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The atomic limit of the Hubbard Hamiltonian is extremely degenerate. The ground-state degeneracy,
in particular, makes the zero-temperature Green’s function for this limit ambiguous. The manifestations
of the degeneracy in the one- and two-particle Green’s functions are found. The degeneracy gives rise to
nonlocal spatial correlation of physical significance which must be taken into account in narrow-band-

regime perturbation schemes for the model.

I. INTRODUCTION

HE Hubbard model! is essentially a cell model
describing electron motion in a crystal with the
electronic Coulomb repulsion screened out except
between electrons in the same cell. In its simplest form,
only a single s band is considered; that is, there is only
one spatial state per lattice site. The strength of the
term in the Hamiltonian that contains hopping from cell
to cell, or, equivalently, from lattice site to lattice site,
is characterized by the parameter A. This parameter is
closely related to the bandwidth. In Hubbard’s nota-
tion, the Coulomb energy associated with two electrons
of opposite spin on the same site is 7. The narrow band
limit 27<<AKI of this model is very interesting and is
related to the problems of itinerant magnetism and the
electrical properties of many materials. In this paper,?
we will clarify the mathematical and physical implica-
tions of the extreme degeneracy which becomes im-
portant for £7'=0, AK/.

Any attempt to solve the Hubbard model in this
narrow-energy-band limit faces two serious (and not
unrelated) obstacles. First, we are dealing with a large
potential energy and, hence, may not use any of the
ordinary perturbation expansions in powers of the
potential. Second, any expansion in powers of the
hopping parameter must be done with caution because
of the degeneracy. For zero A, or no hopping, a complete
set of energy eigenstates can be labeled simply by the
up- and down-spin occupation numbers for all the sites.
However, the eigenvalues of the Hamiltonian depend
in this limit only on the total number of doubly occupied
sites in the eigenstate. This means that there is degener-
acy of very high multiplicity reflecting the number of
ways that electrons can be arranged on a lattice under
the constraint that the number of doubly occupied sites
is fixed by the energy. Most important, the ground state
is, in general, extremely degenerate. The multiplicity of
the ground state can be so large that degenerate per-
turbation theory in its usual form may not be employed.
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However, it is essential that any approximation that
takes advantage of the smallness of the kinetic energy
incorporate the essence of degenerate perturbation
theory. The point is that for finite hopping the degener-
acy is broken and the ground state is unique. As the
hopping vanishes, the ground state evolves into a
particular one of its many degenerate ground states.
Certain phase relations persist between electrons on
different sites. One manifestation of these phase rela-
tions, which we will explicitly verify, is that the one-
particle Green’s function which describes single-particle
propagation is nonlocal even for vanishing kinetic
energy. Another manifestation we find is that the non-
local spin-density correlation function which describes
the coupling between both parallel and antiparallel
spins on different sites is nonvanishing. Hence, there are
zeroth-order nonlocal correlations even though the zero-
order Hamiltonian is a sum of commuting parts, each
of which refers only to a single site.

Harris and Lange® have enumerated other physical
manifestations of these phase relations. They exactly
solve the two-site problem and then, by applying some
very general moment techniques to the N-site case,
show that these phase relations are essential if one is to
get the correct first-order terms in an expansion in the
hopping parameters.

Many solutions to the Hubbard Hamiltonian have
been proposed for the A</ regime. All of these solutions
either explicitly or implicitly utilize the fact that A/I is
small. Usual Green’s functions or equations of motion
decoupling neglect the zero-order manifestations of the
ground-state degeneracy. Any procedure which intends
to calculate A finite and use the A=0 model as a
jumping-off point must begin with the proper solutions
which fully reflect the spatial coherence implied by the
degeneracy.

After defining necessary quantities in Sec. II, we
derive, in Sec. ITI, the full implications of the ground-
state degeneracy as manifest in the Green’s functions
and correlation functions for A=0.

II. FORMALISM AND DEFINITIONS
The Hubbard Hamiltonian is
=3 Tijcic'ciot3I S Michis. 1

ija i0
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The operator c¢;' creates an electron with spin
o (¢==1) in a Wannier state centered at the lattice
site labeled by the position vector R;. These operators
are related to Bloch-state creation and annihilation
operators by
1
CiaT': - Z eik‘RiCk.aT-

N &

The operators ¢;,' have the usual Fermion equal-time
anticommutation relation

2)

©)

The coefficients in the first (or hopping term) are
related to the Bloch energies by

{Cig—T,qul} = aRiRjau,a' .

