
PHYSICAL REVIEW B VOLUME 1, NUM B ER 5 1 MARCH 1970

Mobile-Electron Ising Ferromagnet

pAUL E. SCESNKY

Baker Laboratory, Cornell Un& ersity, Ithaca, lVenr York 14850
(Received 13 October 1969)

The general mobile-electron Ising ferromagnet (introduced by Fisher) is described, and its properties
discussed: Electrons migrate over a lattice of spin--, ions; when there are k electrons on the bond (i,j), their
energy is eA, and they induce an Ising spin coupling between the spins i and j.The mean number of electrons
per bond n is determined by the condition of electroneutrality. The model can be solved exactly in terms of
the free energy of the underlying lattice and exhibits renormalized critical exponents; in the three-dimen-
sional model, these are P= 0.33—0.36, p 1.43, and n, —0.14. The behavior of the simplest ferromagnetic
model with k=0, 1, or 2 and n=2 depends, for a fixed mode of electron-ion coupling, only on n and e=2c1—6p —62. The variation of the critical point with n, c, and the coupling energies is studied, and the behavior
of the energy, magnetization, specific heat, and susceptibility is investigated. For certain parametric ranges, it
is found that the spontaneous magnetization initially increases with T. The model exhibits a critical con-
centration for ordering (6=r,), and also a lower critical temperature below which 3f0(T} again vanishes. A
brief survey of related models exhibiting one or the other of these properties is presented.

I. INTRODUCTION

~COMPARISONS of critical indices' obtained from~ three-dimensional Ising models with those from
experimental observations in magnetic and Quid sys-
tems show small but definite discrepancies. As an
example, consider P, the best experimentally determined
exponent. In magnetic systems (where P describes the
spontaneous magnetiza, tion) and in fluids (where p
describes the coexistence curve), typical experimental
values of P lie in the range 0.33—0.36. On the other hand,
the best estimate of this exponent from the Ising model
is P ~'~ =0.3125. This theoretical value is 7—15% lower
than the experimental values and is well outside any
possible interval of uncertainty. These discrepancies
are not really surprising, since the Ising interactions
cannot hope to describe the complexities of a real
physical system. The additional degrees of freedom
possessed by a real system might easily inQuence the
behavior a.t a critical point.

Recently, Fisher' has considered this problem quite
generally and has found that under certain circum-
stances the critical exponents are "renormalized. "The
abstraction underlying Fisher's analysis is as follows:
In the attempt to describe a real system, we start with
an "ideal" system with known variables and charac-
terized by the ideal critical indices n, P, p, . . . . The real
system, however, may have some additional "hidden"
variables which should be considered in the idea, l sys-
tem. These hidden variables will Quctuate but remain
in equilibrium with the known variables, and they are
subject to some over-all "constraint. "To illustrate the
validity of this abstraction, consider the following two
cases. In the idealization of a real Quid system as a
lattice gas at constant temperature and density, the
extra degrees of freedom introduced by isotopic and
other impurities are not considered. A hidden variable,

' Q'e use the standard critical-point exponent notation: see the
review articles (a) M. E. Fisher, J. Appl. Phys. 38, 981 (1967);
(b) I.. P. Kadanoff et al. , Rev. Mod. Phys. 39, 395 (1967); (c) M.
E. Fisher, Rept. Progr. Phys. 30, 615 (1967).

~ M. K. Fisher, Phys. Rev. 1/6, 257 (1968).

j.

in this case, would be the impurity concentration.
Obviously, this will Quctuate, but it is constrained since
the total number of impurity atoms is fixed. Similarly,
the electronic degrees of freedom in a metallic ferro-
magnet are not considered in the Ising model where
temperature and applied field are the known variables.
The fact that the system must remain electrically
neutral serves as a constraint over these hidden elec-
tronic variables. The situation is similar for other
physical systems and their idealizations.

On the basis of certain very general thermodynamic
assumptions, the behavior of such constrained systems
at and near their critical points' is found to be renor-
malized relative to the behavior of the ideal system. It
is the constraint of the additional freedoms which is
essential in bringing this about. Where the specific heat
of the ideal system was divergent with exponents 0. and
o.', the real system has a cusp at the critical tempera-
ture characterized by the renormalized exponents
n, = —n/(1 —n) and n, '= —n'/(1 n'). The other exp—o-
nents are also renormalized, in particular, p, =p/(1 —n'),
Y.=y/(1 —0,), y, '=y'/(1 —n'). Using the three-dimen-
sional Ising-model exponents, we find o. ~—0.14,

1.43, and P, 0.33—0.36. The range in P, results
from the uncertainty in n'. Note that the renormalized
value of P, is seen to be the same as that for which
experimenta, l values are found.

The purpose of this paper is to study the effects
brought about when an otherwise "stiff" Ising model is
given greater Qexibility and extra degrees of freedom.
Our model is the mobile-electron Ising ferromagnet
previously proposed by Fisher (although in a more
simplified form than the one adopted here). ' The

3 As shown by Fisher in Ref. 2, renormalization does not "set in"
until the temperature is within some "transition region" about
the critical point. This region, however, may be very small and for
temperatures very close to T, (yet outside the transition region)
the real system can appear to follow the ideal behavior.

4 In Ref. 2, Fisher proposed a spinless-electron version of this
model with a speci6ed ground state and 6xed concentration of
electrons. A preliminary account of the present work was given by
M. E. Fisher and P. E. Scesney, J. Appl. Phys. 40, 1534 (1969).
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physical picture is one of a, metallic ferromagnet in
which spin-~ positive ions occupy the sites of a lattice
with coordination number q. An ion is coupled mag-
netically to its nearest. neighbor only when one or more
free electrons are in the immediate vicinity of the
particular ion-ion bond in question. The ionic spin
coupling is then achieved via intermediate interactions
with the electronic spins. Although the electrons are
free to migrate through the lattice, we suppose that, at
a given instant, every electron is associated with some
inter-ion bond. Such a bond "occupied" by k electrons
has an occupation energy ez. Unoccupied bonds (4=0)
do not couple the vertex ionic spins but do have a,

"hole" energy &0. Figure 1 illustrates a possible configur-
ation of our model for a square lattice of ions. The
electrons will be treated in a grand canonical ensemble.
Their chemical potential p= )ksT is to be determined,
as usual, by the constraint that, at all temperatures,
the average number of electrons per bond is that con-
stant e for which the over-all system of electrons plus
ions is electrically neutral.

The mobile-electron Ising ferromagnet is one of a
class of "bond decorated" models. Such models are
intimately related to the Ising models, since only the
form of the nearest-neighbor interaction has been
changed. The underlying spin configurationa. l problems
arising in the determination of the partition function
are identical. The general method of solution of these
models' is first to consider that part of the partition
function associated with the configurations of a single
ion-ion bond. This "partial bond partition function"
can be rewritten in an Ising from dependent only on the
vertex spins. Mathematically, the decorated bond then
looks like an undecorated or simple Ising bond, except
the usual interaction and field parameters are now

complicated functions of the temperature and of the
field on the original bond. The partition function can
then be rewritten in the usual Ising form which depends
only on the spin configurations of the undecorated or
reference lattice. This formalism depends only on the
structure of the bond; it is independent of the dimen-

sionality of the lattice.
Of prime importance in the determination of the

properties of decorated lattices are the algebraic trans-
formations relating the temperature and held variables
of the decorated. and undecorated bonds. It is quite
possible to include in our model the additional com-
plications of three-ion interactions and multiple energy
and coupling states of a k bond (a bond occupied by k

electrons). The corresponding transformations, how-

ever, become increasingly involved. In this paper, we

consider only the simplest case in which a bond can
accommodate only 0, 1, or 2 electrons and in which e
is less than or equal to 2 electrons per bond.

