
PHYSICAL REVIEW B VOLUME 1, NUMBER 5 1 MAR C H 1970

Extension of the Ornstein-Zernike Theory of the Critical Region. IP
G. STELLA

Delartment of mechanics, College of Engineering, Stote Vnjeersity of
2Vem Fork, Stony Brook, %em Fork 21790

(Received 5 September 1969)

A study is made of the terms in an expansion of the direct correlation function at the critical point. If
homogeneity of long-range correlations is assumed, we find that the terms involving m-point correlation
functions, m&2, do not dominate the terms that depend only on pair-correlation effects. For a system
with a short-range pair potential, we have previously shown that this result yields, in the usual notation,
2 —g =minL'2, d (g —I)/(I+1) g, where d is dimensionality. It is argued that for a pair potential U(r)~ —r "
for r ~ 00, we should expect no change in this relation for o )minL2, sj, where s is an exponent appearing
in our analysis; s= 7/4 for 4 =2, and s=2 for d =3. For smaller 0, the problem is more complex, and our
analysis is only suggestive; it indicates that when o &s, one should be prepared to find a marked difference
in the behavior of critical exponents between the 0 &-,'d and 0)-,'d cases. For the latter, we again find
2 —tt=minL2, d(g —1)/(5+1)j. We find 2 —rt=o. in both cases.

1. INTRODUCTION

''N a previous work. ,
' hereafter referred to as I, we

~ - derived a relationship between the critical exponent
b that describes the shape of the critical isotherm and
the exponent p that describes the decay of the pair
correlation function h(12) at the critical point as

F12 —+~. The derivation was based upon the use of
a functional expansion for c(12), the direct correlation
function. In addition to V(12), the pair potential, the
expansion involves h(12) and c(12) itself )more pre-
cisely, h(12) = h, (12)—n(l) 8(12) and c(12)= c(12)—n(1)
XB(12), where n is the singlet distribution function and
b the delta function, Dirac for a Quid and Kronecker
for a lattice system) as well as the functional derivatives
of c with respect to n. Here and below we use the nota-
tion of I except as otherwise indicated. As in I we write
a function of rts sometimes as f(12) and sometimes as

f(ris) as convenience dictates, and often we write r, —ri
simply as r rather than rts, with r =

~
r ~.

The fundamental postulate used in analyzing the
expansion of c was the following: near the critical point
the correlations between points ri, r2, . . ., are homogene-
ous in x ' (the correlation length) and r,, (the distances
between any pair of the points) for sufliciently large r;;.
Specifically, it was postulated that on the critical iso-
therm for small ~, the long-range parts of h and c are
homogeneous, ' as well as the long-range parts of the
functions c =8'" 'P(12) —c,(12)]/8n(3) . bn(nt),
m&2, where the subscript c here and throughout refers

* Material presented at the St.-Nicolas-de-Veroce Winter
School, February 1968. A preliminary version of Sec. 4 was
presented at the Seminar on Second Order Phase Transitions,
Case Western Reserve University, June, 1967.

t Work supported in part by the Research Foundation of the
State University of New York.

' 6. Stell, Phys. Rev. Letters 20, 533 (1968).
In keeping with Eq. (2.1) and its obvious generalization to

m-point correlations, m) 2, is the assumption that the Fourier
transforms of these correlation functions are homogeneous func-
tions in g and k;;, the relevant transform variables, for small If;

and small k;, . This observation is our primary motivation for
extending the homogeneity postulate from the full correlation
functions to the c~, vs~&2, through the equations in transform-
space that relate them, such as Kq. (2.5}.

to the critical point. From this assumption the relation

c,(r) h, (r)'

was obtained for a Quid or lattice gas. In I, our deriva-
tion of (1.1) rested upon our conclusion that for r ~~
the terms in the expansion of c(r) containing the c .,
nt)2, (i.e., directly manifesting nt-point correlation
effects for ttt)2) do not dominate the contributions of
the terms that involve only i itself and h. Because of

space limitations we gave only a heuristic argument sug-

gested by the work of Percus' in support of our neglect
of the former terms, based upon the slowly varying
nature of h, for large r. We also dealt only with systems
for which V(r) is negligibly small (for large r) compared
to h, (r)'

