependence for the perpendicular spin
correlations.

Given in Table I is a summary of the data analysis.
The observations at each incident energy were analyzed
separately and are presented for comparison with the
final values obtained from the combined data.

The error limits quoted for the fitted parameters in

each of the power-law fits are the one-standard-deviation
points calculated from the least-squares minimum by

(T Ti—
T, PERPENDI GULAR INVERSE CORRELATION RANGE

and we find that the best fit is obtained for

v =0.63&0.08,
Ti = 64.9&0.7,
A =0.416&0.097= (2.028&0.47)/a.

The average value of T~—T& found from this method is
2.8&0.8'K, which is different from the one calculated
by Moriya from a molecular field theory,

TN —T,~= 1.36'K.

If we fit our data, assuming T, given by Moriya, then
we do find that the results are described by the classical
exponents

p =0.47~0.02,

y =0.97~0.02.

However, the weighted variance goodness of the fit is
50% larger, indicating a poorer fit to the data. Also, the
smaller error brackets are hidden in the fact that the
number of free parameters has been reduced by 1.

lh

O
K
V)

O
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4J
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O. I
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D
LU
CL

LJ
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a 77 meV
& l34 meV

(T-T, ) 'K
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Fxo. 6. Transverse inverse correlation range.
sc is in the same units as g*.
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I I I I I I I

LEAST SQUARES MINIMUM FOR T
(T~ = 67.458&0.008'K). The longitudinal staggered
susceptibility and corresponding correlation range are
found to diverge with critical indices

v =0.634&0.02,

y = 1.24&0.02,

which are inconsistent with the results predicted from
a molecular field theory.

The transverse susceptibility and correlation range
remain finite throughout the critical region and may
be described as divergences with respect to a tempera-
ture T&&T& by the indices

I I I I I I I I

67.450 67454 67458 67462 67466

T, 'K

FrG. 7. Least-squares minimum for a typical fit to Tz from the
power-law equation for ~ (longitudinal), Arrows show the one-
standard deviation points calculated by the fitting program.

the fitting program. Figure 7 shows the weighted vari-
ance as a function of one of the variable parameters
(TN) for a typical set of data. The equation used in this
case was for the fit to the inverse correlation range at an
intermediate wavelength. The dip in the minimum cor-
responds quite well to the errors calculated by the pro-
gram (shown by the accompanying arrows).

v =0.63&0.08,

q, =1.47a0.1,

where the average value found for T~—T,= 2.8+0.8'K
is greater than the result given by Moriya from a molec-
ular field calculation (1.36'K).

The correctness of the data interpretation within the
context of the quasielastic approximation has been ex-
perimentally verified for the range of incident neutron
energies 56—134 meV. The data were analyzed by cor-
recting for instrumental resolution and fitting to a
modified Ornstein-Zernike cross section. The parameter
q defined by Fisher to describe the departure from Lo-
rentzian behavior is found to have a value

g =0.05&0.02

U. CONCLUSIONS

I I I I I I I I I . I

2,o —C H A NG E I N x D U E TO I N ELASTIC ITY

I,8

l.6—

FIT'r EO
Kl

KI TRUE
i'4

L2—

1.0

O. 8 I I I I I I I I

0.2 0.4 0.6 0.8
r(o)

VK TRUE
I

I.O

FrG. 8. Changes in a (6tted) for various inelasticities in the
scattering. These results are based on a model for S(g,co) given in
the Appendix.