Our model, then, introduces additional degrees of
freedom in a fairly natural way yet can be solved to the

' M. E. Fisher, Phys. Rev. &&3, 969 (1959).
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Fro. 1. A possible state of the mobile-electron Ising ferromagnet
on a section of square lattice.

J. S. Rowlinson, Liqnids and Liquid 3/Xixtures (Academic Press
Inc. , New York, 1959), Chap. 5, 159 B.

7 I. Syozi, Progr. Theoret. Phys. (Kyoto) 34, 189 (1965) I.
Syozi and S. Miyozima, ibid. 36, 1083 (1966).' J. W. Essam and H. Garelick, Proc. Phys. Soc. (London) 92,
136 (1967).

same extent as the corresponding Ising problem. Since
the electroneutrality constraint will yield renormalized
critical behavior, we have a system vvhich permits us to
study these effects quantitatively. In this paper, we
display explicitly the factors governing renormalization
and the resulting effects on the behavior of the mag-
netization and specific heat; a detailed numerical study
of the renormalization effects is reserved for a follow-
ing paper.

The model has several interesting features. For cer-
tain ranges of the parameters governing the electron
behavior, both an upper and lower critical temperature
are found, the magnetization being nonzero only for the
intermediate temperatures. Binary Quid systems have
been known to exhibit the analogous behavior of
separating into distinct phases at temperatures between
upper and lower consolute temperatures. ' For other
parametric ranges in our model, the magnetization is
nonzero at T=O but initially increases with tempera-
ture. These effects are a direct result of the additional
degrees of freedom introduced in the model.

The simpler version of the mobile-electron ferro-
magnet in which multiple occupancy is excluded (k
equals 0 or 1 only and e is less than or equal to 1) is
essentially the same as the dilute ferromagnetic model
proposed by Syozi~ and recently studied in detail by
Essam and Garelick. ' In the Syozi model, the vertex
spins are coupled only when the intermediate bond is
occupied by a second kind of spin-~ particle. As in our
model, the coupling is achieved via an intermediate
interaction with the central spin. Since the number of
occupied bonds is fixed, this model has the constraint
needed for renormalization. Essam and Garelick show
that renormalization does indeed occur, but they do not
consider the quantitative behavior of the Syozi model
near the critical point. The interesting eRects mentioned
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FIG. 2. The model of Vaks, Larkin, and Ovchinnikov with
alternating second —nearest-neighbor interactions.

in the previous paragraph are not found in the Syozi
model: These e6ects are dependent on the possibility of
multiple occupancy (k equal to 2) incorporated in our
model. As we shall see, the results for the Syozi model
mill be recovered in one special limit of the behavior of
the mobile-electron ferromagnet.

Models for magnetic systems with multiple critical
points have been found before. In 1965, Vaks, Larkin,
and Ovchinnil-ov' studied the properties of a two-
dimensional square lattice with nearest-neighbor and
alternating second —nearest-neighbor interactions. Figure
2 shows the configuration of bonds in their model. The
Ising coupling between nearest-neighbor spins (dotted
lines connecting X and Q sites) was assumed to be
ferromagnetic with an energy of interaction J. The
Ising interaction between alternating second nearest
neighbors (solid lines connecting Q sites) wa, s given an

energy cJ, where a negative value of c would denote an
antiferromagnetic coupling. For c greater than —0.94,
the model undergoes a unique ferromagnetic transition.
In the corresponding ground state, all spins (X and Q)
align parallel to one another. For c less than —1, there
is a single transition to a low-temperature "anti-
ferrornagnetic" state in which Q spins align antiparallel
and X spins have no preferred orientation. In the
rather narrow range of c values between —0.94 and
—1, the model undergoes three successive phase transi-
tions. With increasing temperature, the lattice passes
through a ferromagnetic state to a disordered state,
into the "antiferromagnetic" state, and finally into the
high-temperature disordered state.

Concurrent with the present work on the mobile-

electron ferromagnet, Syozi, Nakano, and Hattori'
began to study a class of decorated lattice models which

in certain circumstances, were also found to exhibit
multiple phase transitions similar to that of the model

of Vaks et al. A typical decorated bond in this class is
shown in Fig. 3. It possesses a direct antiferromagnetic
coupling (energy —

~
c~ J) and an indirect coupling

9V. G. Vaks, A. I. Larkin, and Vu N. Ovchinnikov, Zh.
Eirsperim. i Teor. Piz. 49, 1180 (1965) [English trsnsl. : Soviet
Phys. —JETP 22, 820 (1966)g.

(energy J) via an intermediate intera. ction which tends
to order the vertex spins. As also illustrated by Fig. 3,
this type of bond is similar to the alternating nearest-
neighbor —coupling scheme of the Uaks model. As in the
Vaks model, over a certain range of c, these other
decorated lattices can have a low-temperature ferro-
rnagnetic phase with all spins (X and Q) aligning
parallel, and a higher-temperature antiferromagnetic
phase with Q spins aligning antiparallel and )& spins
having no preferred directions. It has been further
found' that by "superdecoration" of lattice bonds with
multiple spin systems of increased complexity, other
combinations of multiple critical behavior are possible.

Unlike the mobile-electron ferromagnet, all these
other models have bonds of 6xed structure. Hence, they
are just as rigid as the standard Ising model and possess
the same ideal critical behavior. The multiple phase
transitions that are found result from a competition
between the direct and indirect couplings of the Q
spins. Associated with this competition are two ordered
states of low energy. The ferromagnetic ground state is
favored by a "binding energy" per Q spin which is
small [2(~ c

~

—1)J$ for the Vaks model compared to the
direct antiferromagnetic coupling energy 2cJ. Note
that in the antiferromagnetic state the )& spins can
take any orientation without infiuencing the energy
of the configuration. The higher-temperature phase
transitions arise from the possibility of establishing the
second "excited"' phase at temperatures low enough
(T L2(~c~ —1)J]/ks) to maintain Q spin ordering.
This second phase is then disordered at still higher
temperatures (T 2J/ke). We shall see (i) that the
upper and lower critical temperatures which are possible
in the mobile-electron ferromagnet arise from quite a
different mechanism; (ii) that they can occur for large
energy ranges; and (iii) that, unlike some of the other
models, they are possible in all two- and three-dimen-
sional lattices.

The format for the rest of this paper is as follows. In
Sec. II, we consider the derivation of the partition

I"IG. 3. The similarity be-
tween the bonds of a class of
"decoration" models (bot-
tom). and the Vaks model
(top). Both possess an in-
direct ferromagnetic cou-
pling (dashed lines) and
a direct antiferromagnetic
coupling (solid lines).

