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Theory of the Temperature Dependence of the Spin-Wave Excitation
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(Received 15 July 1969)

The temperature dependence of the spin-wave excitation energies in the ferromagnetic heavy rare-earth
metals, due to spin-wave interactions originating in the strong crystalline electric fields, is studied from both
macroscopic and microscopic viewpoints. Consistency between an interacting spin-wave theory, linearized
in the Hartree-Fock approximation, and a suitable extension of Smit s macroscopic theory is obtained.
Both approaches are consistent with Kanamori and Tachiki s semiphenomenological spin-wave theory.
The resonance frequency may be expressed as a geometric mean of the axial and planar anisotropy fields,
provided that the low-temperature behavior of the anisotropy constants is modified to allow for elliptical
spin precession. At higher temperatures, the results are consistent with Cooper s phenomenological theory.
For Tb, agreement with experiment is excellent, but there is a discrepancy in the magnitude of the resonance
frequency in Dy.

tonian are a planar crystal-field term of sixfold sym-
metry and magnetoelastic effects; it has not been neces-

sary to introduce two-ion anisotropy or higher-order
axial crystal-field terms to explain experimental results.

The purpose of the present work is to examine the
spin-wave and macroscopic theories to obtain consistent
results for the resonance frequency (spin-wave theory
is, of course, valid not only for q=0). Kanamori and
Tachiki's' semiphenomenological spin-wave theory,
which is also applied to the problem, appears to be the
most convenient way to calculate spin-wave re-

normalization effects in strong fields.
The organization of this paper is as follows: In Sec. II

the macroscopic theory is extended and the resonance
frequency so obtained shown to be in agreement with
the results of the Kanamori-Tachiki theory. In Sec. III
a spin-wave theory based on the Oguchi expansions is
examined to illustrate the difficulties associated with
this method. An equations-of-motion technique, quite
similar to, but for present purposes simpler than, the
Green's-function equation of motion method, is then
developed and found to be consistent with the Kana-
mori-Tachiki theory. Kanamori and Tachiki s result is
then used to investigate magnetoelastic effects on the
spin-wave spectrum (Sec. IV). The results obtained
differ from those of Cooper's' theory at low tempera-
tures but above temperatures typically 40—50'K for

Dy and Tb there should be no significant difference. One

exception, however, is that the expression for the con-
tribution of the frozen lattice term to the resonance fre-

quency differs from Cooper's by a factor of 3. The results
of the present work. are found to compare favorably
with experiment for Tb but there is a sizable dis-

crepancy in the magnitude o$ the resonance frequency
in Dy.

I. INTRODVCTION

S PIN —WAVE excitations in the heavy rare-earth
metals have been the subject of several recent ex-

perimental and theoretical studies. Neutron inelastic
scattering' in Tb and ferromagnetic resonance experi-
ments' ' in both Tb and Dy indicate that the spin-wave
excitation energies in these metals are strongly ternpera-
ture-dependent. Early theoretical studies' neglected the
effects of spin-wave interactions completely. More re-
cently, Cooper7 has used a phenomenological theory to
introduce a temperature dependence into the uniform
mode frequency. An earlier attempt' to calculate the
temperature dependence of the spin-wave spectrum by
treating spin-wave interactions explicitly was only
partially successful, since several inconsistencies re-
mained in the theory.

The magnetic properties of the heavy rare-earth
metals are described by the usual exchange coupling
(exchange energy 10' ergs/cc for Tb) and an extraor-
dinarily strong crystal field. The metals Tb and Dy
crystallize in a hcp structure. The largest crystal-held
term is the lowest-order axial anisotropy (for Tb

5X10' ergs/cm'), the sign of which ensures ferro-
magnetic alignment along a planar easy direction. The
other important contributions to the magnetic Hamil-

~ Research sponsored by V. S. Air Force Office of Scientific
Research, under Grant No. AFOSR-69-1678.
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II. FERROMAGNETIC RESONANCE FREQUENCY where

+XB6'S(ss) cos6$, (6)

We wish to consider a ferromagnetic system described C= —S' Q I;, gI4—&H6lVS+21VBsPS( ', )P-ss(cos0)

by the following Hamiltonian:

where

alid

sc =xp+Pcij„

Xp ———P J,,S; S;—Orn+ 8 S,

(1) where

s(I)=s(s ',—)(-s 1—) "(s—n) (7)

and 1V is the total number of atoms/cm'. H& is the com-
ponent of the applied field along the axis of quantiza-
tion and

