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The general mobile-electron Ising ferromagnet (introduced by Fisher) is described, and its properties
discussed : Electrons migrate over a lattice of spin-3 ions; when there are % electrons on the bond (z,5), their
energy is ¢ and they induce an Ising spin coupling between the spins 7 and j. The mean number of electrons
per bond % is determined by the condition of electroneutrality. The model can be solved exactly in terms of
the free energy of the underlying lattice and exhibits renormalized critical exponents: in the three-dimen-
sional model, these are 8=0.33-0.36, y=~1.43, and a;=~—0.14. The behavior of the simplest ferromagnetic
model with £=0, 1, or 2 and #=2 depends, for a fixed mode of electron-ion coupling, only on # and e=2¢
— eo— €2. The variation of the critical point with #, ¢, and the coupling energies is studied, and the behavior
of the energy, magnetization, specific heat, and susceptibility is investigated. For certain parametric ranges, it
is found that the spontaneous magnetization initially sncreases with 7". The model exhibits a critical con-
centration for ordering (n=r,), and also a lower critical temperature below which M ¢(7) again vanishes. A
brief survey of related models exhibiting one or the other of these properties is presented.

I. INTRODUCTION

OMPARISONS of critical indices! obtained from

three-dimensional Ising models with those from
experimental observations in magnetic and fluid sys-
tems show small but definite discrepancies. As an
example, consider 3, the best experimentally determined
exponent. In magnetic systems (where 8 describes the
spontaneous magnetization) and in fluids (where 8
describes the coexistence curve), typical experimental
values of 8 lie in the range 0.33-0.36. On the other hand,
the best estimate of this exponent from the Ising model
is f~% =0.3125. This theoretical value is 7-15%, lower
than the experimental values and is well outside any
possible interval of uncertainty. These discrepancies
are not really surprising, since the Ising interactions
cannot hope to describe the complexities of a real
physical system. The additional degrees of freedom
possessed by a real system might easily influence the
behavior at a critical point.

Recently, Fisher? has considered this problem quite
generally and has found that under certain circum-
stances the critical exponents are “renormalized.” The
abstraction underlying Fisher’s analysis is as follows:
In the attempt to describe a real system, we start with
an ‘“ideal” system with known variables and charac-
terized by the ideal critical indices &, 8, v, . ... The real
system, however, may have some additional “hidden”
variables which should be considered in the ideal sys-
tem. These hidden variables will fluctuate but remain
in equilibrium with the known variables, and they are
subject to some over-all “constraint.” To illustrate the
validity of this abstraction, consider the following two
cases. In the idealization of a real fluid system as a
lattice gas at constant temperature and density, the
extra degrees of freedom introduced by isotopic and
other impurities are not considered. A hidden variable,
mhe standard critical-point exponent notation: see the
review articles (a) M. E. Fisher, J. Appl. Phys. 38, 981 (1967);
(b) L. P. Kadanoff ef al., Rev. Mod. Phys. 39, 395 (1967); (c) M.

E. Fisher, Rept. Progr. Phys. 30, 615 (1967).
2 M. E. Fisher, Phys. Rev. 176, 257 (1968).

in this case, would be the impurity concentration.
Obviously, this will fluctuate, but it is constrained since
the total number of impurity atoms is fixed. Similarly,
the electronic degrees of freedom in a metallic ferro-
magnet are not considered in the Ising model where
temperature and applied field are the known variables.
The fact that the system must remain electrically
neutral serves as a constraint over these hidden elec-
tronic variables. The situation is similar for other
physical systems and their idealizations.

On the basis of certain very general thermodynamic
assumptions, the behavior of such constrained systems
at and near their critical points? is found to be renor-
malized relative to the behavior of the ideal system. It
is the constraint of the additional freedoms which is
essential in bringing this about. Where the specific heat
of the ideal system was divergent with exponents a and
o/, the real system has a cusp at the critical tempera-
ture characterized by the renormalized exponents
a;=—a/(1—a) and o,/ = —a//(1—a’). The other expo-
nents are also renormalized, in particular, 8,=8/(1 —a’),
Ye=v/(1—0a), v’ =v'/(1—a’). Using the three-dimen-
sional Ising-model exponents, we find a,~—0.14,
v-~21.43, and $,~20.33-0.36. The range in B, results
from the uncertainty in o’. Note that the renormalized
value of 8, is seen to be the same as that for which
experimental values are found.

The purpose of this paper is to study the effects
brought about when an otherwise “stiff”” Ising model is
given greater flexibility and extra degrees of freedom.
Our model is the mobile-electron Ising ferromagnet
previously proposed by Fisher (although in a more
simplified form than the one adopted here).t The

3 As shown by Fisher in Ref. 2, renormalization does not “set in”’
until the temperature is within some “transition region” about
the critical point. This region, however, may be very small and for
temperatures very close to T’ (yet outside the transition region)
the real system can appear to follow the ideal behavior.

4In Ref. 2, Fisher proposed a spinless-electron version of this
model with a specified ground state and fixed concentration of
electrons. A preliminary account of the present work was given by
M. E. Fisher and P. E. Scesney, J. Appl. Phys. 40, 1534 (1969).
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1 MOBILE-ELECTRON

physical picture is one of a metallic ferromagnet in
which spin-} positive ions occupy the sites of a lattice
with coordination number ¢. An ion is coupled mag-
netically to its nearest neighbor only when one or more
free electrons are in the immediate vicinity of the
particular ion-ion bond in question. The ionic spin
coupling is then achieved via intermediate interactions
with the electronic spins. Although the electrons are
free to migrate through the lattice, we suppose that, at
a given instant, every electron is associated with some
inter-ion bond. Such a bond “occupied” by % electrons
has an occupation energy e Unoccupied bonds (£=0)
do not couple the vertex ionic spins but do have a
“hole” energy €. Figure 1 illustrates a possible configur-
ation of our model for a square lattice of ions. The
electrons will be treated in a grand canonical ensemble.
Their chemical potential u= k5T is to be determined,
as usual, by the constraint that, at all temperatures,
the average number of electrons per bond is that con-
stant # for which the over-all system of electrons plus
ions is electrically neutral.

The mobile-electron Ising ferromagnet is one of a
class of “bond decorated” models. Such models are
intimately related to the Ising models, since only the
form of the nearest-neighbor interaction has been
changed. The underlying spin configurational problems
arising in the determination of the partition function
are identical. The general method of solution of these
models® is first to consider that part of the partition
function associated with the configurations of a single
ion-ion bond. This “partial bond partition function”
can be rewritten in an Ising from dependent only on the
vertex spins. Mathematically, the decorated bond then
looks like an undecorated or simple Ising bond, except
the usual interaction and field parameters are now
complicated functions of the temperature and of the
field on the original bond. The partition function can
then be rewritten in the usual Ising form which depends
only on the spin configurations of the undecorated or
reference lattice. This formalism depends only on the
structure of the bond; it is independent of the dimen-
sionality of the lattice.

Of prime importance in the determination of the
properties of decorated lattices are the algebraic trans-
formations relating the temperature and field variables
of the decorated and undecorated bonds. It is quite
possible to include in our model the additional com-
plications of three-ion interactions and multiple energy
and coupling states of a & bond (a bond occupied by &
electrons). The corresponding transformations, how-
ever, become increasingly involved. In this paper, we
consider only the simplest case in which a bond can
accommodate only 0, 1, or 2 electrons and in which 7
is less than or equal to 2 electrons per bond.