1
Ty= = % (ke @, @
N x
Without loss of generality we will choose our zero of
energy such that 7°;;= 0. Using Eqgs. (1) and (4), we may
rewrite the hopping term in (1) in the more familiar

form
3(30:2 e(k)ck,‘ﬁck',. (5)

k,o

The interaction term in Eq. (1) represents the
screened Coulomb potential. Note that essentially all
it does is count the number of doubly occupied sites.
Here, the operator #,, is defined, as usual, as

Nie= CiquT . (6)
The parameter A, mentioned earlier, is defined by
1 1/2
a=(Cx i) ¢
N ij

The following Green’s functions will be needed [in
these definitions, ( ), is the time-ordered product; the
subscript in the operator ¢i,' refers to site R; and time

h]:
Grve= —i((crocrs)), )
Tive= —{(M1-sC16C1 0 ) 1), ©)
Wirar 7= —i((c1s01—oCr—q Crro') 1), (10)
D17 = ((n15M207) 1) — (M14)(M20r) , (1)
S12,0={(C16C1—0TC2—oC25T) 4 ). (12)

The Fourier transforms are defined with a factor eti¢
for the unprimed time variables, and e~%* for the
primed time variables. Much of the paper is devoted to
finding these functions in the atomic limit.

If Gu., and Ty, are functions of #;—#. then
Griry o(wiw1) and g, gy o(wiwrr) may be written as

(13)
(14)

We shall be interested in evaluating these functions
in the limit of A — 0. In that limit, the time dependence

GR;R;’a(wlwl') = 27r5(w1‘w1')GR1'R1u(w)
and
Triry o(wiw1) = 28 (w1 —w1) TRy ry (w1) -
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of the operators ¢y, is given by

1(8/0t)c10=[¢10,%Cat ], (15)

where

JCM =%I Z NicNi—o (16)

Since we are working at zero temperature, the expecta-
tion value is over the ground state of H,. But now we
encounter the difficulty. Because of the degeneracy,
there are many ground states of H,;. Corresponding to
this ambiguity in the ground state, there is an ambiguity
in the Green’s functions. The correct ground state is
fixed by the condition that if we slowly turn on the
hopping and then slowly turn it off, we return to the
same state. The correct Green’s functions correspond to
those unique functions one obtains by evaluating the
unambiguous Green’s functions for finite hopping and
then taking the zero hopping limit.

In this paper, we establish the nature of the ambi-
guity in the one-particle Green’s function. We then
express all ambiguity in higher-order functions in terms
of that which appears in the one-particle function. This
process clarifies the physical manifestations of the
degeneracy.

III. ATOMIC-LIMIT GREEN’S FUNCTIONS
A. One-Particle Green’s Function

In this section we find the most general form for the
one-particle Green’s function for the Hubbard Hamil-
tonian in the limit of zero hopping, that is, the atomic
limit. This function then satisfies the equations

1(9/0t1)G1v o= 10 +IT11 4, 17)
WG RiRy o(w) = 6R1R1'+II‘131R1’6(“’) . (18)

In Sec. ITT B we show that the correct expression for
Ig,zyo(w) including the boundary condition is

Triry 0(‘*’) = [<n1~<7>/("-’ I+ if)jaRﬂh’ . (19)

Also, we only consider spatially homogeneous systems
so that (#1,) is independent of Ry. In the following, we
will take 7,= (#1,).
Consider G, ry+(w) split into two parts:
Griry o(®) = Gry r1o(0) +2m18(w0)g R0 s, (20)

where Gg,z,o(w) is that part not proportional to a &
function in frequency. Equation (18) is actually only
sufficient to determine Gg,z, +(w) as follows:

chlRl’a(w) = 5R1R1'+IFR1R1’a(w) )

~ 5R1R1’/ n_ol
Grancol) = o 1+ )
w-t1e w—

1—n_,
=5R1R1'< X +
w+tie

(21)

N

w—I—I—ie>.




1 HUBBARD MODEL. I.

In Eq. (21) we have arbitrarily imposed a certain
boundary condition on the portion contributing to a
zero-frequency pole. The difference between Gg,z, ()
defined for this boundary condition and a similar
function defined for the opposite boundary condition
[1/(w—1e)] is proportional to a & function in frequency.
This ambiguity may be absorbed into our definition of
griry o Using Egs. (20) and (21), we have for the most
general solution to Eq. (17) for less than one electron

per site,
N—g
GR1R1’0<(*’) = 6R1R1'< + . )
w—1-+1e
+21ri5(w)g1{51131',.