We have made a careful study of the spin Auc-

tuations in manganese fluoride near the critical point

in the region close to T~.
The results given here are to be compared with those

of Dietrich, ' who has made recent measurements of the
neutron inelastic scattering in MnF2 for small momen-
tum transfers. He analyzed his data using an assumed
analytic form for the inelastic cross section. Although
the direct measurement of inelastic cross section gives
a somewhat more direct measurement of the same pa-
rameters we have evaluated here, the statistical accu-
racy of the data is much less than that which can be
obtained in the two-axis arrangement used in our work.
The choice is one of evaluating all the parameters con-
nected with the critical scattering from the somewhat
poorer data associated with inelastic neutron work. This
procedure requires fewer assumptions on the presumed
analytical form of the cross section. Alternatively, we
may choose to collect data of greater statistical accuracy
and verify the approximations used in interpretation of
the data, a procedure we have used here. As a whole,
there is satisfactory agreement between our results and
those of Dietrich. Small differences are evident, par-
ticularly with regard to the absolute values of ~. The
explanation of these differences is not immediately ob-
vious. The complexity of the analysis in the least-square
analysis involving multiple parameter evaluations tends
to obscure the interactions between analysis and ac-
curacy of data.
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8 1
S(q, )= —r(O)

g 2 pip++ (0)2(1+q2/~i2)2

We are now in the process of analyzing our own in- we get that
elastic results with a view to examining these small
discrepancies.
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APPENDIX: AN ESTIMATE OF EFFECTS
OF INELASTICITY

On the basis of some simple assumptions about the
nature of the scattering function S(q,pp) we can estimate
what magnitude of inelasticity would have to be present
for us to see a shift ig. the value of g we fit to our
data as the incident neutron energy is varied.

We consider only the longitudinal fluctuations and
neglect the eGects of the Boltzmann factor, which is
valid if h~((k~T. The scattering function can be written
as a function of q and co:

S(q,~) =A (q)/E~'+I'(q)'3,

where I'(q) is the energy width due to inelasticity as a
function of q, and A(q) can be found by relating the
integral of S(q,&v) over energy to the static form of the
cross section.

S (q,~)dpp=3(T)/PaiP(T)+q'j,

so we find that
&P') I'(q)

~ip+q'

and we can now write

1 &(&) I'(q)
S(q,pp) =-

pr ziP+q' pi'+I'(q)'

The exact form for I'(q) is not known; however, a rea-
sonable assumption is to adopt the scaling relation

I' (q) = I'(0) (1+q'/KP) .

If we use this form in the equation above for S(q,co)

In order to relate the static susceptibility we actually
measure to the integral of S(q,pi), we have to ask what
range of q is observed when the spectrometer is set to
qp. This is not related to the resolution function (al-
though that also smears out the q value), but is a prop-
erty of the fact that the two-crystal apparatus counts
any neutron that exists along the direction of final mo-
mentum defined by the counter. Any inelasticity present
will produce a shift in the q we actually measure. We
can.write down the q as a function of energy

q(&o) = qp + (pi/V) —2qp(pi/V) cosn,

where n is the angle qo makes with k~;„„i, and V is the
neutron velocity.

The static susceptibility measured as a function of

qo is then

X(qp) = S(q(pp), pi)dpp.

This can be reduced to a dimensionless form and inte-
grated numerically for fixed values of I'(0). We may
then ask what the result is of fitting the generated X(qp)
to the simple I.orentzian cross section for various values
of the inelasticity. This procedure will show how the
fitted values of z vary as a function of inelasticity.
In the limit of infinite neutron velocity the fitted ~ must
equal the true ~ exactly.

In Fig. 8 we have plotted the behavior of z 6tted as
a function of the inelasticity. The scales are in dimen-
sionless units. We may now ask what inelasticity would
have to be present for us to see a shift in the ~'s we ob-
served over the variation in neutron energy measured.
From the accuracy of our data, a 15'Po change would be
easily detected. This corresponds to a dimensionless
inelasticity of 0.5. Using the actual ~ s observed implies
a I'(0) of 1 meV at a temperature 6'I above the Neel
point. Closer in, say 0.15' above, a I'(0)=0.1 meV
would be required to produce the same shift in &.

From the figure, we can see why the quasielastic
approximation is not valid at lower energies. If we de-
crease the neutrong energy by a factor of 4 then the
inelasticity increases by a factor of 2, and the shift
in ~ can become serious.