Our model, then, introduces additional degrees of
freedom in a fairly natural way yet can be solved to the

5 M. E. Fisher, Phys. Rev. 113, 969 (1959).
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F16. 1. A possible state of the mobile-electron Ising ferromagnet
on a section of square lattice.

same extent as the corresponding Ising problem. Since
the electroneutrality constraint will yield renormalized
critical behavior, we have a system which permits us to
study these effects quantitatively. In this paper, we
display explicitly the factors governing renormalization
and the resulting effects on the behavior of the mag-
netization and specific heat; a detailed numerical study
of the renormalization effects is reserved for a follow-
ing paper.

The model has several interesting features. For cer-
tain ranges of the parameters governing the electron
behavior, both an upper and lower critical temperature
are found, the magnetization being nonzero only for the
intermediate temperatures. Binary fluid systems have
been known to exhibit the analogous behavior of
separating into distinct phases at temperatures between
upper and lower consolute temperatures.® For other
parametric ranges in our model, the magnetization is
nonzero at 7'=0 but initially increases with tempera-
ture. These effects are a direct result of the additional
degrees of freedom introduced in the model.

The simpler version of the mobile-electron ferro-
magnet in which multiple occupancy is excluded (k
equals O or 1 only and # is less than or equal to 1) is
essentially the same as the dilute ferromagnetic model
proposed by Syozi” and recently studied in detail by
Essam and Garelick.? In the Syozi model, the vertex
spins are coupled only when the intermediate bond is
occupied by a second kind of spin-% particle. As in our
model, the coupling is achieved via an intermediate
interaction with the central spin. Since the number of
occupied bonds is fixed, this model has the constraint
needed for renormalization. Essam and Garelick show
that renormalization does indeed occur, but they do not
consider the quantitative behavior of the Syozi model
near the critical point. The interesting effects mentioned

6 J. S. Rowlinson, Liguids and Liquid Mixtures (Academic Press
Inc., New York, 1959), Chap. 5, 159 ff.

71. Syozi, Progr. Theoret. Phys. (Kyoto) 34, 189 (1965); I.
Syozi and S. Miyozima, 7bid. 36, 1083 (1966).

8 J. W. Essam and H. Garelick, Proc. Phys. Soc. (London) 92,
136 (1967).
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F16. 2. The model of Vaks, Larkin, and Ovchinnikov with
alternating second-nearest-neighbor interactions.

in the previous paragraph are not found in the Syozi
model: These effects are dependent on the possibility of
multiple occupancy (k equal to 2) incorporated in our
model. As we shall see, the results for the Syozi model
will be recovered in one special limit of the behavior of
the mobile-electron ferromagnet.

Models for magnetic systems with multiple critical
points have been found before. In 1965, Vaks, Larkin,
and Ovchinnikov® studied the properties of a two-
dimensional square lattice with nearest-neighbor and
alternating second—nearest-neighbor interactions. Figure
2 shows the configuration of bonds in their model. The
Ising coupling between nearest-neighbor spins (dotted
lines connecting X and O sites) was assumed to be
ferromagnetic with an energy of interaction J. The
Ising interaction between alternating second nearest
neighbors (solid lines connecting O sites) was given an
energy cJ, where a negative value of ¢ would denote an
antiferromagnetic coupling. For ¢ greater than —0.94,
the model undergoes a unique ferromagnetic transition.
In the corresponding ground state, all spins (X and O)
align parallel to one another. For ¢ less than —1, there
is a single transition to a low-temperature “anti-
ferromagnetic” state in which O spins align antiparallel
and X spins have no preferred orientation. In the
rather narrow range of ¢ values between —0.94 and
—1, the model undergoes three successive phase transi-
tions. With increasing temperature, the lattice passes
through a ferromagnetic state to a disordered state,
into the “antiferromagnetic” state, and finally into the
high-temperature disordered state.

Concurrent with the present work on the mobile-
electron ferromagnet, Syozi, Nakano, and Hattori®
began to study a class of decorated lattice models which
in certain circumstances, were also found to exhibit
multiple phase transitions similar to that of the model
of Vaks et al. A typical decorated bond in this class is
shown in Fig. 3. It possesses a direct antiferromagnetic
coupling (energy —|c|J) and an indirect coupling

9V. G. Vaks, A. I. Larkin, and Yu N. Ovchinnikov, Zh.

Eksperim. i Teor. Fiz. 49, 1180 (1965) [English transl.: Soviet
Phys.—JETP 22, 820 (1966)].
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(energy J) via an intermediate interaction which tends
to order the vertex spins. As also illustrated by Fig. 3,
this type of bond is similar to the alternating nearest-
neighbor-coupling scheme of the Vaks model. As in the
Vaks model, over a certain range of ¢, these other
decorated lattices can have a low-temperature ferro-
magnetic phase with all spins (X and O) aligning
parallel, and a higher-temperature antiferromagnetic
phase with O spins aligning antiparallel and X spins
having no preferred directions. It has been further
found'® that by “superdecoration” of lattice bonds with
multiple spin systems of increased complexity, other
combinations of multiple critical behavior are possible.

Unlike the mobile-electron ferromagnet, all these
other models have bonds of fixed structure. Hence, they
are just as rigid as the standard Ising model and possess
the same ideal critical behavior. The multiple phase
transitions that are found result from a competition
between the direct and indirect couplings of the O
spins. Associated with this competition are two ordered
states of low energy. The ferromagnetic ground state is
favored by a “binding energy” per O spin which is
small [2(|¢| —1)J7] for the Vaks model compared to the
direct antiferromagnetic coupling energy 2¢J. Note
that in the antiferromagnetic state the X spins can
take any orientation without influencing the energy
of the configuration. The higher-temperature phase
transitions arise from the possibility of establishing the
second ‘“‘excited” phase at temperatures low enough
(T~[2(|¢| =1)J1/k5) to maintain O spin ordering.
This second phase is then disordered at still higher
temperatures (I'~2J/kgp). We shall see (i) that the
upper and lower critical temperatures which are possible
in the mobile-electron ferromagnet arise from quite a
different mechanism; (i) that they can occur for large
energy ranges; and (iii) that, unlike some of the other
models, they are possible in all two- and three-dimen-
sional lattices.

The format for the rest of this paper is as follows. In
Sec. II, we consider the derivation of the partition

Fi16. 3. The similarity be-
tween the bonds of a class of
e ~~ “decoration” models (bot-
tom) .and the Vaks model
(top). Both possess an in-
direct ferromagnetic cou-
pling (dashed lines) and
a direct antiferromagnetic
coupling (solid lines).

' (a) H. Nakano, Progr. Theoret. Phys. (Kyoto) 39, 1121
(1968); (k'))‘I. Syozi, ibid. 39, 1367 (1968); (c) 1. Syozi and H.
Nakano, ibid. 40, 236 (1969); (d) M. Hattori and H. Nakano, 4bid.
40, 958 (1969).
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function for the mobile-electron Ising ferromagnet. We
first deal with a specific form of interaction and then
consider those properties of a general interaction which
are necessary in the rest of the paper. Section IIT deals
with the electroneutrality constraint and the derivation
of the basic transformation equations mentioned earlier.
Section IV deals with the solutions of the transforma-
tion equations with emphasis on critical point deter-
mination and elucidation of the upper and lower critical
point solutions and discusses the approach of the real
system to its critical temperature relative to that of the
ideal system. The renormalized behavior of the internal
energy, specific heat, spontaneous magnetization, and
susceptibility of the system are displayed explicitly in
Sec. V. A quantitative study of the effects of renor-
malization, including estimates of the apparent values
of the critical exponents which would be found experi-
mentally by different techniques of data analysis, will
be presented in a following paper.