This paper has two sections beyond the introductory
material of Secs. 1 and 2. In Sec. 3 we are concerned
with a system in which V(r) is short ranged. For such

a system we give a detailed argument, based on the
homogeneity of the long-ranged part of i, in support
of our conclusion that the terms containingi, m& 2, do
not dominate the terms that depend only on the be-

havior of the two-point functions in the expansion of c,.
In Sec. 4 we investigate the effect of a long-ranged

V(r) of the form re for —large r (d= dimensionality,
o)0). We conclude that there will be no change in the
relationship between fi and tt for o.)minL2, sj, where s
is an exponent appearing in our analysis that is 7/4 for
d=2 and approximately 2 for d —-3. For smaller 0- the
problem is much more complex, and our analysis is only

suggestive, requiring as it does several strong additional
assumptions. It indicates that when 0-(2 one should be
prepared to find a marked difference in certain critical
behavior between the 0-&-.,'d and o-& —,'d cases of the sort
that one already finds in the simpler spherical model, 4

3 This idea that functional expansions about pg(12) rather
than p are especially appropriate near the critical point was
exploited already by J. L. Lebowitz and J. K. Percus, J. Math.
Phys. 4, 116 (1963); 4, 248 (1963).

4 See G. S. Joyce, Phys. Rev. 146, 349 (1966).

2265



2266 G. STELL

for which c= —U/kT for large r (k is Boltzmann's con-
stant and T is the temperature).

Since the appearance of I, Ferer et al. ' have concluded
that when d= 3, h(r) may not sa, tisfy the strong form of
homogeneity postulated in I. We discuss elsewhere' the
modification in our results to be expected from weaken-
ing the homogeneity assumption in a way suggested by
their work; here we retain the homogeneity assumption
of I but point out some aspects of our work that will be
unchanged if it turns out that the assumption of I must
be weakened for d = 3. For d = 2, there is no evidence of
the breakdown of homogeneity.

and throughout the article the integral j'dr stands for
a sum over lattice sites in the lattice-gas case. We note
that

t3P(dP/dp) = PC(0) = P c(r)dr

where p is the chemical potential. For a lattice gas with

a volume per site of vo and an occupation variable 7

taking the values 0 or 1, the function h is given in the
notation often used for lattice correlations by

2. GENERAL RELATIONS AND ASSUMPTIONS Several distinct cases appear in our analysis depend-

ing upon the magnitude of —,'t. To see the way in which

they arise we note that at the critical point (2.1b) and

(2.2b) imply that there is a P such that

Our starting point in I was the assumption that when
T= T„h,(r) is a, homogeneous function of degree t d-
in r and ~ ' for r and K

' both large compared to the
particle diameter or distance between lattice sites,
which we shall denote as a. Thus we postulate h=h~
+Az, where, for r))a, A=Ac, with Az given by

h, f'(xr) r' "=~" 'e(~—r), —

h, const)(r' ".

(2.6)c, h, ~ for r))a,
where

(2.7)s=p(d t) —d.—
(2.1a)

Also consistent with (2.1b) and (2.2b) are the expres-
(2.1b) sions

c ~F(~r)r ' "=~'+"E(~r)

c,~ const&(r —'—".
(2.2a)

(2.2b)

We use t here to denote what is usually written as 2 —p,
and the inverse correlation length x in (2.1) and (2.2)
can be defined by the equation

r'h(r) rd h(r) dr. (2.3)

From (2.1a) and the supposition that jhs(r)dr is
bounded, we conclude

h. (r)dr (2.4)

Equa, tion (2.4) can in fact be used instead of (2.3) to
define a when j'r'h(r) rddoes not exist, a,s in the case
of very long-range potentials. ' The functions h(r) and
c(r) are related to one another in a way easily expressed
in terms of their d-dimensional I'ourier transforms H(k)
and C(k):

The precise functional form of f(x) and e(x) does not
concern us. In the same spirit' we write c=i +cz where
for r))a, c= c~, with c~ given by

H, (k)~constXk ', k —+ 0 (2.8)

t = minL2, d(P —1)/(P+ 1)&. (2.10)

On the other hand, if const2=0 we would have t= s

=d(p —1)/(P+1) for s) 2, as long as s were smaller
than the smallest unexhibited power of k in (2.9). In
general, we find no reason to assume const~=0, and
would expect in fact a whole series of even-power terms
in (2.9) with nonzero coefhcients that define the spatial
moments of c,~.