"(a) H. Nakano, Progr. Theoret. Phys. (Kyoto) 39, 1121
(1.968); (b) I. Syozi, ibid. 39, 1367 (1968); (c) I. Syozi and H.
Nakano, ibid. 40, 236 (1969); (d) M. Hattori and H. Nakano, ibid.
40, 958 (1969).
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function for the mobile-electron Ising ferromagnet. We
first deal with a specific form of interaction and then
consider those properties of a general interaction which
are necessary in the rest of the paper. Section III deals
with the electroneutrality constraint and the derivation
of the basic transformation equations mentioned earlier.
Section IV deals with the solutions of the transforma-
tion equations with emphasis on critical point deter-
mination and elucidation of the upper and lower critical
point solutions and discusses the approach of the real
system to its critical temperature relative to that of the
ideal system. The renormalized behavior of the internal
energy, specific heat, spontaneous magnetization, and
susceptibility of the system are displayed explicitly in
Sec. V. A quantitative study of the eRects of renor-
malization, including estimates of the apparent values
of the critical exponents which would be found experi-
mentally by different techniques of data analysis, will
be presented in a following paper.

II. PARTITION FUNCTION

We consider a nearest-neighbor ionic bond which is
occupied by 0, 1, or 2 electrons. The ionic spins can
eRect each other only via an intermediate interaction
with an electronic spin. Several modes of this spin-spin
coupling could be considered for the various states of
the bond. In what follows, a specific case will be
developed. Those parts of the analysis which are
dependent on the form of the interaction will be isolated
and generalized. The eRect of changing the form of the
coupling scheme can then be easily assessed.

Consider the (i,j) bond connecting nearest-neighbor
sitesi and j.The spin of the ith ion will be described by
the variable 0-; which takes the values &1. In order to
describe the electronic state of the bond, we introduce,
as an algebraic convenience, two inter-ion sites with
spin-occupancy variables p,, and v;;. These variables
will be the usual spin variables taking the values ~1 if
the site is occupied by an electron but will equal zero if
the site is unoccupied.

These electronic variables are somewhat artificial
since they distinguish the electrons on doubly occupied
bonds from one another and give double statistical
weight to singly occupied bonds. They are not necessary
for the analysis but do allow us to factorize the partition
function in certain limits. They also give us a definite
notation in which to describe the states of the bond.

The interaction energy for one form of coupling can
be written as

&;.~ = —JP+(2c—1)p'", ~"7(p'+~* )(o'+o ) (2 1)

In this scheme, empty bonds produce no ionic spin
coupling, singly occupied bonds couple through a
ferromagnetic electron-ion interaction of strengh J, and
occupancy of both sites yields two independent but
similar interactions, each with strength —,cJ. The re-
sulting ionic ordering for occupied bonds is ferry-

F10. 4. Schematic of a bond adopted for the
mobile-electron Ising ferromagnet.

where
K=J/k~T and L=mEI/k~~T.

We begin the decoration transformation by perform-
ing the sum over the variables p, ;, and v;, independently
and writing the resulting partial-bond partition func-
tions in an Ising form.

+1 +1
0(.', .)= 2 2 -p( —(KIJ)(&'-+a..)

ps )=0 vga=0

+5( ' '+p")+L(~'+" )j, (2.~)

P(o, ,a,) =e "x+ e&e "x(4 cosh)K(o;+o, )+L]}
+e'&e "x(2+2 cosh)cK(o;+o;)+2Lj}, (2..6)

P( ;, o) =op exp(K'a, o,+L,*o,+L,*o;). (2 7)

Denoting the signs of o,, o; by + and —and requiring
(2.7) to hold identically for the four possible states
gives, in general, '

4'=0++4- -4+ -4—+,
exp(4K') 4++4- /4+ 4 +, ---

exp(4L~*) 4++4+ —8—-4-+,
exp(4L~*) — 0+ +0-+/0 —-0+ —.

(2 g)

(2 ~)

(2.10)

(2.11)

magnetic. The occupation energy of the bond may be
written

K..= —J{bo(1 —p;,') (1—;,')
+b~L(1 —p")~"+(1—~' ')p")+b~p"~"} (2 2)

where
bI = —el/J (2.3)

For simplicity, we will assume that the magnetic
moment of both ions and electrons is m. The possibility
of different moments can be accounted for later. Figure
4 shows a schematic of the bond we have adopted.
Figure 1 shows a possible state of a lattice with these
bonds.

The grand partition function for a lattice of A ions
at temperature T and in an external held H is now

"( KL,(, b,obg, bg, c)

+1 +1
exp( P [ (K/J)(L~;. t,+—E.„)

p1.x=0 ~1a=0 tr vV=+1 (',&)

+&(~' '+~' ')+L(~'+" )1+2Lo'}, (2 4)
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hence,
&i)&j — &j)&i )

For our symmetric bond, we have

(2.12)

If, in addition to these symmetries, we assume that all
the states of occupied bonds have a ferromagnetic
character, then for k = 1, 2, we expect

(2.13) fkP+(E,L)) fk (K,L), (2.26)

exp(4L*) =P+ +/P (2.14)

Substitution back into the grand partition function

gives
(2.15)"(E,L,(,bp, bk, bg, c) =P'b"Z(E', L'),

where

Z(K', L')

exp(K' Q o,o.,+L' g o.,) (2.16)

L' =L+qL*. (2.17)

Evidently, Z(K', L') is the partition function of the
reference Ising lattice with interaction and field param-
eters determined by Eqs. (2.9), (2.14), and (2.17).

Generalization of these formulas for an arbitrary
coupling scheme involves only certain parts of the
partial-bond partition functions. Obviously, (2.6) can
be rewritten as

P,(E)=P„(E,O) =P (E,O)

=ebpk+e&e»kg&(E)+e'&eb~kg~(E) (2 27)

f (K) =f (E,O) =P (E,O)

=e "k+e&e "kh&(E ,0)+e'&e'»kh, (E 0) (2 2g)

when the external field is greater than zero.
Making use of these general properties, we find that,

as in the case of the Ising model, the mobile-electron
Ising ferromagnet can have a critical point only in zero
field. This follows since the critical point will be any
E, L point mapping onto the critical point of the
reference Ising lattice and a ferromagnetic transition
can occur only when J.', the field on this lattice, is zero.
By (2.14) and (2.17), and the properties mentioned, L'
equals zero only when L equals zero.