II. PARTITION FUNCTION

We consider a nearest-neighbor ionic bond which is
occupied by 0, 1, or 2 electrons. The ionic spins can
effect each other only via an intermediate interaction
with an electronic spin. Several modes of this spin-spin
coupling could be considered for the various states of
the bond. In what follows, a specific case will be
developed. Those parts of the analysis which are
dependent on the form of the interaction will be isolated
and generalized. The effect of changing the form of the
coupling scheme can then be easily assessed.

Consider the (7,7) bond connecting nearest-neighbor
sites 7 and j. The spin of the ith ion will be described by
the variable o; which takes the values 4=1. In order to
describe the electronic state of the bond, we introduce,
as an algebraic convenience, two inter-ion sites with
spin-occupancy variables p;; and »;;. These variables
will be the usual spin variables taking the values &1 if
the site is occupied by an electron but will equal zero if
the site is unoccupied.

These electronic variables are somewhat artificial
since they distinguish the electrons on doubly occupied
bonds from one another and give double statistical
weight to singly occupied bonds. They are not necessary
for the analysis but do allow us to factorize the partition
function in certain limits. They also give us a definite
notation in which to describe the states of the bond.

The interaction energy for one form of coupling can
be written as

Ein= —J[1+(%C—I)Mij21/ij2](#ij+vij) (oita). (2.1)

In this scheme, empty bonds produce no ionic spin
coupling, singly occupied bonds couple through a
ferromagnetic electron-ion interaction of strengh J, and
occupancy of both sites yields two independent but
similar interactions, each with strength icJ. The re-
sulting ionic ordering for occupied bonds is ferre-
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F16. 4. Schematic of a bond adopted for the

mobile-electron Ising ferromagnet.

magnetic. The occupation energy of the bond may be
written

Eocc= —]{bo(l ~Mijz)(l —Vi]'2)
+b1[(1 —/JijZ)Vij2+(1 _Vijz)uijzj‘}‘bz#ﬁg”ij?} )

where

(2.2)

bk‘—‘ —ek/J. (23)

For simplicity, we will assume that the magnetic
moment of both ions and electrons is 7. The possibility
of different moments can be accounted for later. Figure
4 shows a schematic of the bond we have adopted.
Figure 1 shows a possible state of a lattice with these
bonds.

The grand partition function for a lattice of N ions
at temperature 7" and in an external field H is now

E(KyL;‘§7b07blﬁb2!C)

+1 +1
= Z Z e Z exp{ Z [_(K/])(Einﬁ+E()ce)
p13=0 r12=0 oN=x+1 (i,9)

FEui® +vi®) F Luitvi) J+2 Lo}, (2.4)

where

K=J/kgT and L=mH/ksT.

We begin the decoration transformation by perform-
ing the sum over the variables u;; and »;; independently
and writing the resulting partial-bond partition func-
tions in an Ising form.

+1 1
W)= S S expl—(K/T) Exmit-Eo)

i=0 vij=0
' F &)+ L(pitvi)], (2.3)
Y(0i,07) =P K +ekeh K {4 cosh[ K (os+0;)+ L]}
+e2eb2B{24-2 cosh[ cK (o;4+0;)+2L7]}, (2.6)
Y(0s,07) =¢ exp(K'oi05+4 Li*ai+Li*0;) . 2.7

Denoting the signs of ¢;, 0; by + and — and requiring
(2.7) to hold identically for the four possible states
gives, in general,®

¢ =vy W Yy Yo, (2.8)
exp(4K’) - Yy ¥ Sy Yy, (2.9)
exp(4L1™) - ¥y ¥y Y- Yy, (2.10)
exp(4Le™) = Yy ¥ Y- Yy . (2.11)



2278 PAUL E.
Tor our symmetric bond, we have
¢(0iygj') :%(g']-,a’i) ) (2'12)
hence,
L¥=L¥*=L* (2.13)
and
exp(4L¥) = 1/ . (2.14)

Substitution back into the grand partition function
gives

E(K}Lagybﬂ;blab%c) =¢QN/ZZ(‘K'13L/) ] (215)
where
Z(K',L")
=3 - ¥ exp(K' Y cio;+L Y 0i) (2.16)
c1=+1 oN=1+1 (2,9 1
and
L'=L+qL*. (2.17)

Evidently, Z(K’,L’) is the partition function of the
reference Ising lattice with interaction and field param-
eters determined by Egs. (2.9), (2.14), and (2.17).

Generalization of these formulas for an arbitrary
coupling scheme involves only certain parts of the
partial-bond partition functions. Obviously, (2.6) can
be rewritten as

Y(04,07) =€V fot-eter* f1-Feeb2k fy (2.18)

where the fi are functions of ¢y, 0j, K, and L and contain
everything arising out of the form of the interaction. In
our general model, empty bonds produce no coupling, so

Jolos,o5,K,L)=1. (2.19)

Proceeding as before to consider the four possible
orientations of the vertex spins, each of the remaining
functions fi(¢i,05,K,L) can be thought of as a set of
functions, namely fit 4+, fe+ — fi— 45 fi— —, Which are
dependent only on K and L. For our specific choice of
interaction given by (2.1), we obtain explicitly

frea(K,L)=4 cosh(2K+1), (2.20)
fog +(K,L)=4 cosh?(¢cK=+L), (2.21)
fur (K,L)=4 cosh(L)=f1_ ((K,L), (2.22)
for ~(K,L)=4 cosh®(L)= fo_ +(K,L). (2.23)

Equations (2.22) and (2.23), which show the equiva-
lence of the (4, —) and (—, +) configurations, are a
direct result of the symmetry of our bond. For any
symmetric-bond scheme, we can write

Frr J(K,L)=hu(K,L)=fo- 1(K,L).  (224)

Furthermore, as illustrated by Egs. (2.20) and (2.21),
arbitrary bond schemes can possess an additional
symmetry. If the decorating spins have no preferred
orientations, the (4, +) and (—, —) configurations
will always be equivalent in zero field;

Jir +(K,0)=g(K) = fu— —(K,0). (2.25)
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If, in addition to these symmetries, we assume that all
the states of occupied bonds have a ferromagnetic
character, then for k=1, 2, we expect

f’H‘ +(K7L)>fk—- —(KJL) )

when the external field is greater than zero.

Making use of these general properties, we find that,
as in the case of the Ising model, the mobile-electron
Ising ferromagnet can have a critical point only in zero
field. This follows since the critical point will be any
K, L point mapping onto the critical point of the
reference Ising lattice and a ferromagnetic transition
can occur only when L', the field on this lattice, is zero.
By (2.14) and (2.17), and the properties mentioned, L’
equals zero only when L equals zero.