Note that the diagonal portion of gg,r, s is determined
by the number condition

1—n_,

wtie

(22)

o * do
(n10)=—1 lim / ;e““’GmIew(w)

a->0t w 21

a->0t

dw
=—17 lim /-—'-ew“’GRlRw(w)
o2

(23)

dw
=iiﬁ)1+/;;ei““’Zvré(w)ngw=gmma-
Here the contour C is closed in the upper half-plane.
The off-diagonal portion ggs<g,, is unspecified, and,
indeed, the arbitrariness in this function corresponds to
the arbitrariness in our choice of a degenerate ground
state. To choose this function prematurely would be to
prejudice the possible manifestations of the degeneracy.
Rather, we will leave this function unspecified. This
function can only be determined in the A— 0 limit.

From Eq. (17) we see that Giv, for Ri=Ry is

independent of # abd f. Hence, from Eq. (20),
(29

Givo| R Ry = 18R Ryt o -

In particular, for #y=#t,, and for Ri#= Ry, we have

Gll’vl ty/=t1+= i<€1'u+61a>l =t=" 1R 1Ry o+ (25)
From Egs. (23) and (25), we have
8RRy 6™ (61'a+61a>f t/=t1+ (26)

B. Two-Particle Green’s Function I'1y/,

Having obtained the most general form for the one-
particle Green’s function in the limit of zero hopping,
we turn to the two-particle Green’s function. The very
interesting result is that for paramagnetic ground states,
the ambiguity in this latter function may be expressed in
terms of the function gg,r, .. First, we obtain an ex-
pression for a particular two-particle Green’s function
(T'1rs), and then we consider the general two-particle
Green’s function (Gier2:°?).

The ground state of the Hubbard Hamiltonian as
A— 0 is a certain linear combination of the ground
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states of H,. Furthermore, for the number of electrons
less than the number of sites, none of the ground states
of H,: contain any doubly occupied sites. Hence the
ground state of H for A— 0 does not contain any
doubly occupied sites. Denoting this ground state by
|0), we then have, for all Ry, /,

ﬂlgﬂq_,,l 0>: 0. (27)
T'11rs can be written as
Tue= —i<(61an1m1—061'aT)+>- (28)

Further, for A— 0 the commutation relations of
operators referring to different sites at different times
are equal to their equal-time commutators. This may
be seen from the following sets of equations, where we
define Ha' as Inangs (in these equations, we restrict
Ry R, but keep #; and f, general):

{10,620} = C15020 T+ 2010, (29)
but
61062,/T= eiHatthlae—iHngtleillattchzﬂ, —'iHactz,
; 1 — 1 N 2 -, 2
= giHat “ch,e iHat!t1ptHat tchzv,Te iHat2t2
— e”{atltlchqe’iHucghe‘iHntltlcR2a,Te—iHut2l2
= g Wattrt )y o Fe—iHatHHad?2) - (30)

These manipulations used the commutation relations

I:Ifatl,liat2:|: 0 y [Cng,Hat2] =0 . (31)
Hence,
{610-762,'1-} l RiERy= ei(Hatltl+Hac2t2)
X {CRijRza’T} l Rl#RQ@*i(Huc‘thHatztz): 0. (32)

In these last few equations, c¢g,, has been used to
represent that operator referring to the site at R; at
some reference time zero. It follows that

[#16M1—a,C16" | iRy = 0. (33)
We see from Eq. (28) that for A — 0,
Tvorp<ry=0. (34)

This information may be used to solve the following
equation of motion for I'iy,:

2(9/8t) T o= 811 (M1—o)+1T11/. (35)

(Our ground state is assumed to be translationally
invariant, so that (#:_,) is independent of Ry.)
Using Eq. (35), we obtain

(36)

In order to solve Eq. (36) with the proper boundary
condition, we will need to consider the spectral form for
T'irv.. One may obtain a spectral form for T'iys in
precisely the same way one obtains a spectral form for
Gir'e. T'ryry o(w) may be expressed

dw ARle'ur(‘I’)
PR1R1’0(°’) =1 . - .
27 w—a+1ie sgn(o—pu)

(w1 ——]) I‘Rler .,(colwy) = 271'5((.01 ‘—wy) 5131131'%_,- .