To determine the critical points, then, we only have
to consider the zero-field case for which J' equals zero.
For a symmetric bond, the number of functions deter-
rnining p and E' is now reduced to two, namely,

P(o-. o.) —ebokf +egebykf +e2tebmkf (2.18)

where the fk are functions of o.;, o;., E, and I.and contain

everything arising out of the form of the interaction. In
our general model, empty bonds produce no coupling, so

fp(o;, o;,K,L)=1.. —

Q and E'a, re then given . by

(2.29)

(2.30)
(2.19)

Proceeding as before to consider the four possible
orientations of the vertex spins, each of the remaining

functions fk(o, ,o;,E,L) can be thought of as a set of

functions, namely fk~+, fk~, fk +, fk, which are

dependent only on E and L. For our specific choice of

interaction given by (2.1), we obtain explicitly

fi++(E,L) =4 cosh(2K&L), (2.20)

fp+~(K, L) =4 cosh'(cE&L), (2.21)

f,+ (K,L) =4 cosh(L) = f& +(E,L), (2,22)

f,+ (K,L) =4 cosh'(L) = f2 +(K,L). (2.23)

Equations (2.22) and (2.23), which show the equiva-

lence of the (+, —) and (—,+) configurations, are a
direct result of the symmetry of our bond. For any
symmetric-bond scheme, we can write

fk+ (E,L) =hk(K, L) = fk +(K,L). (2.24)

Furthermore, as illustrated by Eqs. (2.20) a,nd (2.21),
arbitrary bond schemes can possess an additional

symmetry. If the decorating spins have no preferred
orientations, the (+, +) and (—,—) configurations

will always be equivalent in zero field;

f + +(E 0) =g(K) =f ——(K o) (2 25)

gk(o) =hk(0, 0) =g, (2.31)

where g is a positive constant. In addition, g„(K),
h~(K, O) must be a positive monotonically increasing
function of E because of the ferromagnetic nature of
the bonds. We will assume that the parameter c always
describes the ferromagnet strength of a k=2 bond
relative to a k=1 bond. We can then write that, as
E —+~,

g (K)/" » (2.32)

g, (E)/e "ax -+ pp, (2.33)

where vI, is the number of distinct states of a k-electron
bond.

We shall see that the right-hand side of Eqs. (2.29) and
(2.30) depend on E' through e&, so that, Fq. (2.30)
actually represents an involved relationship between
K and E'. We will refer to (2.30) as the transformation
equation. Before considering the solutions of this
equation, we mention a few more general properties
associated with the zero-field coupling functions gA,

and ky.

Since all spin configurations of finite energy are
equally probable at infinite temperature, we must have
for k= 1, 2
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III. CHEMICAL POTENTIAL

The chemical potential of the electrons must be
determined by the constraint of over-all electroneu-
trality. The average number of electrons per bond is m,

a number determined by the average ionic charge per
bond of the lattice. Thus, we require that

by making the substitutions

(3.13)

(3.14)

which arise from Eq. (2.30), it is possible to generate an
expression linear in e&. This expression is

(& in'—+(o(E',I.')
(&&x,KL

B
22= lim (2(tE) '

'i&fx, L

L
BL/

+(-g- (E',I,') —, (3.2)
&(X,L

&=(r4'+«'+s4' «')/8+ —-0 ), -
where r and s are functions of E' given by

r(E') = ,'(1-e—'K—') [1+oo(K')5,
s(E') =—',(e'x' —1)L1 —oo(E')].

Finally, solving for e&, we get

(3.15)

(3.16)

(3.17)

e&= $e" Fi(E K')]/$e 'KF2(K E')] (3.18)

where (o(E',L,') and o(E',I.') a. re related to the energy
and magnetization of the reference lattice; namely,

+t s(K')+n]hi(K), (3.19)
&d(E',I') = lim (-2, qX) '

BE'
lnZ

B
(K',I.') = lim iV '—lnZ) .

8 in' 1

~bc, L 4 — 4+ +

(&E' 1

(&&K,L

(2) 2P+ ([)——+
4'+ ——

(2) 2P (2)——+
4'+ ——

Using the definitions in Sec. II, we have

F (E,E') =L —2 (E')]g,(E)
—L22+2s(E') ]h, (E) . (3.20)

(3 4) Note that the numerator and denominator of e& involve
only k = I and k =2 bonds, respectively.

%e should comment that when this procedure is used
in the solution of the Syozi model, the analysis would be
essentially complete at this stage. In the Syozi model,
the equation analogous to (3.12) is linear in e& and the
equation analogous to (3.15) would define the relation-
ship between E and E' and would be independent of
e&. To continue the analysis of our model, however, we
must substitute our expression for e& back into the
transformation (2.30). Before doing this, we define
a reduced activity in which the occupation energies do

(3 7) not enter; namely,

where the superscript notation is defined by

0 (~',~))"'= (~4 (~',~ )/~PKL),
In zero field, (3.5)—(3.7) become

(2) 1l, (2)-

+
8)K,L 2

s =F1(K,K')/F, (E,K') . (3.21)

(3 9)

e2K' pbox+Se(bl bo)xeblxg —+(Se( bob))x)2eboxg ]
e box+se (» "&Ke "Khi-

+(se (b) bo) K)2e boxh—2] 1(322—)
e K' —(eb +sg +s2g )(ebx+sh +soh )

—1 (3.23)

The basic zero-field transformation (2.30), relating E
(3 8) and E', then becomes

BE

(&5K,L

(2) P (2)—

2 —4+
(3.10) The bond occupation energies enter only in the one

combination,

5 =ho+62 2b, = (2ol eo e2)—/J =&/J (3 24)
(3.11)

so that, (3.2) becomes

L(1+„g, «)/P +(1 „)P (&)/P ]. (3.12)

Equation (3,12) could be solved directly for e&, since

it is a quadratic expression in that quantity. However,

Evidently, e is the energy for preference of one-electron
relative to zero- or two-electron bonds. In the limit
&
—+ —~, as many bonds as possible will be k = I bonds,

while for e~ +oo, only k=2 and k=0 bonds will
be found.

The solution of Eq. (3.23) tells us how the interaction
parameters X and A. ' of the decorated and reference
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b~ -6)
c

rc b=b

2rc
,5 —

b

we rewrite (3.23) so as to isolate the effects of the pre-
ferential energy &. That is, we isolate the b dependence:

e'~=s$gi h—ie'~'+e(g~ h—2e'~')]/(e'"' 1—) . (4.1)

We now proceed to analyze the solution of this equation
for the limiting values of b for which we understand the
electronic behavior.

l.5—

A. Infinite Values of b= e/I
In the limit b —+~, the existence of singly occupied

bonds becomes energetically impossible, coupling of the
ionic spins occurs only through doubly occupied bonds,
and the probability p of a nearest-neighbor pair being
coupled is ~e. Hence, the relation between E and E'
should be independent of the k = 1 bond functions. This
is indeed the case since, for an arbitrary value of E and
e~~ tending to infinity, (4.1) can only be satisfied if z
tends to infinity. Equation (3.21) then gives the b —+~
solution as

2.0
0 j.o 2.0

F2(K,E') =0,
which, by (3.20), becomes

(4 2)

FIG. 5. Dependence of critical temperature on electron con-
centration for a simple cubic lattice with a coupling constant
c of 2.

Ising lattices depend on one another. One problem
which arises at this point is that the transformation
relation E and E' is found to have several branches.
That is, a single arbitrary value of E corresponds, in
general, to distinctly diff erent values of E'. The
determination of that correspondence refiecting the true
physical behavior of the system is accomplished by
considering the value of e& for a given E, E'. Since the
chemical potential must be real valued, e& must be real
and greater than or equal to zero. In Sec. IV, we discuss
the family of physically significant solutions.

IV. TRANSFORMATION EQUATION AND
CRITICAL POINT

The zero-field transformation (3.23), relating E and
E', is dependent on the underlying lattice through
the presence of the energy ~(E') in the functions
Fy F2, r, and s which are imbedded in s. Indeed, it is
because of this dependence that the critical exponents
are renormalized. However, when given a specific
lattice and the bond functions gA, and h~, it is not
normally possible to generate simple explicit expressions
for the relationship between E and E' because of this
dependence. Since ~(E') has a similar qualitative
behavior for all lattices of interest, however, the
behavior of the solutions with b, c, e should likewise be
similar. We now consider these common features.