To determine the critical points, then, we only have
to consider the zero-field case for which L’ equals zero.
For a symmetric bond, the number of functions deter-
mining ¢ and K’ is now reduced to two, namely,

¢+(K) =y +(K,0) =y ~~(K,0)

(2.26)

— et etotitg, (K)Feetiigy(K),  (2.27)
Y (K) =ty —(K,0)=¢_ ,.(K,0)
= eWkf-gtebifyy (K 0) et y(K,0).  (2.28)
¢ and K’ are then given by
P*=v ¥, (2.29)
K =y /Y. (2.30)

We shall see that the right-hand side of Egs. (2.29) and
(2.30) depend on K’ through ef, so that Eq. (2.30)
actually represents an involved relationship between
K and K’. We will refer to (2.30) as the transformation
equation. Before considering the solutions of this
equation, we mention a few more general properties
associated with the zero-field coupling functions g,
and h}c

Since all spin configurations of finite energy are
equally probable at infinite temperature, we must have
for k=1, 2

£:(0) =h1(0,0)=n,

where 7 is a positive constant. In addition, g,(K)/
he(K,0) must be a positive monotonically increasing
function of K because of the ferromagnetic nature of
the bonds. We will assume that the parameter ¢ always
describes the ferromagnet strength of a k=2 bond

relative to a k=1 bond. We can then write that, as
K— oo,

(2.31)

gi(K)/e* — vy (2.32)

and

&:(K)/e* K — v, (2.33)

where v, is the number of distinct states of a k-electron
bond.
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III. CHEMICAL POTENTIAL

The chemical potential of the electrons must be
determined by the constraint of over-all electroneu-
trality. The average number of electrons per bond is #,
a number determined by the average ionic charge per
bond of the lattice. Thus, we require that

fé]

n=lim I:(%qN)‘L—-— lnE] (3.1)
N ¢x.L
d In¢ oK’

= +w(K,7L,)-__
Otk L tx,L oL
+Go) oK L )——, (3.2)
Ak ,1

where w(K’,L") and ¢(K’,L") are related to the energy
and magnetization of the reference lattice; namely,

0
w(K',L') = lim [(%QN)“Eé an:I . (33)
4]
o(K',L")=lim <N—1—~ an) . (34)
Noe aL’
Using the definitions in Sec. II, we have
91 1 ® ® g, ®
__ni=_ (2N _*_Il/ N 2 :I, 3.5)
g, 4L Yy 4 /2 Yt —
oK' 11 ® ® . ®
_ (25 +¢ n 2 :|’ (3.:6)
Otk 4L Yy ¥-— Vi —
' = ® ®
St 6.7
Otk .1 L Yy 4 Yo -
where the superscript notation is defined by
Y(o4,07) ® = (8Y(04,0)/9x,1) - (3.8)
In zero field, (3.5)—(3.7) become
91 1 &) _®
] e
k. 2L Yy ¥
oK' 1ru.® g ®
=—[¢+ Y ] (3.10)
dtx, 2L ¢y v
aL’
=0, (3.11)
Ik,L
so that (3.2) becomes
n=3[ (14wl @+ (1—w-©O/ 1. (3.12)

Equation (3.12) could be solved directly for e, since
it is a quadratic expression in that quantity. However,
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by making the substitutions

W)t =1=e5) /(Y —y-), (3.13)

W)= (' =1)/ W —y-), (3.14)

which arise from Eq. (2.30), it is possible to generate an
expression linear in ef. This expression is

n= (s O +sp_®©)/ (Y —y-), (3.15)
where 7 and s are functions of K’ given by
r(K')=3(1—e)[14w(K")], (3.16)
s(K) =% —1)[1—w(K")]. (3.17)
Finally, solving for e, we get
et =[e"KF (K K')]/[e" Fy(K,K")], (3.18)
with
Fiy(K,K) =[r(K")—n]e(K)
Hs(K)+nJu(K), (3.19)
Fy(K,K") = [n—2r(K') Jgo(K)
—[n+2s(K") Jho(K).  (3.20)

Note that the numerator and denominator of ¢¢ involve
only £=1 and k=2 bonds, respectively.

We should comment that when this procedure is used
in the solution of the Syozi model, the analysis would be
essentially complete at this stage. In the Syozi model,
the equation analogous to (3.12) is linear in ¢f and the
equation analogous to (3.15) would define the relation-
ship between K and K’ and would be independent of
et. To continue the analysis of our model, however, we
must substitute our expression for ef back into the
transformation (2.30). Before doing this, we define
a reduced activity in which the occupation energies do
not enter; namely,

5=F1(K,K')/Fy(K,K"). (3.21)

The basic zero-field transformation (2.30), relating K
and K’, then becomes

2K’ = [6 b0K+ZG (b1=b2) K b1Kg1+ (ze (b1— bz)K) 2¢ szg2]
X [660K+Ze(b1—bz)Keb1Kh1
(s G Ky 2K, 1 (3.22)

€K’ = (e*X+-gg1+352g,) (ePE +zhy+22h,) 1. (3.23)

The bond occupation energies enter only in the one
combination,

bzbo+b2—261=<261—'60—62)/J=€/]. (3.24)

Evidently, e is the energy for preference of one-electron
relative to zero- or two-electron bonds. In the limit
€— —o, as many bonds as possible will be £=1 bonds,
while for e— 4+, only 2=2 and £=0 bonds will
be found.

The solution of Eq. (3.23) tells us how the interaction
parameters K and K’ of the decorated and reference
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Fic. 5. Dependence of critical temperature on electron con-
centration for a simple cubic lattice with a coupling constant
cof 2.

Ising lattices depend on one another. One problem
which arises at this point is that the transformation
relation K and K’ is found to have several branches.
That is, a single arbitrary value of K corresponds, in
general, to distinctly different values of K’. The
determination of that correspondence reflecting the true
physical behavior of the system is accomplished by
considering the value of ef for a given K, K’. Since the
chemical potential must be real valued, ¢! must be real
and greater than or equal to zero. In Sec. IV, we discuss
the family of physically significant solutions.

IV. TRANSFORMATION EQUATION AND
CRITICAL POINT

The zero-field transformation (3.23), relating K and
K’, is dependent on the underlying lattice through
the presence of the energy w(K’) in the functions
F1, Fy, 7, and s which are imbedded in z. Indeed, it is
because of this dependence that the critical exponents
are renormalized. However, when given a specific
lattice and the bond functions gx and %y, it is not
normally possible to generate simple explicit expressions
for the relationship between K and K’ because of this
dependence. Since w(K’) has a similar qualitative
behavior for all lattices of interest, however, the
behavior of the solutions with &, ¢, # should likewise be
similar. We now consider these common features.

It is immediately observed that high temperatures
always map onto high temperatures since, when K =0,
K’=0 by (2,31). To study what happens for large K,

SCESNEY 1

we rewrite (3.23) so as to isolate the effects of the pre-
ferential energy e. That is, we isolate the b dependence:

OB = g1 —h1e® +2(gy—hae?®') ]/ (2 —1). (4.1)

We now proceed to analyze the solution of this equation
for the limiting values of 4 for which we understand the
electronic behavior.

A. Infinite Values of b=¢/J

In the limit 6 —o, the existence of singly occupied
bonds becomes energetically impossible, coupling of the
ionic spins occurs only through doubly occupied bonds,
and the probability p of a nearest-neighbor pair being
coupled is 7. Hence, the relation between K and K’
should be independent of the £=1 bond functions. This
is indeed the case since, for an arbitrary value of K and
e®® tending to infinity, (4.1) can only be satisfied if z
tends to infinity. Equation (3.21) then gives the b —
solution as

Fy(K,K")=0, 4.2)
which, by (3.20), becomes
g(K)/ho(K) =[3n+s(K") ]/ [in—r(K")]. (4.3)

In the opposite limit & — — o, singly occupied bonds
are preferred. We must, however, distinguish two
different possibilities of electron behavior dependent on
the average number of electrons per bond. For n<1,
coupling will occur only through k=1 bonds with a
probability 7 and the K, K’ relation should be inde-
pendent of the £=2 functions. For 1<% <2, the situa-
tion becomes more complicated. Although £=1 bonds
are preferred, a fraction n—1 of the bonds must be
doubly occupied to accommodate all the electrons, and
there are no uncoupled empty bonds. Obviously, the
solution must involve both the k=1 and k=2 functions
with the dependence on the £=1 functions becoming
very small as »# approaches 2.