(37



2234 D. M. ESTERLING

In opposition to Girs, the function I'iy, has no ambi-
guity for R;# Ry. From Eq. (34) we see the off-diagonal
terms vanish. Hence, Eq. (37) may be rewritten as

de Agiry T(@)
FRIRI'U(‘*’) =0riry [ — T - . (38)
27 w—a+1ie sgn(®—p)
Using Eqgs. (36) and (14) we get
do  2mn_ed(@—1)
Trigyo(w) =0y | ———
21 w—a+1e sgn(@—p)
N—o
= SRRy '
w—I+1iesgn(I—u)
Mo
=0riRr——) (39)
w—1IX1e

since for <N, u— 0 as A — 0.

As an aside, note that this restriction # <N (number
of electrons less than the number of sites) is not an
essential one. For #>N, the ground state of H (as
A — 0) does not contain any empty sites. We may use
this information to make corresponding arguments for
this case.

C. General Two-Particle Green’s Function

We now seek an expression relating the general two-
particle Green’s function G to the one-particle Green’s
function Gi.

For any A, and for G%;~* defined by

GOy i= 5(ll~l2) 5R1R2i(a/at2) ’ (40)
we have?

(G157 4+ T'12)Govr o= 611+ 1T'11v6. (41)

For finite A, there is no ambiguity in the one-particle
Green’s function, and the solution to Eq. (41) has a
well-defined inverse which allows us to write

Gl 1 —T19= (513+ ]I'13a)G_132a- (42)

We will need the following specially defined higher-
order Green’s functions®:

Trore’ = —<(nl—0610620'52’tr'TCl’vT)—}—) s (43)
T*1910:77 = — ((nl—aclanz_afczafcz'v'TC1'.rT)+> .4
The equation of motion for Giere?®" for any A is
(G(’n'_l_Tnf)Glzyz'”'
= 811Gaz o —012Gav odsgr+IT 1212 . (45)

The left-hand side may be rewritten with Eq. (42) as
(G113 —T11)Grar2°
= (815+ 1 T130) G 'Gaorra "' . (46)
4 We implicitly sum and/or integrate over repeated indices so
that, for example, in Eq. (47) we sum over sites R; and integrate
over time f,.

5 The Fourier transforms of these functions are defined in the
same way as for the functions defined in Egs. (8)-(12).
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Now for any A, we have

(G35 —T23)T1z1:2:°%" = 820 T117 6 — 821 T'127 60 507

FWira81286 — o IT*191097 . (47)
Hence,
(G115 =T'11) (G230 — T93) G132 ®”
= 011020+ 1011 T29r 6—812:821/ 000 — 1812 T'21/ 5050
+ 1820 T 116 —1821 T 12 6050+ 1815W 11027807 —o
+IZF*121'2""“' . (48)

Using Eq. (42), inverting the corresponding Gy’ terms,
and using the symmetry > o A1Bor=72 3 B1adar for
functions only of difference coordinates, we obtain
(6114 1T11/5) (0254 IT 23, ) Grzrra °”
=G Gy o —G120Gor o000+ 1G11 G230 T30
—1G12:0G22:T21 6055+ 1G22 o G11s 11
~1G21 G11, 12 o000+ 1G13,Go3— oW 312765, 0
+1%G11,Go3o T* 101977

Equation (49) may be rewritten as

(8114 1IT115) (82511 T230)
X (Grar2” —G1v oGz o+ G12 oG/ 50 507)
=1G13:Go3-eW 312700 — o+ 1?G11G 30 T 131277
—I’T11. 0930 [ Grv0Gaz o — Gi2 oGz oGav o860 ] (50)

This becomes

Groro° —G1r oGy o +G1ror6G217 66 5o
= (811 IT115) Y (805+ I To35,,) !
X1G3,G33- W 312700 o
4+ I°G13,Go40 (851 I Ts15) 72
X (81T 3o ) 131077
—I*[(811+IT116) " T'130 [ (8254 IT30) ™"
X 40 (Gsv oGz oo — G2 oGar o8607) . (51)

This equation expresses the two-particle Green’s
function in terms of the one-particle function, the
function T, which is unambiguous and known, and the
functions W and T'*. The A — 0 limit for W and I'*
must now be analyzed.