It is immediately observed that high temperatures
always map onto high temperatures since, when E=O,
E'= Oby (2,31). To stu. d. y what happens for large E,

s=0,

gi hie'~'+s(g2 h,—e'~') =0. —

Now, Eq. (4.4) holds for an arbitrary E value if

F,(E,E') =0,
which gives

(44)

(4.5)

(4 6)

gi(K)/hi(K) =Ln+s(K')]/Lm —r(K')]. (4.7)

This is the solution involving only k =1 functions and
which is physically significant for m&1. The second
solution given by (4.5) and involving both types of
coupling functions is the proper limit for 1(v&2. It
can be verified that, for n=1, (4.4) and (4.5) are identi-
cal and that, for +=2, (4.5) is independent of k=1
functions and agrees with (4.3).

g2(K)/h2(K) L2'++~(E )]/L2ii r(E )]~ (4 3)

In the opposite limit b —+ —~, singly occupied bonds
are preferred. We must, however, distinguish two
different possibilities of electron behavior dependent on
the average number of electrons per bond. For v&1,
coupling will occur only through k=1 bonds with a
probability e and the E, E' relation should be inde-
pendent of the k=2 functions. For 1(e(2, the situa-
tion becomes more complicated. Although k=1 bonds
are preferred, a fraction e—1 of the bonds must be
doubly occupied to accommodate all the electrons, and
there are no uncoupled empty bonds. Obviously, the
solution must involve both the k = 1 and k =2 functions
with the dependence on the k =1 functions becoming
very small as e approaches 2.

In the limit b ~ —~, then, we must have e'~ —& 0
for an arbitrary E value. Equation (4.1) now has two
possible solutions, namely,
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"c

c

FIG. 6. Enlarged section of Fig. 5
illustrating the region in which both
upper and lower critical points are pos-
sible and showing the variation with 6,
the bond energy parameter. The dashed
line is the locus of critical concentration
and corresponding unique critical points
for the parametrically indicated b values.

4

2rc

4 .8 l,o l.2

The first two of these limits (b= ~; b= —~, n(1)
are modifications of the Syozi model. In both cases,
coupling occurs with a specified probability through
only one type of bond. The similarity between (4.3) and
(4.7) is then obvious. These equations represent a
general solution for the Syozi model involving only the
coupling bond functions and the corresponding prob-
ability of coupling. When the k =1 coupling is through
the central spin, as in (2.1), (4.7) is identical to the
Syozi solution since the zero-field coupling functions give

gi(E)/ki(E) =cosh(2E) . (4.8)

In both these Syozi-lik. e limits, the solution only mak. es
sense if r(E') is less than or equal to p, the probability
for coupling. There is no possible ambiguity involved
here, since r(E') is an increasing function of E' with
values between 0 and 1. Evidently, r(E') =p denotes
the largest value of E' attainable at T=0 with a given
concentration of electrons. When p=1, all ions are
identically coupled to their neighbors and we have, in
effect, a standard Ising lattice. The right-hand side of
(4.3) and (4.7) reduces simply to

D+ (E'))/t 1 —(E'))= ' '
(4.9)

In these Ising limits, E=~ corresponds to E'= ~ and
complete ionic spin ordering occurs at T=0. The
standard Ising critical exponents are found in these
limits.

The final limiting solution (4.5) valid for b ~ —Qo,

1&m&2 coincides with the k=1 Ising limit, when
m=1, and to the k=2 Ising limit, when m=2. For
intermediate values of e, this solution represents a
smooth transition from one Ising limit to another
arising from the Ailing of the bonds. E= ~ will corre-
spond to E'= ~ but, because co(E') enters when all
bonds are all bonds are no longer identical, the critical
behavior will be renormalized.

B. Finite Values of b= c/ I
A feature suggested by the above discussion is tha, t;

v=2 is always an Ising limit and that the solution

g2(E)/&2(E) =e'"' (4 1o)

b*=4—2c=e*/J. (4.12)

The limiting values of E' then depend o~ b, They are
given by

r(E') = ,'n, (b&b*-) (4.13)

which is valid for the in6nite values of b, should also be
valid for any finite b. This is verified by substitution
into (3.23).

For other values of e, the finite b solution lies between
the limiting solutions, and for hnite E it changes from

(4.3) to (4.5) and (4.7) in a continuous manner as b goes
from +~ to —~ . For values of b greater than a value
b*, however, two different values of E can correspond
to the same E'.

To illustrate this discontinuous behavior as a function
of b, consider those values of E which correspond to a
specific value of E'. In particular, consider the critical
points E, given by (4.1) with E'=E,', E,' being the
critical point of the reference Ising lattice (the subscript
c will denote the critical value of any quantity). Figures
5 and 6 show the (b,n) behavior of a simple cubic lattice
for our choice of interaction as given in (2.1).The &= 2

coupling parameter c was chosen to be 2 so that all
electrons couple the ions with the same strength. The
picture is similar for other lattices, only the parameters
E,' and ~,=u(E, ') being different.

Before discussing the critical-point solutions, we
consider the finite b, large Elimit of (4.1). From (2.3'2)

and (2.33), we have, for E—&~,

emir= ((n —r)rg 2/L(n —2r) (e
~' —1)p~))e~*++ ~ ~ ~

(4.11)
where
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FIG. 7. Variation of critical-point behavior with
the coupling constant c.

(4.14)

to a maximum as the energy per electron (—', p ——',p*),
favoring the unpaired ground state approaches zero.
Increasing temperature, then, disorders the lattice in
two ways; thermal disorder of coupled ionic spins and
self-dilution through creation of &=2 bonds. It is this
self-diluting eHect which is responsible for the fall of
T, to zero as b —+ b*. For m)r, *, there are always
enough bonds to support low-temperature ordering, and
the critical temperature is always greater than zero.

All the electrons for the b) b* ground state will be on
k = 2 bonds, and the T=0 critical concentration is again

p, =-';m, =r, . At finite temperatures, there will be a,

definite probability of splitting a k =2 bond and creating
two singly occupied bonds. The energy per electron
involved in this process is 2(p —p*). It is because of this
splitting that an ordered state is possible at 6nite
temperature for r,*(e&2s„even though the ground
state is disordered.

The criterion for the establishment of an ordered state
is whether enough extra bonds can be produced before
the connected ionic spins are disordered by the rising
temperature. In this ground state, the probability of a
bond coupling its ions is —,e, but the probability needed
for ordering at T=O is r, . At finite temperatures, a
slightly greater probability would be needed, but, for
T«J/1'&, the probability increase needed for order
would be approximately (r, —2m). This increase is to be
attained by bond splitting. Equation (4.11) gives

r*(Q )
—2r(Q )(1+[1+4p (e2x' 1)/p 2]1/2}—r

(4.15)

where r &r*&2r, with its exact value dependent on vI„
the number of distinct states of a k bond. Note that
(4.13) and (4.14) are the same limits found in the
corresponding infinite b cases.

C. Uyyer and Lower Critical Points

To understand the critical-point solutions illustrated
by Fig. 6, we must 6rst understand the signi6cance of
the equality b=b*. When rewritten in terms of the
occupation and coupling energies of the bonds at T =0,
the equality becomes

2(pl 2J)= pp+(pp —2cj). (4 16)

In other words, at T=0, two electrons may either
occupy separate bonds or pair up on the same bond
leaving the other vacant, the energies for the two
possibilities being equal.