In the limit 8 — — 0, then, we must have ¢?X — 0
for an arbitrary K value. Equation (4.1) now has two
possible solutions, namely,

z=0, (4.4)
g1—11e* +2(gy—hye? ) =0, (4.5)
Now, Eq. (4.4) holds for an arbitrary K value if
Fy(K,K")=0, (4.6)
which gives
81(K)/m(K) =[n+s(K"))/[n—r(K")].  (4.7)

This is the solution involving only £=1 functions and
which is physically significant for #<1. The second
solution given by (4.5) and involving both types of
coupling functions is the proper limit for 1<n<2. It
can be verified that, for n=1, (4.4) and (4.5) are identi-
cal and that, for n=2, (4.5) is independent of k=1
functions and agrees with (4.3).
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Fic. 6. Enlarged section of Fig. 5
illustrating the region in which both
upper and lower critical points are pos- ‘
sible and showing the variation with b,
the bond energy parameter. The dashed
line is the locus of critical concentration
and corresponding unique critical points 4
for the parametrically indicated b values.

The first two of these limits (=00 ;b=—o0,n<1)
are modifications of the Syozi model. In both cases,
coupling occurs with a specified probability through
only one type of bond. The similarity between (4.3) and
(4.7) is then obvious. These equations represent a
general solution for the Syozi model involving only the
coupling bond functions and the corresponding prob-
ability of coupling. When the 2=1 coupling is through
the central spin, as in (2.1), (4.7) is identical to the
Syozi solution since the zero-field coupling functions give

21(K)/h1(K) =cosh(2K). 4.8)

In both these Syozi-like limits, the solution only makes
sense if 7(K’) is less than or equal to p, the probability
for coupling. There is no possible ambiguity involved
here, since 7(K’) is an increasing function of K’ with
values between 0 and 1. Evidently, »(K’)=p denotes
the largest value of K’ attainable at 7'=0 with a given
concentration of electrons. When p=1, all ions are
identically coupled to their neighbors and we have, in
effect, a standard Ising lattice. The right-hand side of
(4.3) and (4.7) reduces simply to

[14s(K") )/ [1—r(K") ]=eX".

In these Ising limits, K = corresponds to K'= and
complete ionic spin ordering occurs at 7'=0. The
standard Ising critical exponents are found in these
limits.

The final limiting solution (4.5) valid for 5 — — o,
1<#<2 coincides with the k=1 Ising limit, when
n=1, and to the k=2 Ising limit, when n=2. For
intermediate values of %, this solution represents a
smooth transition from one Ising limit to another
arising from the filling of the bonds. K=o will corre-
spond to K'=o but, because w(K’) enters when all
bonds are all bonds are no longer identical, the critical
behavior will be renormalized.

4.9)

B. Finite Values of b=¢/J

A feature suggested by the above discussion is that
n=2 is always an Ising limit and that the solution

g2(K)/ha(K) =K' (4.10)

which is valid for the infinite values of b, should also be
valid for any finite 4. This is verified by substitution
into (3.23).

For other values of %, the finite b solution lies between
the limiting solutions, and for finite K it changes from
(4.3) to (4.5) and (4.7) in a continuous manner as b goes
from 4o to —o. For values of b greater than a value
b*, however, two different values of K can correspond
to the same K.

To illustrate this discontinuous behavior as a function
of b, consider those values of K which correspond to a
specific value of K’. In particular, consider the critical
points K, given by (4.1) with K'=K/, K./ being the
critical point of the reference Ising lattice (the subscript
¢ will denote the critical value of any quantity). Figures
5 and 6 show the (b,%) behavior of a simple cubic lattice
for our choice of interaction as given in (2.1). The k=2
coupling parameter ¢ was chosen to be 2 so that all
electrons couple the ions with the same strength. The
picture is similar for other lattices, only the parameters
K, and w,=w(K,") being different.

Before discussing the critical-point solutions, we
consider the finite 4, large K limit of (4.1). From (2.32)
and (2.33), we have, for K —o,

= ((n=r)ro/[(n =2 = o)V o oo
(4.11)
where

b*=4—2c=¢*/J. (4.12)

The limiting values of K’ then depend on §. They are
given by
r(K')=3n,

®>0%) (4.13)
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Fi16. 7. Variation of critical-point behavior with
the coupling constant c.

r(K)=n, (b<b*) (4.14)

and, for b=0b*,

PH(K") = 2r(K") {14+ [14-d0s(e*%’ —1) /02 ]2 =
(4.15)

where »<7*<2r, with its exact value dependent on vy,
the number of distinct states of a & bond. Note that
(4.13) and (4.14) are the same limits found in the
corresponding infinite & cases.

C. Upper and Lower Critical Points

To understand the critical-point solutions illustrated
by Fig. 6, we must first understand the significance of
the equality b=06*. When rewritten in terms of the
occupation and coupling energies of the bonds at 7'=0,
the equality becomes

2(61—2J)=60+(62—26]). (416)

In other words, at 7=0, two electrons may either
occupy separate bonds or pair up on the same bond
leaving the other vacant, the energies for the two
possibilities being equal.

For b<<b*, the ground state would contain as many
unpaired electrons as possible. For #< 1, this is identical
to the Syozi ground state and the critical concentration
is the same, p,=n.=r,. Note that, for ».*>n>7r,, the
critical temperature decreases from a maximum when
b=—o down to zero as b approaches b*. The reason
for this is that, for 7>>0, there is a finite probability
for the pairing of electrons. This probability increases

SCESNEY 1

to a maximum as the energy per electron (Se—3€*),
favoring the unpaired ground state approaches zero.
Increasing temperature, then, disorders the lattice in
two ways; thermal disorder of coupled ionic spins and
self-dilution through creation of =2 bonds. It is this
self-diluting effect which is responsible for the fall of
T. to zero as b— b*. For n>7.*, there are always
enough bonds to support low-temperature ordering, and
the critical temperature is always greater than zero.

All the electrons for the 5> b* ground state will be on
k=2 bonds, and the 7'=0 critical concentration is again
pe=3%n.=r., At finite temperatures, there will be a
definite probability of splitting a k=2 bond and creating
two singly occupied bonds. The energy per electron
involved in this process is 3(e—¢€*). It is because of this
splitting that an ordered state is possible at finite
temperature for 7,*<n<2r., even though the ground
state is disordered.

The criterion for the establishment of an ordered state
is whether enough extra bonds can be produced before
the connected ionic spins are disordered by the rising
temperature. In this ground state, the probability of a
bond coupling its ions is 37, but the probability needed
for ordering at 7=0 is 7.. At finite temperatures, a
slightly greater probability would be needed, but, for
T<J/kg, the probability increase needed for order
would be approximately (r.—3#). This increase is to be
attained by bond splitting. Equation (4.11) gives

(1’0—%%) o« exp[_% e*6>‘<)//kl311___l"{'_ ) (417)

which could have been expected. From this we easily
see that for <2y, there are almost enough bonds to
give order at 7'=0 and lower critical points are possible
even for very large values of 6 —b*, since few bonds need
be split. Similarly, as & approaches *, more bonds will
be split at a given temperature and an ordered state
could be established for lower electron concentrations.
When # is in this range from 7.* to 27, then, order is
possible at finite temperature for b values up to some
maximum value, at which the upper and lower critical
temperatures concide. This unique value of K,~! versus
n. is shown by the dashed line is Fig. 6. The correspond-
ing b values must be read along the line.