3Ci =P {Vs'Vs, P(o)) +V66[ V6„6(pp)+ Vp, , 6((o))) . (3)

The U& are crystal-field parameters defined by Elliott
and Stevens. "S;represents the total angular momentum
on the atom i, therefore the exchange parameter J;,
contains a factor (g —1)' from projecting the spin onto
the total angular momentum. The I'4, , ((o) are surface
spherical harmonics" referred to crystal axes and [
denotes the spin equivalent. " II is the applied field.
The first and second terms in XI are the lowest-order
axial and planar hexagonal anisotropy, respectively.
Several contributions, important in the rare earths,
have been excluded from (1) but the physics with which
we are concerned is retained —magnetoelastic effects,
higher-order axial terms, and anisotropic exchange may
be added once the behavior of the simple system is
understood.

The spherical harmonics I'&, , (pp) may be expressed
relative to an axis of quantization which is rotated
through Euler angles (r, P, and y from the crystal axes.
Since the Euler angles (i and)0 are identical, respectively,
with polar angles 0 and P, giving the direction of mag-
netization with respect to crystal axes we may write

[~ j =E [B ' 2 Do- "'*(A0,0) (0 "')'

+B 6 P (D,(6)4+D, (6)4)(0 m'), j (4)
tnl

and B~~= U~ 8~, where 8~ is an appropriate reduced
matrix element. "The 0& are spin-operator equivalents
of the spherical harmonics Y~ referred to the rotated
system ' and the Dmm * ' are rotation matrices.

Zero-temperature spin-wave energies, for an arbitrary
axis of magnetization defined by (0,&), may be derived'4
using the standard Holstein-Primakoff" technique; we
find"

~=( +Q g (4)p (4)

I R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. (London)
A219, 387 (1953)."K. W. H. Stevens, Proc. Phys. Soc. (I.ondon) A65, 209 (1952)."M. T. Hutchings, Solid State Phys. 16, 227 (1964)."M. E. Rose, Elementary Theory of Angular 3IIomentum (John
Wiley 8z Sons, Inc. , New York, 1957), Appendix II.

'4 M. S. S. Brooks, J. Phys. C 2, 1016 (1969).
'~ T. Holstein and H. Primakoff, Phys, Rev. 58, 1098 (1940).

same sublattice as i

J . . iq (r&—r~')
) (10a)

other sublattice from i

(10b)

The planar term in (8) is evaluated for 0———,')r, since
it will enter further calculations only in this configura-
tion.

The phenomenological macroscopic resonance theory
developed by Smit and Belgers" has been applied by
Cooper~ to obtain the uniform mode frequency

&6=6= La~n/~(T) j(P'66P44 P64')"'—
where 3E(T) is the magnetization at temperature T and
Iiz&, etc. , denote second derivatives of the free energy
with respect to angle evaluated at the equilibrium posi-
tion 8= sr7r, g=P (in resonance experiments an applied
field is sometimes used to align the magnetization away
from an easy direction in the plane).

Following Cooper~ we expand the free energy, for
zero applied field

F= E'r(T) sin'0+Ep'(T) sin'0 cos6&j&,

then, from'(11) and (12),

(12)

& =o= [Cp /~(T) jL—2&i(T))"'
&&[—36E6'(T) cos6$j"', (13)

where E3' has been neglected in comparison with E~ in
the first bracket. The temperature dependence of the
uniform mode frequency, due to spin-wave interactions
originating in the crystal-field terms, may be obtained

"J.Smit and H. G. Belgers, Philips Res. Repts. 10, 113 (1955).

~6")= &a~nH6+SI")(a) Bs'—(S 6)—
&([6P66(cos0)+Pss(cos0)j—36 cos6& B $66( )s/S}')'
&& f(g)4nH4, +SI"'(q)+Bs'(S ',)——

)([Ps (cos0) —6Ps (cos0)7
6B,' cos6—& S(-,')/S) '", (8)

where i=1, 2 correspond to the optical and accoustic
spin-wave modes, respectively (the hcp lattice, which is
non-Bravais, may be thought of as two identical inter-
penetrating hexagonal sublattices).
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by using the theory of Callen and Callen' for the tem-
perature dependence of the anisotropy constants E&
and E3'. This procedure, first used by Cooper, ~ produces
results which are in reasonable agreement with experi-
ment. However, the Callen-Callen theory is based on the
assumption that the anisotropy may be treated as a
first-order perturbation to exchange states which are
cylindrically symmetric about the axis of quantization.
We wish to consider the excited states of a system de-
scribed by (1) in which this symmetry is destroyed. At
low temperatures, the spin precession becomes elliptical
and standard anisotropy theory may not be employed,
We examine first a simple extension of the macroscopic
theory by reexpressing the free energy