The rela, tions (2.3) through (2.10) hold even under
the weakened form of homogeneity postulated in Ref. 5

since they do not rest upon (2.1a) or (2.2a), but depend
only on the (b) parts of (2.1) and (2.2), which are not
brought into question by the work. of Ferer et at.

In the special case of s= 2, (2.2b) implies that at the
critical point

C,(k) constiXk'+const2Xk', k ~" (2.9)

where the term of order k' in (2.9) is zero because
C,(k) = 0 at k = 0. Using (2.5) to compare (2.8) and (2.9)
we conclude that in general s&» t, and if const2/0, that
t=minL2, s], so if s(2, (2.7) yields t=s=d(p —1)/
(P+1). Thus we can write, if const~NO,

pH(k) = —LPC(k) $
—' (2.5) C,(k)~const Xk' ink+ constgX k'+

where p is number density and F(k) = j'f(r) e"~dr. Here

' M. Ferer, M. A. Moore, and M. Wortis, Phys. Rev. Letters
22, 1382 (1969).

6 G. Stell (unpublished).
7 This definition of ~ has been used by W. Theumann and the

author considering such potentials (unpublished). A(r)~f(Kr)r' "(lllr)" ~~t'", (2.12)

and as a result, (2.1), (2.2), and (2.5) are no longer com-

patible. However, the asymptotic forms

c(r)~F(zr)r " '(1nr)& it" r~~ (2 11)
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p= (d+2)/(d —2) . (2.14)

We introduced (2.6) here solely as a consequence of
(2.1b) and (2.2b). In Sec. 3, however, it is shown that
an independent set of considerations lead us to (2.6),
with p= b [i.e., to Eq. (1.1)7 and that for a special
value of b this is true even if (2.1) and (2.2) are not as-
sumed, as long as it is assumed that the chemical poten-
tial p behaves in the simple way near the critical point
given by (2.19). The somewhat less restrictive assurnp-
tion (3.16) leads to a generalization of (2.6):

k,"(lnh, ) '.
Equations (2.15), (2.5), and (2.14) are satisfied when

q) —1 if (2.11) and (2.12) are generalized to

c(r)~F(~r)r " '(lnr)'«" '& ~ '~t'" r —+~ (2.16)

A(r)~ f(~r)r' "(lnr) «+"i' "'"", r ~~ . (2.17)

[The case q~& —1 requires further analysis reminiscent
of the case p~& (d+2)/(d —2) in (2.6).7 For pW (d+2)/
(d —2) different powers of lnr in c and ti would have to
be used to maintain consistency between (2.15) and
(2.5), but only in the special case of (2.14) does there
appear any compelling reason for investigating (2.15) in
the first place. Similarly for pW(d+2)/(d —2) one can
modify (2.1) and (2.2) by including, for example, factors
of Inr to certain powers that will be consistent with
(2.5) and (2.6), but only for (2.14) is one forced to go
beyond the simple homogeneity assumptions of (2.1)
and (2.2) in order to maintain consistency between (2.5)
and (2.6).

In addition to (2.5) we shall use a second relation that
involves h and c. It is given by the expressions'

are compatible with the critical-point transforms

C,(k)~constk'(ink) '" 'i""+ k —+ 0

II,(k) constk '(ink)" "izM+, k —+0
(2.13)

and hence with (2.5). Equation (2.6) is satisfied as well
with

riz —+~ at the critical point, then we have (1.1). The
relative sizes of 5, h, and V are the subject of Secs. 3
and 4.