Summarizing, we found that, when the ground state
favored one-electron bonds, there was a range of
n(re<n<r.*) over which it was possible to fall to zero.
When the ground state favored k=2 bonds, there was
an analogous range of n(r.* <n<2#.), over which it was
possible to have upper and lower critical points. In
both cases, the energy favoring the ground state
(3] e—€*|) controlled the processes which were, in fact,
very similar. In the first case, the mechanism was self-
dilution with heating, and, in the second case, it was
self-dilution accompanying cooling.

The ground state for 6=>0* contains a mixture of
bonds since all configurations of pair of electrons have
the same energy. If v) is the number of distinct states
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of a & bond, then two electrons can occupy separate
bonds in 3v:2 ways and can pair up on one bond in v,
ways. It is the magnitude of these degeneracies that
determines the critical concentration 7.*. For 1v,25>v,,
there will be many more unpaired configurations than
paired ones. The ground state will then have mostly
k=1bonds, and r.* approaches 7,. Similarly, if 2,>%v,2,
r.* approaches 2r,. More electrons are needed for
ordering because of the increased likelihood of pairing
in the ground state.

D. Effect of Coupling Ratio

Referring back to Fig. 5 and the shape of the critical
region, we now consider the effect of varying ¢, the
relative coupling strength of a £=2 bond. The b= — 0,
n=1 curve involving only £=1 bonds will remain the
same, but the other limiting curves and the enclosed
solutions do change. The behavior of the finite &
solutions within the limiting curves is similar to that
of the c=2 case. Figure 7 shows the limits of the critical
temperatures for various ¢ values.

As illustrated in Fig. 7, the limiting curves can cross
for large values of ¢. In these cases, for large enough #,
the b= critical temperature is greater than that for
b= —co. That is, at a high temperature, a few strong
bonds can order more effectively than a larger number
of weaker bonds. The smallest value of ¢ for which this
crossing can occur is ¢*. It is included in Table I, which
lists the critical parameters of various lattices. The
values of 7.* are those for v;=2, v,=1 as in E;y, given
by (3.1). The critical values of K’ and w used in com-
piling Table I are those found in Ref. 1(c).

E. Approach to Critical Point

To determine the relationship between K and K’
away from the critical point, we must know the energy
function w(K’). For two-dimensional lattices, exact
solutions are known but, in three dimensions, only
high- and low-temperature series are available. How-
ever, for the three-dimensional lattices, it is possible to
construct approximate analytic functions for w(K’)
which have a specified critical-point behavior and which
agree with the limiting series away from the critical
point.'* With these functions (see Appendix), plots of

Taste I. Critical-point parameters for various lattices.

Lattice q exp(—2K/) we Se Ve re* c*
Hexagonal 3 0.2679492 0.7698003 0.3145 0.6478 0.8246 2.256
Kagomé 4 0.3933198 0.7440169 0.1175 0.5369 0.6599 2.191
Square 4 0.4142136 0.7071068 0.2071 0.5000 0.6084 2.154
Triangular 6 0.5773503 0.6666667 0.1220 0.3522 0.4003 2.092
Diamond 4 047729 0.432 0.311 0.374 0.443 2.06
s.C. 6 0.64183 0.3284 0.1874 0.2379 0.2642 2.102
b.c.c. 8 0.72985 0.270 0.135 0.172 0.185 2.02
f.c.c. 12 0.8153 0.245 0.086 0.115 0.121 2.01

1 These exponents are generally agreed [see Ref. 1(c)] to
describe the behavior of the three-dimensional Ising model.
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Fic. 8. The dependence of K’ on K. Note that with the exception
of the Ising limits (#=1, b= ; #n=2, all b) the curves have zero
slope at the critical point.

K versus K’, such as those shown in Fig. 8, can be
constructed.

From Fig. 8, it is observed that in the Ising limits
[which are independent of w(K’)], the function K(K’)
has a definite slope at the critical point. In these cases,
the critical behaviors of the decorated and refer-
ence lattices are similar. The corresponding reduced
temperatures

t=1—(T/T.)
=1—(K./K) (4.18)
and
! =1—(1"/TJ)
=1—(K,//K’) (4.19)

are proportional near the critical point.

In the non-Ising cases, K(K’) is a smooth continuous
function but its derivative diverges at the critical point.
For these cases, ¢ and # will no longer be proportional
and decorated lattice will be different from that of the
reference lattice. To see how this comes about, we note
that, except in the Ising limits, we can always write

(9K /0K") =Zx(K' nb)+1x(K' n,0) (8w/dK"), (4.20)

where, here and in Sec. V, 2 and II will be used to
denote smooth functions of K’, 7, b. At the critical
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point, (dw/dK’) becomes infinite so that asymptotically
we can ignore 2k and integrate (4.20) to produce

I~[w(K") —w, /¥ (n,Dd), (4.21)
where ¥ is again a smooth function.
On using the asymptotic expressions!?
o(K') —woa—t' =) | K//K'S1 (4.22)
~—gt|f|0- K//K'21 (4.23)
for three dimensions, and
o(K')—we~—al' In|t'|, K//K'~1. (4.24)

For the two-dimensional Ising models, we can determine
the relationship between { and ¢ at the critical point. In
ordered temperature regions, for three-dimensional
lattices, one then has

Py 1] fayio—o,
(dw/0K")y~[a~(1—a')/K/JY|t| Ja)—'10=a)

The corresponding formulas for disordered regions are
obtained by the substitution of « for o’ and a* for ¢~
In two dimensions, we find

{~—@/a)t/In|t[+- -,
(Ow/wK')y>~—(a/KJ) In|t|+---.

It is interesting to consider the isolated case of n=2r,
and b>b* TFor this case, the upper critical point is
finite and the above comments hold. The ground state,
however, is one of critical concentration. A special
treatment is needed since we now have 7.=0. The
relevant variable for measuring the proximity to the
critical point is not 7', but the probability for producing
additional ion-ion bonds, namely exp[ —%(6—5*)K ].

The formulas analogous to the three-dimensional
result (4.25) and the two-dimensional result (4.27) are,
respectively,

(4.25)
(4.26)

“.27)
(4.28)

faylU=a)p. . a5 y—0 (4.29)
and
t’ocy/lny—l—"' as y—0, (4.30)
where, again,
Y=g WD G—IEK (4.31)

Equations (4.25) and (4.27) represent the asymptotic
relation between £ and ¢’ near the critical points of dilute
lattices of three and two dimensions. The manner and
rate of approach to these asymptotic expressions is
determined by the form and relative size of higher
terms in the expansions. These higher terms are best
studied in specific examples.

Consider a specific model as studied in Sec. V with
Eing as in (2.1), 5=0, ¢=2. The relation between ¢ and
¢/ in ordered regions is given by

2K, tanh2K ]

=(n—2)C/(KS)— 1K+, (432)
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where C1' is a constant dependent on the reference
lattice. A similar relation holds for disordered regions
if the primes are removed from C;' and «’.

It is obvious from (4.32) that, for almost filled lattices
(n<2), the true asymptotic relation (4.25) will become
evident only at exceedingly small values of ¢ and &.
As suggested by Fisher,? a “transition region” is defined
as that ¢ range within which the true asymptotic be-
havior is “felt.” The size of this region is given by a
“cross-over temperature” /x. The value of ¢x could, for
instance, be determined by equality of the first two
terms on the right-hand side of (4.32).

As we shall see in a following paper, this transition
region can be so small as to be beyond experimental
reach, especially if « or o’ is small.