For b&b*, the ground state would contain as many
unpaired electrons as possible. For e & 1, this is identical
to the Syozi ground state and the critical concentration
is the same, p, =m, =r,. Note that, for r.*)m)r„ the
critical temperature decreases from a maximum when
b= —~ down to zero as b approaches b*. The reason
for this is that, for T)0, there is a finite probability
for the pairing of electrons. This probability incrcv, ses

(r,—~m) ~ exp[ —2(p —p*)/&AT]+, (4.17)

which could have been expected. From this we easily
see that for e&2r, there are almost enough bonds to
give order at T=0 and lower critical points are possible
even for very large values of b —b*, since few bonds need
be split. Similarly, as b approaches b*, more bonds will

be split at a given temperature and an ordered state
could be established for lower electron concentrations.
%hen e is in this range from s,* to 2r„ then, order is

possible at finite temperature for b values up to some

maximum value, at which the upper and lower crit.ical
temperatures concide. This unique value of E, ' versus

e, is shown by the dashed line is Fig. 6. The correspond-

ing b values must be read along the line.

Summarizing, we found that, when the ground state
favored one-electron bonds, there was a range of

m(r, (m(r, *) over which it was possible to fall to zero.
When the ground state favored k=2 bonds, there was

an analogous range of m(r, *(m(2r,), over which it was

possible to have upper and lower critical points. In
both cases, the energy favoring the ground state
(-',

~
p —p*~) controlled the processes which were, in fact,

very similar. In the first case, the mechanism was self-

dilution with heating, and, in the second case, it was
self-dilution accompanying cooling.

The ground state for b=b* contains a mixture of
bonds since all configurations of pair of electrons have
the same energy. If ~A,. is the number of distinct states
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of a k bond, then two electrons can occupy separate
bonds in —,'vi' ways and can pair up on one bond in v.
ways. It is the magnitude of these degeneracies that
determines the critical concentration r,*. For ~vi'))v~,
there will be many more unpaired configurations than
paired ones. The ground state will then have mostly
k=1 bonds, and r,* approaches r, . Similarly, if v&))~v1',
r,* approaches 2r, . More electrons are needed for
ordering because of the increased likelihood of pairing
in the ground state.

D. Effect of Couyling Ratio

Referring back. to Fig. 5 and the shape of the critical
region, we now consider the effect of varying c, the
relative coupling strength of a k =2 bond. The b= —~,
m=1 curve involving only k=1 bonds will remain the
same, but the other limiting curves and the enclosed
solutions do change. The behavior of the finite b

solutions within the limiting curves is similar to that
of the c=2 case. Figure 7 shows the limits of the critical
temperatures for various c values.

As illustrated in Fig. 7, the limiting curves can cross
for large values of c. In these cases, for large enough e,
the b= ~ critical temperature is greater than that for
b= —~. That is, at a high temperature, a few strong
bonds can order more eRectively than a larger number
of weaker bonds. The smallest value of c for which this
crossing can occur is c*.It is included in Table I, which
lists the critical parameters of various lattices. The
values of r,* are those for v1 ——2, ~2=1 as in I"; t,, given
by (3.1). The critical values of E' and &v used in com-
piling Table I are those found in Ref. 1(c).

E. Ayyroach to Critical Point

To determine the relationship between A". and E'
away from the critical point, we must know the energy
function cv(E ). For two-dimensional lattices, exact
solutions are known but, in three dimensions, only
high- and low-temperature series are available. How-
ever, for the three-dimensional lattices, it is possible to
construct approximate analytic functions for &o(E')
which have a specified critical-point behavior and which
agree with the limiting series away from the critical
point. "With these functions (see Appendix), plots of

TAar, z I. Critical-point parameters for various lattices.

00

FIG. 8. The dependence of E' on E.Note that with the exception
of the Ising limits (m=1, 6= ~; +=2, all b) the curves have zero
slope at the critical point.

E versus E', such as those shown in Fig. 8, can be
constructed.

From Fig. 8, it is observed that in the Ising limits
Lwhich are independent of ~(E')j, the function E(E')
has a definite slope at the critical point. In these cases,
the critical behaviors of the decorated and refer-
ence lattices are similar. The corresponding reduced
temperatures

(4.18)

(4.19)

Hexagonal
Kagome
Square
Triangular
Diamond
s.c.
b.c.c.
f.c.c.

3 0.2679492 0.7698003 0.3145
4 0.3933198 0.7440169 0.1175
4 0.4142136 0.7071068 0.2071
6 0.5773503 0.6666667 0.1220
4 0.47729 0.432 0.311
6 0.64183 0.3284 0.1874
8 0,72985 0.2 70 0.135

12 0.8153 0.245 0.086

0.6478
0.5369
0.5000
0.3522
0.374
0.2379
0.172
0.115

0.8246
0.6599
0.6084
0.4003
0.443
0.2642
0.185
0.121

Lattice g exp ( —2Kc') ccc Sc 1 c p

2.256
2.191
2.154
2.092
2.06
2.102
2.02
2.01

are proportional near the critical point.
In the non-Ising cases, E(E') is a smooth continuous

function but its derivative diverges at the critical point.
For these cases, t and t' will no longer be proportional
and decorated lattice will be diferent from that of the
reference lattice. To see how this comes about, we note
that, except in the Ising limits, we can always write

(BE/BE') =Z (KE'e, b)+II (KE'e, b)( ~B/BE' ), (4.20)

"These exponents are generally agreed Lsee Ref. 1(c}g to
describe the behavior of the three-dimensional Ising model.

where, here and in Sec. V, Z and II will be used to
denote smooth functions of E', e, b. At the critical
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—Q/a)t/1nl tl+
(Dpi/A)K') (a/K, ') ln—

l
t

l +
(4.27)

(4.28)

I t is interesting to consider the isolated case of e = 2r,
and b&b*. For this case, the upper critical point is
6nite and the above comments hold. The ground state,
however, is one of critical concentration. A special
treatment is needed since we now have T, =O. The
relevant variable for measuring the proximity to the
critical point is not T, but the probability for producing
additional ion-ion bonds, namely expL ——,'(b —b*)K].

The formulas analogous to the three-dimensional
result (4.25) and the two-dimensional result (4.27) are,
respectively,

and

where, again,

t' ~ y't (' '&+. as y —+ 0

t' ~ y/lny+ as y ~ 0,

y
—~ (it2) (b b+)K

(4.29)

(4.30)

(4.31)

Equations (4.25) and (4.27) represent the asymptotic
relation between t and t' near the critical points of dilute
lattices of three and two dimensions. The manner and
rate of approach to these asymptotic expressions is
determined by the form and relative size of higher
terms in the expansions. These higher terms are best
studied in specific examples.