[c (12)—c (12)7d(2) (3 2)

[from (2.2a)7, we conclude

3. GENERAL TERM IN EXPANSION OP c(r)

In our analysis, all of which takes place at T= T„we
make repeated use of the expressions in this paragraph
to express various results as powers of lz, (r) after getting
them as powers of ~0, and to simplify the expressions for
the powers of tz. If x

I p —p, I

' at T= T„ then at T= T„
8'~'/Bp' ~' i't'i, so that at T=T„p=p„we have
8 Koz/BPO=KO' t'z' and ~0 riz i" ' ' h, (12)'. Further-
more, (d —t)e~&2 (from the Gunton-Buckingham in-
equalitys and to= b —1) and de~&to+2= b+1. [We also
conjecture that (d —s)e=--2, even when s) t, but we do
not use this conjecture here. $ Here and below we use q

to stand for whatever power of h appears in a particular
discussion; it does not have a fixed meaning throughout
the paper.

We consider next the properties of c,~ and c ~, m) 2,
that we shall postulate, where c E for E either S or I.
is defined by

b" '[c~(12)—cg(12)7/bn(3) bn(zn) = c ~

for m) 2. We extend this definition to m=-2 by setting
czar-—— ce(12)—c,e(12) .

Since cs(12)-0 if rzz))a and since c ~(1, . . . ,zn) is

completely symmetrical in the variables r... 1 (~ i&j ~& ns,

we believe it is reasonable to assume that

0 if r,,))a for any r... 1&i(j ~&zn (3.1).
Because we know J'[c(12)—c,(12)7d(2) z' [from (2.4)
and (2.5)7 as well as

c(12)= —U(12)/kT+E(12),

&(12)= I:~o p pk(12—)dt /d—p7/—kT+ 2 5'-,
m&1

5' (12)= (p~/zn I) cmyi(1) 3, . . . , zn+2) o

(2.18)

[cs(12)—c s(12)7d(2

where q~&t. Because

c~+P(1, . . . , zn+2)d(2) d(zn+2)

(3.3)

)& g {[h(i2)—k(12)7d(i) 1.
i=3

In (2.18), the subscript zero denotes that the quantity
labeled is to be evaluated at the number density pg(12)
rather than at p. It was noted in I that if we assume

(2.19)

then [tzo tz ph(12)dtz/dp7—/kT —h(—12)' at the critical
point, so that if neither U nor 5 dominates h(12)' as

= 8 /Bp [ce(12)—cP(12)7d(2), (3.4)

(3.3) in turn yields

c +is(1, . . . , zn+1)d(2). d(m+1)

at T=T q&t (3 5)

8 J. D. Gunton and M. J. Buckingham, Phys. Rev. Letters 20,
143 (j.968).
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In keeping with (2.2a), and more generally with the
whole notion of homogeneity in ~ ' and r;,. of long-range
correlations near the critical point, we postulate'

c„+ic « "E(x;q), (3.6)

where x=Kr, 1~&i( j~& m+1. We can immediately find

p, since from (3.6) fc +Pd(2) d(m+ 1) «™,
while from (3.2) and (3.4)

This follows from the observation that as r —+~ for
q((d —t) e, the interval r'& r, & qq becomes equivalent
to the interval 0(~or;(~. This interval defines the
domain of integration of the left-hand side of (3.12),
so if we choose q((d —t)q we can write

( )og h,d[l] (' )oQ h,d[l], (3.13)

cm~ir'd(2) d(m+1) 8 z'/Bp

so that
p = s —[(m —1)/q]+md

(em+i )qd(1) d(m) h, (r) q, q~& 6 —m.

(3 7)
where 0 is the domain such that r;.~&r'; 1~& i~&/. But
as long as q) 1 (and we can so choose it) then the right-
hand side of (3.13) approaches the right-hand side of

(3.12) as r -+qq . Using (3.6), (3.8), and (2.1b), we esti-
mate the right-hand side of (3.12) to be