V. THERMODYNAMIC FUNCTIONS

In this section, we will give general formulas for some
thermodynamic functions but will not attempt to
describe their variation for all 8, ¢, and #. Instead, we
confine our attention to the simplest case of our
model with

e1=e=0, (5.1)
b=¢/J=—eo/J =by, (5.2)
ef=z—F/Fs, (5.3)
c=2, (5.4)
b*=0. (5.5)

In view of (3.23) and (3.24), we lose no generality in the
K, K’ relationship, yet this choice of parameters relieves
the activity from an unimportant b; and b, dependence
and, hence, simplifies calculations. The behavior of this
special system will be quite similar to that of systems
with other parameters. As in the solution of the
transformation (4.1), the values of the thermodynamic
functions will depend on ¢, the energy favoring one-
electron bonds. The possible solutions will range from
the e— — o limit to the e — 4 limit in a continuous
manner as e increases. For this system, we know the
K, K’ relation explicitly in three cases, namely,

1) b=—o,
X cosh2K'=[n+s(K")]/[n—r(K")], (5.6)
(i) b=b*=0,

cosh(2K") =[n+s*(K")]/[n—+*(K")], (5.7
where

*(K')=(1—e*)[1+w(K')], (5.8)

S¥K')=(eX"—1)[1—w(K")], (5.9)
(i) b=t

cosh2K") ={[gn+s(K") J/[Gn—r(K") 1} .  (5.10)

As illustrated in Fig. 8, the solutions for »<0* lie

12 See the review article by Fisher cited in Ref. 1(c).
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between (i) and (ii), while the solutions for 5> b* lie
between (ii) and (iii).

A. Internal Energy

The internal energy per bond in units of J is

U(T, Hnp) = lim [—(3gN)-4(9/0K 10 InE], (5.11)
N>

which can be written in terms of the partial bond
partition functions, as (H =0)

U(T,0,n,0) = — (. FO+s¢_ ) /(Y —¢)

where the superscript (K) denotes 9/dK ;. We see
that the energy is a sum of two contributions arising
from parallel and antiparallel alignment of the bond
vertex spins. These contributions are proportional to
r and s, respectively. Note that (5.12) can be written
more generally as

(5.12)

U= Uocc+ Uint 5 (513)
where
Udco=(eo/T)pot+(e1/T)p1t(e2/T)p2  (5.14)

and

Um={U+=r(gl(K)-i-eEgz(K))[gl—h1+65(g2—kz)]'l}
U= 50 5 ethy )

+Lg1—hitet(ga—h2) I}

In our model, the energy of an occupied bond con-

necting two antiparallel ionic spins is zero for any

orientation of the decorating spins, hence, these bonds

do not contribute to the interaction energy. Mathe-
matically, this shows up in the statements

B =p,F =0, U_=0. (5.16)
For the specific model defined by (5.1)—(5.5), we have

(5.15)

U= (eo/J)pot+Uy, (5.17)
with
po=(r+s){(1—7r)/(r+s)—(1+2)
X[(14322 cosh?K)2 sinh2K |1}, (5.18)
U, = —2[14322 coth(2K) [tanh(K)+-Z .  (5.19)
The activity is given by
z=[(n-+s)—(n—r) cosh?(2K) /[ (n—2r)
Xcosh?(2K)—(n+2s)], (5.20)

which can have any value from 0 to 4+, depending on
b and #. It is the magnitude of z which determines the
actual value of po and U, which must lie between the
limits as shown in Table II.

The behavior of U at the critical point is similar, but
not identical to the behavior of its reference lattice
counterpart w(K’) at K,/. Both are finite but, as hinted
at in Sec. IV, the behavior of the slope of U is not the
same as dw/0K’, which becomes infinite. For a general
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TasLE II. Limiting energy functions and specific-heat amplitudes.

K./ ¥ al(l1—a)
Function: At= — — s
(1—a)at\a*

K, ¥\« aa)
(1—a)a \a~

Limit
po=1—3n
U, = —cr2 coth(ck)
4(n—2r;) /2 (n+2s5.)(1—r.)

A= —rc>
b— 4= (retse) \ 2—mn)
all ¢
2>n>2r - 32(n+2s0) (n—2r6)2(1 —re)2(145,)2A%

- (ret50)@2—n)?
8o (n—2rc)32(n~+250) 112 (1 —7,) (14-5.)
Y=
(7c+30) (2 - %)
po produces no contribution to energy (e=0)
U= —7r*2 coth(K)
4(”—7'0*) / (2%+Sc* _7'0*) (2 _rc*)

A= —rc*
b=p=0 s\ @—n) )
c=
2>u>r* e 42045t —r.*) (n—r*) (245.%)2(2—rF)AE

- (o532 —n)?
2K 2n4sc*—r*) 2 (n—r*) 2 —7*) (24sc*)
Y= —
(51322 —n)
po=1—n
Ut= —72 coth(K)
4(75—7'0)/(2”‘{‘3(:“71:) (1 _Tc)
= — —7c
b— — (retso) \ (1—n) )
all ¢
1>n>r

B 16Q2n+sc—7e) (1450)2(1—7)2(n—r.)?A*
(ets =)

4K @nse—r V3 n—r) (1—7) (1+52)
- (etso(1—n)

b, we can write

(0U/3K)=(0w/dK')(0K'/IK). (5.21)
B. Specific Heat
The reduced specific heat per bond is
Cu(Tynb)=—(8/3K,,»)U. (5.22)
Using (4.20) and (5.21) yields
Cu=241Cx/w + k)™ (5.23)

(o' =0w/dK'), and we see that, although «' and the
specific heat of the reference lattice are divergent at
T/, the specific heat of the decorated model is finite
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F1c. 9. Specific heat versus K~! showing variation of cusped
behavior with concentration. The height of the cusp for z=1.75
is 44.6. Only the specific heat of the filled lattice (#=2) diverges
at the critical point. Both « and «’ are assumed to be %.

with a cusp at 7%.% For three-dimensional lattices near
T., we find

Cu~A(n,b)—B—(n,b)|t|«!0~" (5.24)
in ordered regions and
Cp~A(n,b)—Bt(n,d)|t] O~ (5.25)

in disordered regions. For two-dimensional lattices near
T., we have

Cr~A(n,b)—B(n,b)/In|1| . (5.26)

The function 4 gives us the maximum value of the
specific-heat cusp. It is a complicated function of »
which can be explicitly evaluated only in certain cases
(b===, 0). The important behavior which is found is
that 4 diverges as the Ising limits are approached
[e.g., Ax(m—2)"1 as n— 27 and it decreases to zero
as the electron concentration approaches the minimum
value for ordering for a given b value [e.g., 4 « (n—#*)
for 5=0*=0]. The functions B, B* have behaviors
similar to that of 4. Limiting values of 4 (n,b), B*(n,b),
and B~(n,b) are given in Table II.

Figure 9 illustrates the behavior of the specific heat
of a simple cubic lattice with various electron con-
centrations. In order to generate these curves, the value
of o’ was assumed to be § and, as shown in the Appendix,
approximate functions were generated.
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C. Magnetization

The reduced magnetization in units of m is

M(T,Hmn,b)=lim [(1/N)(9/0Lk,;) InE]

N >0

=39[ (9 In¢/dLk 5)+w(IK'/ILk )]

(5.27)

+0(dL'/0Lk,s). (5.28)
For a symmetric bond,
M =53q[5(140) @4+ /y b P )
(- -/, ]
Fol1+4qWs + Py v —d P/ )], (5.29)

where the superscript (L) denotes that the operation
(8/9Lk,:) has been applied. As a consequence of the
ferromagnetic nature of the bonds, we must have, in
addition to (2.27), the zero-field results that

Y P=—y_ B, (L=0)

(5.30)
Yy =0, (L=0).