Consider a specific model as studied in Sec. 7' with
F.; & as in (2.1), b=0, c =2. The relation between t and
t' in ordered regions is given by

tL'2K, tanh2E, ]
= (n 2)Cr, '(t'K—,') ' '+t'K, '+, (4.32)

point, (Bra/cjK') becomes infinite so that asymptotically
we can ignore ZK and integrate (4.20) to produce

t P(u(K') p—i.]/+(n, b), (4.21)

where 4 is again a smooth function.
On using the asymptotic expressions'

p~(K') —ip u t'&' "'& E,'/K'&1 (4.22)

—a+i t'l &'—i, K,'/K'&1 (4.23)

for three dimensions, and

pi(K') —p&, —at' ln
I

t' I, K,'/K' 1. (4.24)

For the two-dimensional Ising models, we can determine
the relationship between t and t' at the critical point. In
ordered temperature regions, for three-dimensional
lattices, one then has

t'=(41tl/~ )""' (4.25)

(&~/&K')=i:~-(1 —~')/K '](Pl ti/~ ) "'" "' (4 26)

The corresponding formulas for disordered regions are
obtained by the substitution of n for n' and u+ for u .
In two dimensions, we find

where Cl, ' is a constant dependent on the reference
lattice. A similar relation holds for disordered regions
if the primes are removed from Cl,' and e'.

It is obvious from (4.32) that, for almost filled lattices
(n& 2), the true asymptotic relation (4.25) will become
evident only at exceedingly small values of't' and t.
As suggested by Fisher, ' a "transition region" is defined
as that t range within which the true asymptotic be-
havior is "felt." The size of this region is given by a
"cross-over temperature" tx. The value of tx could, for
instance, be determined by equality of the 6rst two
terms on the right-hand side of (4.32).

As we shall see in a following paper, this transition
region can be so small as to be beyond experimental
reach, especially if n or n' is small.

V. THERMODYNAMIC FUNCTIONS

b=p/J= —pp/J=bp,

e& =a Fi/F p, —

c=2'
b*=0.

(5.2)

(5.3)

(5.4)

(5.5)

In view of (3.23) and (3.24), we lose no generality in the
K, K relationship, yet this choice of parameters relieves
the activity from an unimportant b~ and b2 dependence
and, hence, simplifies calculations. The behavior of this
special system will be quite similar to that of systems
with other parameters. As in the solution of the
transformation (4.1), the values of the thermodynamic
functions will depend on e, the energy favoring one-
electron bonds. The possible solutions will range from
the p —& —pp limit to the e ~ + pp limit in a continuous
manner as e increases. For this system, we know the
E, E' relation explicitly in three cases, namely,

(i) b= —~,
cosh2K' =

i n+s(K')]/i n —r(K')],

(ii) b =b*=0,
cosh(2K') = (n+s*(K') ]/[n r*(E')],—

where

r*(E')= (1—e
—Ic')

i 1+~(K')],
s*(K') = (e~' —1)L1 —ip(K')],

(5.6)

(5.7)

(5.8)

(5.9)

(ill) b=+~
«sh(2K') = {Lpn+s(E')]/Lpn —r(E')]) (5 10)

As illustrated in Fig. 8, the solutions for b(b* lie
"See the review article by Fisher cited in Ref. 1(c).

In this section, we will give general formulas for some
thermodynamic functions but will not attempt to
describe their variation for all b, c, and e. Instead, we
confine our attention to the simplest case of our
model with

(5 1)
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between (i) and (ii) while the solutions for b)b* lie TABLE II. Limiting energy functions and specific-heat amplitudes.

between (ii) and (iii).

A. Internal Energy

The internal energy per bond in units of J is

U(T,H, nb)i= lim [—(-,'qV) '(B/BEr, t) ln ], (5.11)

which can be written in terms of the partial bond
partition functions, as (H =0)

U(T,O,n, b) = —(rP+&~'+sf &"')I(P, rIr ), —(5.12)

where the superscript (E) denotes B/BKl. , t. 'Ar'e see
that the energy is a sum of two contributions arising
from parallel and antiparallel alignment of the bond
vertex spins. These contributions are proportional to
r and s, respectively. Note that (5.12) can be written
more generally as

I imit

$~+x)
all c
2&rb&2r

n I (I—ce)
C

Function: A+=
(1—)~+ a+

a'/(1 —a')
A

(1—a') a u

p0=1 —~i~

U+ = —cr2 coth(ck)

4(n —2r, ) 2 (n+2s, ) (1 r,)—
A= —r C

(r,+s,) (2 —n)

32(~+2sc) (n —2r )'(1—r )'(2+sc)'A—

(r,+s,)'(2 —I)'
Sk, '(n —2r,)ars(n+2s, )'r2(1 r, ) (1+s,—)

(r,+s,) (2 —n)

where

U= U...+U;.i, (5.13) p0 pl'oduces no contribution to energy (~0 =0)

U+ —— r*2 c—oth(E)

and

U-.=( o/J)po+( P)p+( /~)p (5 14)

h, «)=h, «)=0, U =O. (5.16)

For the specific model defined by (5.1)—(5.5), we have

with

U = (eo/J) pa+ U+, (5.17)

pa ——(r+s) {(1 r),l(r+s) —(1+a)—
&&[(1+s2 cosh'K)2 sinh'E] ") (5 18)

U'-i={U+=r(gi' '+e'g~' ')Lgi hi+—e'(g2 h)]—')
+{U =s(hi&~r+e&h, 'a'r)

+[g, h, +—e&(g, h,))—') . —(5.15)

In our model, the energy of an oc(upied bond con-
necting two antiparallel ionic spins is zero for any
orientation of the decorating spins, hence, these bonds
do not contribute to the interaction energy. Mathe-
matically, this shows up in the statements

b=b*=o
G=2
2&~)r*

$ ~ —oo

all c
2&n&r

4(n —,*) (2m+ s,*—,*)(2—,*)
A=-

(r.*+s.*) (2 —~)

4(2n+ s,* r,*)(n—r,*)(2—+s,*)s(2 —r,~)it+
8

( g+ g)3(2 ) 2

2X,'(2rb+s, *—r,*)'"(n —r,*)(2 —r,*)(2+s,*)

(r,*+s,*)'"(2—n)

p0= 1—rb

U+ ———r2 coth(E)

4(n —r,) (2m+ s,—r,) (1—r,)A=— r C

(r,+s,) (1—n)

26(2e+sc —rc) (1+s,) (1—r,)2(n —r,) h.+

(r.+s,) '(1 n)'—
4Ec'(2n+sc —rc) '"(e—r,) (1—r,) (1+s,)

(.,+s,)3~2(2 —~)

U+ ———2r[1+a2 coth(2K))[tanh(K)+Z] '. (5.19)

The activity is given by

a = [(n+s) —(n, r) cosh'(2E) ]/[(n —2r)—
&&cosh'(2E) —(n+2s)], (5.20)

b, we can wnte

(BU/BK) = (Bor/BK') (BE'/BK) .

B. Syecific Heat

(5.21)

which can have any value from 0 to +~, depending on
b and e. It is the magnitude of s which determines the
actual value of po and U+, which must lie between the
limits as shown in Table II.