«q—((i—i)/~]+i(&—i) h (r)q

Instead of calling the vectors over which we do not
integrate (in S ) ri and rq, it proves a bit more con-
venient here to call them r and rs (and to write r for
rs —r rather than for r2 —ri). We study each S by
setting c =c c+c s and considering separately the
integrals jc+is'(o., 1, . . . ,m)(tg, i{[=h(iP) —h, (nP)]d(i) }
with E first taken as I. and then 5. Each such integral
can itself be written as a sum of terms of the form

h, (r) -' c„~i (n, 1, . . . , m),

X[+ h.(iP)]d(1) d(m), (3.9)

where 3&m. For convenience let us use abbreviated
notation to denote the integral of (3.9) as j'(c +P)q
&&+,h,d[m]. Since

(c

+i~)qadi

h,d[m] 2= d(8 —1)/((1+1). (3.14)

(l= ti+l if s= t and q) ti+l if s) t Thus f.rom (3.10) and
(3.11) we have h, (r)" 'f ((":„+i )qgih, d[m]-h, (r) q

(q& s+t)
Ke Inust finally consider the contributions from ex-

pression sof the form j'(ci+i )qgih, d[l], which are
h, (r)'f (ci+is)qd(1). d(l). From (3.5), this exPres-

sion is O(h, '). Thus, using (3.10) and (3.11) for 8=S we
find that h, (r)" 'j'(c„+i )qg(h, d[m] O(h, '), r
as well.

Putting our results together, we see that the domi-
nant contribution to 5 comes from interaction of the
h's and c +~8, rather than c +~~. There is no contribu-
tion to S of order lower than h, (r)'. Thus according to
(2.18), if V(r) is negligibly small, c,(r) itself will be of
order h, (r)' for r ~~ when homogeneity of the long-
range correlations is assumed, and the p in (2.6) and
(2.10) must be h.

There remains to be treated the special but important
case of

', Bp„"—'(c ~—, .)„Pih,d[l], (3.10)

we need only evaluate

(ci+i~)og ih.d[l],

which proves to be asymptotically proportional to a
power of h, (r) under our assumptions. Then, because

m—l(gm —lh q/gp m—i) h q r ~qq, (3 11)

we can immediately use our evaluation to find (3.9),
and hence 5 .

For r —+~, we argue that

l
—+ ci ic(a.1, ,1)q g [h.c(ni)d(i)]. (3.12)

«'(1n«) '"
~ p —p.

~

' ' (3.15)

This is not covered by our previous arguments since in
this case we would be led to s= 2 by (2.1b), (2.2b), (2.5),
and (1.1), except that when s= 2; then (2.1b), (2.2b),
a,nd (2.5) are no longer compatible, as pointed out in
Sec. 2. Thus we are forced to modify at least one of our
assumptions. The most gentle modification that can be
contemplated appears to be the retention of (2.19) and
the replacement of (2.1) and (2.2) by (2.11) and (2.12).
It is easily checked that (1.1) is still consistent with
(2.5), for (2.13), and that in (2.18) tiq —ti —pdu/dp still
contributes a term of order h, ~ to c,. The remaining
question is therefore whether the (S ), still fail to domi-
nate h, '. When the preceding arguments of this section
are applied, the ln terms in (2.11)—(2.13) will introduce
powers of in~a as well as powers of Ko in the analysis of
(3.9), a,nd it is necessary to know what ln terms appear
in the relation between «and p. Assuming (2.19), we
find at T=T,
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This comes from comparing dp/dp
~ p —p, ~

' ' with the
result dp/dp~x'(in~)'~', which follows from the use of
(2.12) in [pJ'A(r)dr) '=Ppdp/dp. It follows that the
most dominant terms in (5 ), are all of order h, ~. For
example, h, j'i ~dr h, ~o'(xo)"', which from (3.15) is of
order h, '. The analysis of the general term is more
tedious but no more dificult; it is basically because

t p —p,
~
d~/dp is not of lower order in p —p, than x itself

that all terms involving c, m&2, cannot be of lower
order than the simple terms involving only 8&. The
situation remains similar if

c,= —V/A T+0(hp), (4.2)

where p= 8 if strict homogeneity of the c ~ is assumed
and p= 8 otherwise. From (4.2), (2.1b), (2.2b), and (2.5)
we have the useful relation

Even in three dimensions, where homogeneity of the
correlations can be questioned, p departs only very
slightly from 8, on the basis of Eq. (2.10) and the cur-
rently accepted value of 1[=49/25). Thus we conclude
that in the LR case as well as the SR case

(3.16)
d+s= min[(d —t)P, d+0). (4.3)

is assumed instead of (2.19) with (2.15), (2.16) and
and (2.17) restoring consistency instead of (1.1), (2.11),
and (2.12).Here the dominant term in (S ), would be of
order h, '(ink, ) '.