Thus, the spontaneous magnetization is given by
Mo(T8) =143+ @ | 1) s Joo(K7) . (5.31)

The first term in the bracket is the contribution from
the ionic spins, while the second term is the contribution
from the decorating electronic spins. We originally
assumed the magnetic moments of ions and electrons
to be equal. If the magnetic moment of the electron
had been m and that of the ion gi.nm, the first term in
the bracket of (5.31) would be the constant gio, rather
than unity. For our specific model,

@1t D] 1=0) /W= (r+5)[(1+s5) tanh(K) ]
X [1422 cosh(2K) {14z cosh(2K)+1]}~*, (5.32)

which is continuous and finite at the critical point.
In ordered regions near the critical point, we write

Mo(Tn,b) < ao(K') =< t'8 (5.33)
which, by (4.25), yields
Mo(T,n,b) « | ¢] 80— (5.34)
in three dimensions, but, by (4.27),
Mo(Tn,d)=[|t|In]t] ] (5.35)

in two dimensions. We see that the renormalized value
of 6 is 8/(1—¢’) in three dimensions.?

As discussed in Sec. IV, the multiple-bond states lead
to a great variety of critical behavior. In particular, a
lower critical point is possible. There is an even greater
variety of behavior in the magnetization. Corresponding
to the case with upper and lower critical points, we find
that M, is zero initially, increases, then decreases
between the critical points, and is zero again above the
upper point. This and other possible types of behavior
are illustrated in Fig. 10 for the simple cubic lattice.
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Fic. 10. Magnetization versus KL For #=0.45 (2r,>n>r.*),
a single critical point is found for b <b* whereas an additional lower
critical point appears for b* < b< bmax (for #=0.45, byax=3.4). For
n=0.5(n>2r,), a unique critical point is found for all b, and, for
b>0b*, the magnetization initially increases with temperature.

Only the ionic contribution o(K’) is plotted. The values
are based on Padé approximants to the low-temperature
magnetization and energy series with the assumptions
that o’ =% and 8 =7%.1*
D. Susceptibility
The reduced susceptibility is given by
S(T,H,n,b) = aM(T,H,ﬂ,b)/aLan .

As in previous work,? the zero-field susceptibility & in
three dimensions is found to vary as

(5.36)

gooc || =Y 10—aD) (5.37)
on the ordered side of a critical point and as
Eooe [£[ 7710 (5.38)

on the disordered side. The two-dimensional case is
given by

Lo ([¢|In]e])="", (5.39)

with the primed and unprimed exponents corresponding
to the ordered and disordered side of the critical point,
respectively.
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Tasie II1. Renormalization of critical exponents.

Ideal
Ising Renormalized

Thermodynamic function exponent exponent

Specific heat, constant H disordered region o —a/(1—a)
Specific heat, constant H ordered region o —a/(1—a)
Spontaneous magnetization B B/(1—a)
Susceptibility disordered region v v/(1—a)
Susceptibility ordered region Y v'/(1—d)

VI. SUMMARY

As predicted by Fisher? and as shown in this paper,
the critical exponents are renormalized as summarized
in Table ITI. Tt must be stressed that these renormalized
exponents represent the behavior of the thermodynamic
functions asymptotically close to the critical point. The
crossover temperature ¢, marking the onset of renor-
malized behavior can be much smaller than experi-
mentally attainable values.

The question then remains of exactly how renor-
malization would be felt in an experimental situation.
The answer to this question is reserved for a following

paper.
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APPENDIX: APPROXIMATE THERMODYNAMIC
FUNCTIONS FOR ISING FERROMAGNET
ON SIMPLE CUBIC LATTICE

In order to calculate the properties of the mobile-
electron Ising ferromagnet, it was necessary to generate
approximate functions for the energy, specific heat,
magnetization, and susceptibility for the reference Ising
lattice.

The low-temperature (K'>K,") forms assumed for
these functions for the simple cubic lattice are, for the

energy,

w=w,+3[1—(w/x;) %41, (A1)
for the specific heat,
Cu=(32/6)x31—(x/x.) "% 43, (A2)
and, for the magnetization,
go=[1—(x/x,) 45, (A3)
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TasLe IV. Padé approximant coefficients.
Ar'=%) As(a=7%) As(e'=%) Asle=3) As(B=1%) As(y=5/4)

Co 2.014 8000 0.3284 9.0 1.0 1.0 1.0
12 7.508 6969 —0.4104 9081 28.39 9652 —0.0050 24293 3.208 4380 2.692 9731
cc —4.716 7163 —7.656 2319 —12.34 6349 12.34 7675 —6.858 9583 4.244 4597
¢z —24.78 8439 11.72 9123 —99.50 5752 —0.0881 68245 —19.43 6787 17.47 4689
cs —12.67 2356 35.67 3309 —66.89 3786 —96.58 6009 8.915 0085
cs —45.77 4808 —58.03 2411 —13.66 5983 23.85 5077
¢ —19.06 0652 —145.2 4550 52.00 6214
¢ —57.18 0744 —9.115 6928
do 1.0 1.0 1.0 1.0 1.0 1.0
d; 1.602 7262 —2.215 9060 3.280 5169 0.1199 7571 2.449 8508 2422 9761
dy, —10.57 9114 —26.19 6836 —9.162 3325 1.495 4252 —9.925 8383 4.686 9843
ds —2.869 1075 61.09 7574 —23.86 0554 —0.4221 5089 —15.12 8944 1.730 4204
ds 28.67 1431 148.8 7637 32.76 7416 —298.8 8911 28.71 8069
d; —39.92 (0916 —359.1 2013 35.07 3888 —26.37 7590 2042 5852
dg 31.17 0122 —19.90 7284 —44.42 3595 26.99 2695
d;  —1.033 6985 —57.43 0494

where Next, the multiplying functions 4 were determined

x=exp(—4K’). (A4) using standard Padé approximant techniques [see Ref.

The corresponding high-temperature (K'<K,") forms

are, for the energy,

w'—‘wc—[l-—(x/xc)]l‘“Az, (AS)
for the specific heat,
Cu=[1—(x/xc) 44, (A6)
and, for the susceptibility,
Xo=[1—(x/xc) I""4s, (A7)
where
x=tanh(K"). (A8)

Values for the critical exponents consistent with
known numerical estimates [see Ref. 1(c) ] were chosen.

vy=5/4.

=o'/ =1 =5
Q= =g, 6_167

1(c)]. The form of these approximants is

A=(X e/ (X dax). (a9)

=0

The constants d;, ¢; are listed in Table I1V.13

In the determination of these approximants, the series
expansion for the magnetization contained 16 terms, the
expansion for the susceptibility contained 10 terms, and
the low- and high-temperature expansions for the parti-
tion function contained 15 and 6 terms, respectively.!4
The series for energy and specific heat were generated
from those of the partition function.

3 4 and 45 are previously unpublished Padé approximants by
W. J. Camp.

1 For the actual coefficients, see M. F. Sykes, J. W. Essam, and
D. S. Gaunt, J. Math. Phys. 6, 283 (1965); C. Domb and
M. F. Sykes, Proc. Roy. Soc. (London) A240, 214 (1957) (sus-
ceptibility); C. Domb, Advan. Phys. 9, 149 (1960) (high-T
partition function).