F= (1/P)Ln—Tre ", P=1/ET

where BC is now given by (5). Then

perturbation theory. The temperature dependence of

E~(T), Ep'(T), expressed in the large parentheses of

(16), is identical to thatobtainedfor therelevantanisot-
ropy constants in I. Therefore, we may expect that the
expression (13) is generally correct, even in strong
fields, but that the temperature dependence of the
anisotropy constants is given, at low temperatures, by
(16) rather than the Callen-Callen theory, according to
which"

E'„(T)=E„(0)m"('"+"

at 1-™peratures, where m=M(T)/M(0) is the re-
duced magnetization. Comparing (16) and (17) one
notices that if Bp'))J(&(q) for all typically excited spin
waves, then

E,(T)=Eg(0)m' Ep'(T) =Ep'(0)m" (19a)

rather than

and

x(i- 3 J'"(q)+28pp(S —-,')—(e, ('&& (16a)
lVS ~

F~~= —36Ep'(T) cos6$= —36BpPS(Pp) cos6$

X(1—

Fgp=0.

21 J "(q)+(36/7)B'(S—-', ))
l(~p("&,

(16b)

(16c)

The following expression for the magnetization in
planar alignment is also useful:

M(T)

3II(0)

1 3Bp'(S—-', )+J"'(q)
=—m= 1—— (.. »)).

3~S e p (~)

(17)

The temperature dependence of the anisotropy con-
stants, associated with a Hamiltonian of the form (1),
has been derived in a previous publication" (to be re-
ferred to as I) using Kanamori and Minatono's sugges-
tion" that in strong fields the angular deviation from
the easy direction, rather that the ratio of anisotropy to
exchange, should be used as the expansion parameter in

"E.Callen and H. B. Callen, J. Chem. Phys. Solids 27, 1271
(1966).' J. Kanamori and H. Minatono, J. Phys. Soc. Japan 17, 1759
(1962).

with similar expressions for Fyq, Fg&.
In the following we neglect the planar anisotropy and

applied field in comparison with the axial anisotropy.
For the acoustic mode, (15) becomes, for H=O,

Fpp= —2E',(T) =61VBpPS(-', )

Eg(T) =Eg(0)m', Ep'(T) =Ep'(0)m". (19b)

At higher temperatures or for small anisotropy, where
J("(q)))BpP, the temperature dependence expressed in

(16) is given by (18) or (19b). A full discussion of equa-
tions (19) is given in I. We merely note here that (19a)
rather than(19b) is a consequence of thee6ect of ellipti-
cal spin precession on thermal averages; the anisotropy
fields in and perpendicular to the basal plane no longer
average out equally rapidly.

The frequency of the q= 0 mode may also be obtained
from the semiphenomenological spin-wave theory de-
veloped by Kanamori and Tachiki, ' who obtain

~([S.,LS.,xj]&([S„,LS„,x]]&)'~
Epp ——

, (20)
(S,&

where( ) denotes the thermal average andS„S„,and
S, are components of the total spin when s lies along
the magnetization axis. Using (1)—(3), and calculating
thermal averages by spin-wave theory [(5)—(7) special-
ized to 8=-,mj, ~™yeasily be shown that (20) is in
complete agreement with (13) and (16)~ Equation (20)
will be used again in Sec. IV since this appears to be
the simplest way to obtain the resonance frequency for
more complex Hamiltonians than (1).