4. LONG-RANGE POTENTIALS

t = min[0, 2,s), (4.1)

where a tilde here and below refers to the SR case.) We
must take care in defining ~ in the case of an LR poten-
tial—for small 0., x defined by (2.3) no longer exists.
However we can use (2.4) as a definition of ~ for such
cases. ~ It is then still as reasonable as in the SR case to
assume that for r&)a, c—8, is homogeneous in A. =-I~: '
and r of degree —d —s. The rationale also remains for
making the same assumptions on the c ~ and c ~ that
we used in the SR case, " where we found R, h, &,

with p= 8 when homogeneity of the i ~ was assumed.

G. Stell, Phys. Rev. 184, 135 (j.969).
' We note that retaining the homogeneity assumption on c

is quite a different matter than assuming that h and c are in
general not sensitive to changes in the range of U. We would
expect h and c to look greatly diferent o6 the critical point as
r —+ in the SR and LR cases, with h and c both experiencing
an exponential decay in the SR case, but looking instead like
h=(ppdp/dp) '(—pU) and c=—pU as r ~ ~ in the LR case.
These differences in the LR case do not act in any obvious way
to make the c~~ less homogeneous.

We turn now to a discussion of the case of a long-
range (LR) potential V —r " ' for r —+~. In Eq.
(2.18) there is now a competition between —PV and

R, to consider. We first ask if it is reasonable to assume
that R, still looks like h, & as r —+~ with p equal or very
close to b. We believe so, and using our knowledge of
both the Ornstein-Zernike (OZ) case' (R,=O for large
r as in the spherical model') and the short-range (SR)
case (V=O for large r) to guide us, we argue as fol-
lows: Assuming (2.19) it immediately follows that
[po —p —phd/dp), still looks like h, ', so we can pass on
to an analysis of the 5 . It still appears reasonable to
postulate that h, r' " (In the .OZ case this is so with
i=min[o. ,2): in the Ising case the simplest possibility
consistent with known results appears to be

Consequences of the above argument are most di-

rectly obtained —and the argument itself is at its most
convincing —for the case o-&s since 0-&s implies that
as r ~~, V can be neglected compared to the R, that
one would have had if V were negligible in the first place.
Hence we are led to p= p. (For 4= 2, s= 7/4, while for
d =3, s appears to be 2 or a bit less. ) Thus where 0.)s, we

expect no difference between f~. and R, and assuming
p= 8, no difference from the SR result:

f= min[2, d(B—1)/(8+1)).

If 0.(s the situation is more complex. If we continue
to assume that V can be neglected compared to R, so
that exponents have the same values as in the SR case
with d+0.) (d+ t)p, we arrive at a contradiction, since

(d —I)P =d+s. Hence if 0.(s, it is no longer plausible to
postulate that U can be neglected compared to R„ i.e.,

that d+0.& (d —t)p. This suggests that when 0(s we

start instead with the trial assumption that R, can be
neglected compared to V, i.e., that the presence of R,
in (4.2) will not shift the values of the critical exponents
away from their OZ values. On the basis of this starting
point we can compare h, ' and R,. as r —+~.Letting a dot
denote an OZ value, we have 8= 0, and Eq. (4.2) now
tells us that (d f)p) d+o, so —that h, & can. not dominate
V. Thus our trial assumption is at least self-consistent.
If we further assume that p=8. we have p ——8 with
5= (0+0)/(d —0), when 2d(0 (d, 0.(2, and 8= 3 when
0(0.(&d, o-(2. From these expressions follow co-
dominance of V and R, for ~d(0.(d, if 0-(2, and strict
dominance of V for 0(0-(-,'d, if 0-(2. When 0-) 2 we