The behavior of U at the critical point is similar, but
not identical to the behavior of its reference lattice
counterpart oi(E') at E.'. Both are fini. te but, as hinted
at in Sec. IV, the behavior of the slope of U is not the
same as Bor/BE', which becomes infinite. For a general

The reduced specific heat per bond is

C(ITI,n, b) = (B/BK r,) U. —

Using (4.20) and (5.21) yields

(5 '-2)

CH &+ II (&I/or'+ III) ' (5.23)

(or'=Boy/BK'), and we see that, although &e' and the
specific heat of the reference lattice are divergent at
T,', the specific heat of the decorated model is finite
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29-
n=l

n=l.5

n= l.75 n=2.0

C. Magnetization

The reduced magnetization in units of m is

M(T,H,n, b) = lim L(1/1V)(8/c)La, ~) ln ]
=-', q)(a in'/aL~, ,)+~(aZ'/aL~, ,)]

(5.27)

l6— +o (BL'/itLrr, o) . (5.28)

l4-

l.930 l.932

n=l

n=1.25

For a symmetric bond,

~= 2gLo(1+~) (0+ +")/4+ ++&- -")/0- -)
+o(1—~)4+ -")/0+ -]

+~[1+4'(0++"'/0++—0- -"'/0- -)] (5.2~)

where the superscript (L) denotes that the operation
(o)/BLrr, r) has been applied. As a consequence of the
ferromagnetic nature of the bonds, we must have, in
addition to (2.27), the zero-field results that

n= (&) =0 (L=0) .

4++")= —4- -"', (L=0)
(5.30)

I I I I I I I I

l.4 1,6 l.8 2.0 2.2 2.4 2.6 2.8 5.0
X-l

FiG. 9. Specific heat versus E ' showing variation of cusped
behavior with concentration. The height of the cusp for m=1. '?5

is 44.6. Only the specific heat of the filled lattice (m=2) diverges
at the critical point. Both a and n' are assumed to be —',.

with a cusp at T,.' For three-dimensional lattices near
T„we 6nd

Thus, the spontaneous magnetization is given by

~o(T,n,b)=++ ', q(P++")~z-=o)/Pp+]~o(&'). (531)

The first term in the brack. et is the contribution from
the ionic spins, while the second term is the contribution
from the decorating electronic spins. Ke originally
assumed the magnetic moments of ions and electrons
to be equal. If the magnetic moment of the electron
had been m and that of the ion g;,„m, the first term in
the bracket of (5.31) would be the constant g;,„rather
than unity. For our specific model,

C =A(n, b) 8 (n, b)~—t) "—«' ")—
in ordered regions and

(5.24) (0++")
I z=o)/0++ = (r+~)5(1+~) t»»%)] '

&&L1+s2 cosh(2E)](1+a[cosh(2A. )+1]I ', (5.32)

Cr) A (n, b) —8+(n, b)
~

t
~

(5.25)

in disordered regions. For two-dimensional lattices near
T„we have Mo(T, n, b) ~ o. (Eo') ~ t', (5.33)

which is continuous and finite at the critical point.
In ordered regions near the critical point, we write

C =A(n, b) —8(n, b)/ln~ t~ . (5.26) which, by (4.25), yields

The function A gives us the maximum value of the
specific-heat cusp. It is a complicated function of e
which can be explicitly evaluated only in certain cases
(b =& oo, 0). The important behavior which is found is
that A diverges as the Ising limits are approached
(e.g. , A ~ (n —2) ' as n ~ 2] and it decreases to zero
as the electron concentration approaches the minimum
value for ordering for a given b value [e.g. , A ~ (n —r ')

for b=b*=0]. The functions 8, 8+ have behaviors
similar to that of A. Limiting values of A (n, b), 8 (n, b),
and 8 (n, b) are given in Table ii.

Figure 9 illustrates the behavior of the specific heat
of a simple cubic lattice with various electron con-
centrations. In order to generate these curves, the value
of o.' was assumed to be 8 and, as shown in the Appendix,
approximate functions were generated.

Mo(T, n ,b) ~ ~t~~'~'.

in three dimensions, but, by (4.27),

(5.34)

Mo(T, n, b) "LI tl»l tl]a (5 35)

in two dimensions. We see that the renormalized value
of P is P/(1 —n') in three dimensions. '

As discussed in Sec. IV, the multiple-bond states lead
to a great variety of critical behavior. In particular, a
lower critical point is possible. There is an even greater
variety of behavior in the magnetization. Corresponding
to the case with upper and lower critical points, we find
that ufo is zero initially, increases, then decreases
between the critical points, and is zero again above the
upper point. This and other possible types of behavior
are illustrated in Fig. 10 for the sin~pie cubic lattice.
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TABLE IV. Pade approximant coefficients.

A ( '=-', )

co 2.014 8000
ci 7.508 6969
cq —4.716 7163
c3 —24.78 8439
c4 —12.67 2356
c, -45.77 4808
c6 —19.06 0652
cv —57.18 0744

dp 10
di 1.602 7262
d2 —10.57 9114
d3 —2.869 1075
d4 28.67 1431
d5 —39.92 0916
d6 31.17 0122
d7 —1.033 6985

A2(n = r')

0.3284—0.4104 9081—7.656 2319
11.72 9123
35.67 3309—58.03 2411

1.0—2.215 9060—26.19 6836
61.09 7574

148.8 7637—359.1 2013—19.90 7284

A, (n' =-',)

9.0
28.39 9652—12.34 6349—99.50 5752—66.89 3786—13.66 5983—145.2 4550

1.0
3.280 5169—9.162 3325—23.86 0554

32.76 7416
35.07 3888—44.42 3595

A4(n =-',)

1.0—0.0050 24293
12.34 7675—0.0881 68245—96.58 6009

1.0
0.1199 7571
1.495 4252—0.4221 5089—298.8 8911—26.37 7590

A5(P =—'6)

1.0
3.208 4380—6.858 9583—19.43 6787
8.915 0085

23.85 5077
52.00 6214—9.115 6928

1.0
2.449 8508—9.925 8383—15.12 8944

28.71 8069
20.42 5852
26.99 2695—57.43 0494

A, (p =5/4)

1.0
2.692 9731
4.244 4597

17.47 4689

1.0
2.422 9761
4.686 9843
1.730 4204

where

x =exp( —4E') .
Next, the multiplying functions A were determined

(A4) using standard Pade approximant techniques [see Ref.
1(c)].The form of these approximants is

(o =a),—[1—(x/x, )]' A. , (A5)

The corresponding high-temperature (E'(E,') forms
are, for the energy, n m

A = ( P c;x')/( P d,x')
j=0 i=o

(A9)

for the specific heat,

Crr = [1—(x/x, )] A 4,

and, for the susceptibility,

&o= [1—(x/x~)] 'As,
where

x = tanh(E') .

The constants d;& cg are listed in Table IV."
In the determination of these approximants, the series

expansion for the magnetization contained 16 terms, the
expansion for the susceptibility contained 10 terms, and
the low- and high-temperature expansions for the parti-

(A7) tion function contained 15 and 6 terms, respectively. '4

The series for energy and specific heat were generated
from those of the partition function.

Values for the critical exponents consistent with
known numerical estimates [see Ref. 1(c)]were chosen.
These values were

&=&'=s &=r's, V=5/4

"A& and A5 are previously unpublished Pade approximants by
W. J. Camp."For the actual coefficients, see M. F. Sees, J. W. Essam, and
D. S. Gaunt, J. Math. Phys. 6, 283 (1965); C. Domb and
M. F. Sykes, Proc. Roy. Soc. (London) A240, 214 (1957) (sus-
ceptibility); C. Domb, Advan. Phys. 9, 149 (1960) (high-T
partition function).