III. SPIN-WAVE RENORMALIZATION

In a previous publicationP (to be referred to as II)
an attempt to calculate the effects of spin-wave inter-
actions was only partially successful. The method used
was as follows: The square roots of the Holstein-
Primakoff substitutions for spin to Bose operators"
were expanded and the series truncated so that only
quartic terms in Bose operators were retained. The
variational principle for the free energy" was then used
to decouple the quartic terms. As such this was a varia-

» J. M. RadcliGe, Phys. Rev. 165, 635 (1968).
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tional method but the results are completely equivalent
to those obtained by symmetric decoupling of the quar-
tic terms. "The difhculties associated with this method
are indicated by examining the following simple Hamil-
tonian, similar to (1):

is Bravais). Equation (21) becomes

3C= —Q —',J(q)(Sq'5 q'+Sq+5 q }

+(~D)Z (Sq+5-q++5, 5-,

BC= —Q J,,S; S,+DQ (S,*)'. (21) +S.'5-q +Sq 5-q') . (23)

Equation (21) is transformed to boson spin-wave opera-
tors as described above and the Hamiltonian is diago-
nalized by the canonical Holstein-PrimakoA transforma-
tion. Then that part of the Hamiltonian quadratic in
quasiparticle operators may be written, for the acoustic
modeq

3C' =p (SJ'"(q)+D(5 ', )+DS"—'(5-2)'l']'l'—-

&&LSJ'"(q)+D(5 2) —DS'1'(5—rq)'l')"'eq (22)

For q= 0 the spin-wave energies are complex indicating
an instability in the spin-wave spectrum for the uniform
mode. Clearly, E~=o should simply be zero in the absence
of planar anisotropy. "Not only is the zero-temperature
spin-wave theory unsatisfactory but the Rnite-tempera-
ture results in II, apart from containing similar incon-
sistencies to those in (22), are not in agreement with
the Inacroscopic theory. It was not possible, therefore,
to substitute anisotropy constants into the temperature-
dependent spin-wave dispersion relations in the manner
described in Sec. II; a result which contradicts physical
ideas" concerning the effects of anisotropy upon the
spin-wave energies.

An expression for the spin-wave energies at finite tem-
peratures, which is more physically reasonable, will now
be derived. To simplify the algebra in the first instance,
we will examine the simple FIamiltonian (21). Spin-wave
operators, attached to the reciprocal lattice, are dined

We shall also find useful the following expansion for
g.z 23 ~

1
S.' = —5+ S.+5

25

+ 5;+5;+5,—5,—+ . (26)
(25) '(2S —1)

and its Fourier component

5,'= —55q q
Y'l'+ — —Q Sq~q+5 q +.. . (27)

2gg 1/2

The equations of motion for 5„+,5„, are

—i8q,+ =PC,S„+]

P [8(q,q )S,+S„,'
X~~2 ~

D(S„,'+ ,'tV" 5—, ,,„)S, —

—DSq+(5„-q'+-,'»""~q,
q )], (»)-iSq„—=PC,S„]

P [g(q, qr) S„q'Sq
$7 1/2

—D(Sqi q'+~N"'6q, qi)Sq

—DSq+(Sql —q'+2N'"~q, ql)] (29)
Sq=(1/N'l')p S;e'q"'

and obey the commutation relations

(23) where

and
.J(q qr) =Jq —Jqi-q

j P J eiq lr;—rjl

(30)

LS '5 .+)= &(1/N'l')Sq~q +,
P'q+, Sq )= (2/N'")Sq+. ". (24)

5,'~0)= —5~0) defines the axis of quantization in the
—s direction so that

20 This is just random-phase approximation for the Bose opera-
tors; e.g. , O. Nagai, Phys. Rev. 180, 557 (1969).

"Complex energies in the zero-temperature theory have not
been encountered by previous authors (e.g. , Refs. 6 and 7) because
their results were carried only to highest order in 5."F. Eever, in Handblch des Physik, edited by S. Flugge
(Springer-Verlag, Berlin, 1966), Vol. XVIII/2, p. 73.

5;-fO)= lo),

where
~
0) is the ground state. N is the number of atoms/

cm (it will be assumed, for simplicity, that the lattice

Normal ordering of spin operators has been retained
in (28) and (29). At zero temperature S,„,' —&

—Sb„,,A'". Then

i8„+= D—(5——,')5„—
+LD(5—2) —Sa(e, llr))Sq, ', (31)

—i8„—= —D(5——,')5„+
—fD(5—l) —58(e,q ))S.

a pair of coupled equations which may easily be solved
to yield

~„=(-5~(q.,~.)) l L-Sa(~,e.)+2D(5--:)]"' (33)

2' M. Wortis, thesis, Harvard University, 1963 (unpublished).
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The uniform mode frequency is now zero. Equation (33)
also exhibits the property that for spin —,

' the effect of
axial ansiotropy vanishes, as purely group theoretical
considerations would lead one to expect.