expect 2&s only for d&4, for which 5=3, so that U
will strictly dominate R, under our trial assumption as
long as 0.(3d—6. But for d&4, we expect precisely
s=-3d —6 from d+s= (d —I)8, so we conclude that V
will strictly dominate R, for all 2&0-(s. In summary, if
0.(s, the hypothesis that U leaves s unchanged at s
is self-contradictory, whereas the plausible assumption
that R, will not shift s away from s satisfactorily leads
us back to the consistent conclusion that R, will not
dominate V. The additional postulate that the t". ~,

m~&2, are homogeneous further suggests the result
t= o = d(8 —1)/(8+1) for ~d(0 (min[d, 2) and t= a,
8=3 for 0(o.(min[~d, 2). For the values 0 = ~d and
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o-= d we would expect log terms to appear in p —p, and
in h(r), as they do in the spherical model. For the value
a. = s, similar complexity could also appear because of the
possible confluence of the V and E, terms at this value.
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This paper is concerned with the nonmonotonic frequency dependence of S(k,co), the wave-number —fre-
quency transform of the time-dependent spin-spin correlation functions for a one-dimensional Heisenberg
magnet at infinite temperature, as calculated by Carboni and Richards. It is argued that this nonmonotonic
feature of S(k,co) is a one-dimensional effect, and supporting evidence is presented via a phenomenological
calculation of S(k,co), utilizing the equivalence of the Heisenberg chain with a fermion system.

I. INTRODUCTION
' 'HIS paper deals with the frequency —wave-vector

Fourier transform 5(k,co) of the paramagnetic
spin-spin correlation function for a one-dimensional
Heisenberg spin- —', system. This spectral function 5(k,co)

has been computed exactly numerically for a large set of
k, co values by Ca, rboni and Richards' (CR), and their
results are shown in Fig. 1. Considering the sparsity
of exact results for interacting systems, these CR results
are valuable guideposts for testing the various phe-
nomenological theories introduced to study spin
dynamics in the paramagnetic region of insulating
magnets, and several papers devoted to such compari-
sons have appeared. '

We are here concerned with one feature of 5(k,co)

found by CR which is strikingly diR'erent from predic-
tions of working theories of three-dimensional systems,
namely, the nonmonotonic behavior of 5 as a function
of co for k) 2srj9, which is evident in Fig. 1. Practically
useful theories for three-dimensional systems' predict a
Gaussian in co dependence of 5 at large k and at elevated

temperature, and such behavior 6ts experimental data
on neutron scattering4 and magnetic resonance. '" One
therefore suspects that the nonmonotonic behavior
found by CR is a peculiarity of one-dimensional

systems, and considering that the system is at infinite

temperature, its only relevant feature is the density of
states for the periodic chain. Inspection of 5(k,co)

for the one-dimensional x-y model, exactly soluble as a
system of noninteracting fermions, supports this guess.
As shown in Fig. 2, S(k,co) for the x-y model (derived
in Sec. II) has infinities at the cutoff frequency co

and these are due to a behavior of the one-dimensional
density of states which is analogous to the infinity in
phonon density of states for a linear chain.

In the fermion language, 5(k,co) is the spectral func-
tion for the particle density-density correlation func-
tion. To get to the one-dimensional x-y-s model treated
by CR from the x-y model requires the addition to the
latter of the s spin interactions, and these spin inter-
actions play the role of fermion two-body interactions.
We conjecture that the major effect of such fermion
interactions is to introduce lifetimes for the Fermi
quasiparticles, and we work out 5(k,co) based on a naive
phenomenological treatment of lifetimes. The resulting

5(k,co), expressible in closed form, and depicted as
dashed lines in Fig. 1 reproduces quite well the non-

monotonic character of the CR results in the region
k) 2sr/9, where the agreement should be best. We take
this agreement to indicate the correctness of the ap-
proach, and conclude that the nonmonotonic behavior
of 5(k,co) as found by CR is a, feature of their results
peculiar to one-dimensional systems.

IL 8(k, co) FOR x-y MODEL

The Hamiltonian for this model' is given by
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