Ke now consider the extension of the theory to hnite
temperatures, substituting the expansion (27) into the
equations of motion for Sq,+. At this stage we separate
the effects of spin-wave interactions originating in the
exchange term (exchange renormalization) and those
originating in the crystal-field terms (crystal-field
renormalization) by eva'luating the exchange term in

(28) and (29) only at zero temperature. Equation (28)
becomes

Using (35) and (38) it may easily be shown that

2XqIMq

(5,+5,+)=(5;5;)=(5,+5;)
/~q +/2»

B.(T)
(5,+5;).

Aq(T)

Substituting (40) into (37), we find

(4o)

Then the spin-wave energies are

(A 2 B 2)1/2

= L
—58(a a) 31/2L —58(a,a)+2B(T)31/2. (39)

—i8» '=D(5 —2)5»1 +LD(5—2) —SA(e,e)]5»1'

D
2 Sq+Sq,+, -q+5—, +

2ES q, q'

D
B(T) =D(5—;) — P—(5,+5;)~ 2—

2Ã5 q

and from (27)

Bq(T))
(41)

Aq(T)l

D
& 5»+q-q 5-. 5» +, (34)

2PTS q, q'

M(T)

M(0)
—=212=1— g (S,+S, )+ . . (42)

2ES2 q

with a similar expression for S„.The equations of
motion are now linearized in the following manner:
Fluctuation parts of the three operator terms plus all
the higher-order terms (i.e., terms in five, seven opera-
tors, etc.) are neglected. Then the triple operator terms
are symmetrically decoupled, resulting in a tempera-
ture-dependent Hartree-Fock approximation. Noticing
from (32) that a linear combination of the operators
Sq+ and Sq generates excited states in the sense that if
Tq+ is such a combination, then LBC,T»+) = E»T»+, we
recognize that the expectation values of Sq+S q+,

5» 5 q and 5»+5 q are nonzero. Defining ( .) as
the thermal average over an effective single-particle
density matrix, to be determined self-consistently, the
linearized coupled equations may be written

By comparing (39), (41), and (42) with (16) and (17)
it may be shown that (39) reduces to

r 2K1(T)
&,=L-Sa(a)]"I -Sa(a) — . (43)

asm

The extension of the process to include the planar
anisotropy is straightforward. If (4) is particularized to
8=-,'m, the system is described by the Hamiltonian

X= —P J;,S,"S,—g/2/1 P H S,+D P (5;*)-'

+B ' cos64 Z L(5")'-15(5")'(5'")'

where

i8»+= Aq(T)Sq++Bq(T)Sq

i8, = —A, (T—)5, —B,(T)S,+,

(35a)

(35b)
where

D= 2382'. (45)

+15(5")'(5'")'+ j (44)

A.= —Sa(a,a)+B(T),

B,=B(T),

(36a) If (21) is replaced by (44), the procedure outlined
from (23)—(35) leads to a pair of coupled equations of

(36b) the same form as (35) with A», B, redefined as
and

D
B(T)=D(5 ', ) — g (5, +—5—,—+)

2NS q'

A, = —Sy(q, 21)+B(T)+C(T),
B,=B(T)+D(T),

(46)

The linear combinations

D——E (5.'5-. ). (37)
iVS q'

with B(T) given by (37), and

C(T) = Bq' cos6$ 5(2')/5(21+2)VS 2L —420(5,+5, )
+150(5,+5,+)+135(5, S, )7), (47)

T,+= li»5»++ p»5»

T, = X»+5» +/2»+5»+
(38)

D(T) =Bq' cos6$5(—,')/S( —15+2AS 2L —300(5,+5
q )

—45(5,+5,+)—210(5, 5, )g) . (48)

diagonalize Eqs. (35) in the sense thatpC, T»+j= Eq Tq". 5(2) is defined by (7). Following the procedure outlined
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in (38)—(43) we obtain the spin-wave excitation energies The 6, && ') are irreducible strains for hcp symmetry and
B& is a magnetoelastic coupling constant which is, by
definition, temperature-independent. The elastic con-
tribution is

20(S~+S, ) —15(S~+S +)

ES'

X —Sg(q, q)+»(S—-')

2(S+S )+(S+S +))
ei ——Q -', L(S;*)'—(S;")']B/C, (52a)

&.=- 2C'L(~i') '+ (~2') '] (51)

C& is a phenomenological elastic constant. The s axis
in (50) is taken along the c axis and x and y are along
and perpendicular to one of the six axes directed toward
a neighboring atom in the basal plane, respectively. The
equilibrium strains are found by minimizing the free
energy with respect to strain:

36I6,'(3') coc66)
'i'

= —SA(q, q)—
~VSm

', (S S,'-+S;~S,*)B~/C~. (52b)

2Xi(T)
XI —Sg(q, q) — —,(49)

SSnz

where Ei(T) and E3'(T) are given by (16) and 6l(q, q) is
defined by (30).

IV. MAGNETOELASTIC EFFECTS ON
SPIN-WAVE SPECTRUM

The Hamiltonian (1) is not suflicient to explain recent
neutron scattering and resonance experiments. ' ' The
experimentally observed energy gap for the acoustic
mode is several times larger than the value estimated
when the experimentally observed quantities Ej and
E3' are inserted into (13). This anomaly has been
studied by Cooper, ~ who introduced magnetoelastic
effects into noninteracting spin-wave theory. Cooper
found that the discrepancy in the size of the energy gap
might be removed by including a magnetoelastic term
which dominates the planar anisotropy in what is
known as the "frozen lattice approximation. ""How-
ever, part of the temperature dependence of this term
is neglected in noninteracting spin-wave theory; an ap-
proximation which is redeemed only by inconsistent
definitions of the magnetoelastic coupling constants.
Here we reexamine the spin-wave excitation energies in
the frozen lattice approximation. Specifically, we follow
Cooper's use of the Callen-Callen presentation of
magnetostriction theory, but use the Kanamori-
Tachiki result (20) to obtain the temperature-dependent
resonance frequency.

For a ferromagnet in planar alignment the lowest-
order single-ion magnetoelastic contribution to H is
given, in the Callen-Callen notation" by

~- = —2 (2)B'(~i'DS'*)' —(S'")']

+6»LS;*Sp+S,'S,*]}. (50)

24K. A. Turov and V. G. Shavrov, Fiz. Tverd. Tela 7, 217
(1965) LKnglish transl. :Soviet Phys. —Solid State 7, 166 (1965)j."K.Callen and H. B. Callen, Phys. Rev. 139, A455 (1965).

If the equilibrium strains follow the instantaneous di-
rection of spin throughout resonance (52) may be sub-
stituted into (50), then

X .= (1/4C )(B )'L(S;*)'+(S,")']', (53)

X, is cylindrically symmetric about the c axis and has
no significant effect upon the spin-wave energies.

In the frozen lattice approximation the strains are
frozen at their equilibrium positions. The e~& and e2&

are determined by taking the thermal average of the
spin-operator expressions in (52). %e let the direction of
magnetization make the angle g with one of the six
axes directed towards a neighboring atom in the basal
plane and perform a coordinate transformation so that
the axis of magnetization becomes the s axis, then

=Z-:(B/C»((S, ) -(S, ) )-2~, (54)

e2&=P -,'(B&/C&)((S')' (S ")') sin2(t). (5—4b)

The relationship between the experimentally deter-
mined magnetostriction coefficient and the equilibrium
strains is given by

Eii'= 2X3 cos2$,

623'=- P.& sin2(t,

(55a)

(55b)

which for our purposes may be regarded as a dehnition
of the magnetostriction coefficient. Thus using (54) and
(55), (50) becomes

sc„„=',B~X~ P ((S,')' —(-S; )'], (56)

which corresponds to the expression obtained by Cooper.
At this stage Cooper uses noninteracting spin-wave
theory to calculate the resonance frequency. The A, &

produces part of the temperature dependence of (56),
but the spin-operator expression makes no temperature-
dependent contribution in the simple spin-wave ap-
proximation. Cooper, however, uses the following ex-
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pression for B&:

B&=3C&X&/S(2S 1)— (57)

at finite temperatures Lalthough J3&, by (50), is tem-
perature-independent], and in this way retrieves the
temperature-dependent contributions to the resonance
frequency of the spin-operator expression in (56). Com-
parison of (54) and (55) shows tha, t even at zero tem-
perature (57) is incorrect by a factor of approximately

2, an error which appears to derive from inconsistent
definitions of either the magnetostriction coefficients or
magnetoelastic coupling constants.

The contribution of (56) to the resonance frequency
may be obtained from (20), by noting that

&P'., I s.,~-]1&=&'l '&2 ((s'")'—(s")')&; (58)

hence, using (54), (55), and (49)

(—36K3'(T) cos6&+C&(X~) ']"'f—2Ki(T)]"'
q=0

265m
(59)

The correlation function &(S )'—(S,")') is similar to the
correlation function ((S,') '—-ass(s+ 1)) defined by
Callen and Callen. "When (S,')-= &5„'), which is the
case for weak anisotropy, the two correlation functions
differ only by a constant. In this case, since"

p &(T)/Xr (0)]'-m'. (61)

At low temperatures, subject to the same conditions
that the anisotropy constants Ej and E&' deviate from
the conventional power laws, we find.

&(s,')' —-';s(s+ 1))
l;~2[2 '(m)] m' a,s T ~ 0, (60)

we have

V. COMPARISON WITH EXPERIMENT

In Secs. II and III it was assumed that the planar
anisotropy arose solely from the crystal field in the un-
strained crystal. Cooper' has estimated that the con-
tribution due to second-order hexagonally symmetric
magnetostriction effects should also be important in Tb
and Dy. The temperature dependence of the magneto-
strictive contribution is quite different from that of the
unstrained crystal-field term but it has not been possible
to determine the origin of the planar anisotropy from
experiment unambiguously. "Since the torque experi-
ments measure the total contribution to the planar
anisotropy, we may avoid this problem by using the ex-
perimental values for the anisotropy constants to predict
the resonance frequency. There are several sets of ex-
perimental data available for the anisotropy con-
stants. " " The zero-temperature values are shown
in Table I. Also shown are the estimated values of
C'rLX&(0)]', the frozen lattice contribution (these values
are approximately —,

' of those quoted by Cooper).
In the absence of the frozen lattice term the resonance

frequency may be reduced to zero by application of
a suitable resonance field along a planar hard direction. '
However, the frozen lattice contribution is isotropic.
Therefore, as Turov and Shavrov'4 and Cooper7 have
noted, the most striking eRect of the frozen lattice ap-
proximation is the appearance of a minimum resonance
frequency. Also, in the presence of a dominant frozen
lattice term the resonance field increases with increasing
temperature, whereas if the resonance field is used to
reduce the eRect of planar anisotropy it may be expected
to decrease with increasing temperature. Furthermore,
the frozen lattice term falls off far less rapidly with
increasing temperature than the contribution from
planar anisotropy, a characteristic which is essential to
the explanation of neutron scattering and for infrared
resonance results in terbium.

P (T)/~ (0)]'-m', (62) TABLE I. Spin-wave energy parameters from dc measurements
at O'K in 10' ergs/cm'.

where the correlation function in (54) was evaluated in
the spin-wave approximation.

The spin-wave theory in Sec. III may be extended to
include the two spin-wave modes in the non-Bravais lat-
tice (the necessary transformations appear in II). For
completeness, therefore, the spin-wave energies may be
written

Terbium

Dysprosium

—,'E (0)

5.65.
5 50'
4.50d

5.50'
50c

4.90'

E3'(0)

0.0185'
0 0242c

0.11~
0 075c

~ ~ ~

0.105c

c&[u(01]'
0.115b

0.093b

~, i'i=-
Lgp ~ +sg(*)(q)
—36K3'(T) cos6&/Nsm+C& P, &) '/, 'Vsm]'~'

X LgIJ~Hv+SI"(q) 2Kr(T)/Nsmh'", (63—)

where i=1, 2 correspond to the acoustic and optical
spin-wave modes and J"&(q) is given by (9). H& is the
component of the applied field along the equilibrium
direction. Applied field effects are discussed in detail by
Cooper. '

a Reference 29.
b Calculated, using same parameters as Cooper (Ref. 7).
e Reference 26,
d Reference 27.
e Reference 48.

26 J. J. Rhyne and A. E. Clark, J. Appl. Phys. 38, 1379 (1967).
2 J. J. Rhyne, S. Foner, E. J. McNiff, Jr., and R. Doclo, J.

Appl. Phys. 39, 892 (1968)."S.H. Liu, D. R. Behrendt, S. Legvold, and R. H. Good, Jr. ,
Phys. Rev. 116, 1464 (1959)."J.L. Feron and R. Panthenet, in Rare Earth Conference,
Grenoble, 1968 (unpublished).
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From Table I it may be seen that in the absence of
an applied held the spin-wave gap in Tb and Dy is over
400 GHz at zero temperature. 3y applying a field along
a hard direction Rossel and Jones, ' and IIagguley and
Leisegang' have reduced the resonance frequency to 37.7
and 9.44 GHz, respectively. In both cases the signal fre-
quency lies well below the minimum frequency allowed
in the frozen lattice approximation, and the resonance
field decreases with increasing temperature. An analysis
of the Bagguley and Leisegang data in II, and of both
sets of data by Cooper, show that the temperature varia-
tion of the resonance field may be explained by the
presence of only the hexagonal anisotropy in the first
bracket of (63), but rather larger values of E3'(0) than
those given in Table I are required for Tb.

The resonance experiments of Wagner and Stanford, '
and Marsh and Sievers, 4 together with the neutron
scattering experiments of MIsller, Houmann, and
MacKintosh' fall into a different category. Wagner and
Stanford And that to maintain a resonance frequency
of 98.2 GHz in the temperature range 160—240'K, the
resonance field in terbium increases with increasing
temperature. This result is explained by the presence of
the frozen lattice term. Wagner and Stanford find that
their data are in reasonable agreement with (63).
Using Ei and C&P.&)' as parameters, they obtain a good
fit to their data with Ei(0)/A S= —18'K/atom,
C&P ~)'/1VS= 1.7'K/atom, compared with 32'K/atom
and 2.6'K/atom, respectively, from Table I. The diRer-
ence may be attributed to the rather large spread in the
resonance data.

Marsh and Sievers have measured the resonance fre-
quency, at low temperatures, in zero applied field for
both Tb and Dy. Their results for terbium are shown in
Fig. 1. Also shown is the theoretical curve from (63)
with values of E&, E3' taken from Rhyne and Clark's
measurements; C&Di.&(0))' is from Table I with tem-
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FIG. 1. Temperature dependence of the spin-wave gap in ter-
bium: Experiment: Marsh and Sievers; solid line: from Eq. (63)
with E& and E3' taken from the experiments of Rhyne and Clark.

erature dependence given by (61). The anisotropy and
resonance experiments are therefore consistent [Marsh
and Sievers, who analyze their own data treating E~,
E3' and C&P &)' as parameters, obtain slightly diRerent
values from those given here]. The situation for dyspro-
sium is less satisfactory. Marsh and Sievers, again using
Ei, E3'', and C&P.&)' as parameters, are able to fit the
data only if E~' 1.8)&10' ergs/cm', i.e. , about 70%
larger than the largest value in Table I. From Feron's
measurements for E~ and E~' which give the largest
value of the resonance frequency from static measure-
ments, one finds E,—0--28.2 K at zero temperature,
compared with Marsh and Sievers's measurement of
35'I

The magnitude of the spin-wave gap in Tb from
neutron scattering experiments' is quite consistent with
the frozen lattice approximation. The spin-wave disper-
sion relations are not measured at zero q and extrapola-
tion is difficult at high temperatures when the gap is
small. A reliable estimate may be made at 90'K, how-
ever, when E» 0~12.9'K (corresponding to 269 GHz)
compared with the theoretical prediction of 12.3'K.

The most noticeable feature of the foregoing is that
if the resonance frequency is high (&100 GHz) the
frozen lattice approximation appears to apply. But if
the resonance frequency is lowered suSciently (&40
GHz) by application of a suitable resonance field, the
frozen lattice contribution disappears. Apparently the
lattice may adjust to the instantaneous position of spin
throughout resonance below 40 and not above 100
GHz. Even if this is accepted there remains the dis-
crepancy in the magnitude of the anisotropy required
to explain both the resonance frequency of Bagguley
and Leisegang's experiment for Tb and Marsh and
Seivers's result for Dv.

VI. DISCUSSION

The failure of the boson spin-wave theory, outlined
in Sec. III, is not confined to a method based on the
Oguchi expansion. Under the Dyson-Mallev transfor-
mation the Hamiltonian (21) becomes non-Hermitian
but may be diagonalized by a nonunitary canonical
transformation. This procedure produces the same re-
sults as the Oguchi method, as might be expected, since
~oguchi g (+++ )D—M

It is worth noting that if S, in Eqs. (28) and (29) is
decoupled directly —the usual random-phase approxi-
mation —there results a high-temperature approxima-
tion. Then Eq. (63) is still valid, since the temperature
dependence of the anisotropy constants is given, not by
(19), but by the high-temperature limit of the Callen-
Callen theory E„(T)= E„(0)m".
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