(49)

D. Analysis of I'*
For A— 0, we have

[i(a/ah) —]]F*lzllz‘“’
=d1r ( - 1) <(1’L1—a7’l2—a62062' aT)-|_>

— 12 (=) ((M1-sMaoC2eCr6')1), (52)
[i(8/0t) —I[i(/ dty) —I JT*1912°°
= (811022 —812:801) (M1_sM2_s), (53)
[i(a/atl) — I T*4p1977°
=01 ( —i) <(n1—0n2vc2'uc2’~aT)+>
— 012 ( —i) ((61,,614,,1‘112‘762_,61' UT)+> y (54)
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[i(8/8t) —I][4(8/dts) —I JT*191:9:77°
= 011020 (B1—oMa—s)
+1812(811 T'12— o+ 812 o1 )

— 819821 ((C1oC1-5TV2—oC2s") ). (55)

These equations allow us to relate the function I'* to
the functions D and S defined in Egs. (11) and (12).

E. Analysis of W

It was necessary to invoke the spectral form of I'yys
in order to obtain its correct boundary condition (see
Sec. IIT B). Now W yye has no simple spectral form,
since it is a function of two time differences. However,
it will be possible to use the previously determined
boundary condition on I'ir, to fix the boundary con-
dition for Wiy e°.

Consider Wiy for A— 0. Equation (10) may be
rewritten as

Wire = —i{(c1o61-sM1M1—oC2—5 014 )4) . (56)

For n< N, the function W1y2? vanishes unless R;= Ry
and/or Ry. This information will be used to solve the
following equation of motion for A— 0 in a fashion
similar to that employed for I'iy/,:

[i(8/0t:) =1 W 119" =1810Gra—o+1610Grvs, (57)
and, therefore,
(w1 *[) I/VRlRl'RZ'”@)lwywz')
=10R, Ry GRyky—o(w1—w017, W2r)
+ 18R Ry GriRy (W1 — w2, w1).  (58)
This gives
2mi6(w1 —wy —wsr)
W Riry Ry (0101027) = -
wr oy —I+iex(wywsr)
X [5R1R1’G121R2'—u(w2’) +0Rr1RyGRiRY v(‘*’l’)] . (59)

Here x (===1) can at most depend on the frequencies.

This follows since Wiye? vanishes unless R;= Ry

and/or R,. Hence, there is no spatial ambiguity left in

Eq. (58) as opposed to the ambiguity in Eq. (18).
We define

2(@1rw) | wy oy =r="(wr) (60)
and
W gy Ry (01001702)
=278(w1—wr, wz')WRIRI'RZ/”(wywzr) . (61)
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The boundary condition in Eq. (59) is only essential
when wi+ws = I, hence x may be replaced by y. Having
reduced the arbitrariness in the boundary condition to
(at most) a dependence on wy,, we may relate Wiyo” to
T'1v e to fix this condition:

dwi [ dwy dwzf
=— lim / /
a0t

X giorti—erti—er e giorall/ p b por%(wiwywer )

Twe=—Wire® ‘Rl =Ra

2 =%

dwy [ dwsr
=—lim / / g—iwrr (ti—t1’)
a—>0t
X61“’2'°‘W13131/132'”(w1'w2/) . (62)
Fourier transforming, we get
%_,BRIer dwar glwre
—=—¢ lim | —
wy—1+ie a0t 27 wr+wy —I+iey(wy)
X [0r18yGrir1o(w2) +GRriry (w1r) ] (63)
This is an identity for all wy.
Further, we recall that
. dw2’ .
No=—1 lim / 6’“’2'“6131121_,((.02') . (64)
a0t 2mr

This then fixes y(wy) as independent of wy and equal
to +1.

All ambiguity in the pole positions is thus resolved

and we have
27ri6(w1—w1» —wzf)

wi—I+1e
X[5R1R1’GR1R2’—,(602’) +5R1R2'GR1R1’a(w1’)] .

WEle'Rz'"(wlwlfww =
(65)

F. Compilation of G,

Sections ITI A-III E must be compiled to give the
general two-particle Green’s functions. Using Egs. (53)
and (55) for the I'* functions, now expressed in terms of
the functions D and .S of Egs. (11) and (12), and the
fact that the Fourier transform of (814 /T11s)! is
given by

(.«)1—1
(66)

OR1RY X21r5(w1—wy)

wr—I(1—n_,)’

we get the following expression for the Fourier trans-
form of the general G; in Eq. (51):

GrirsRy Ry *® (01020102 ) —GRyRy o(0101 )G Ro Ry o (2002 ) FG Ry Ry o (01002 ) G o Ry o (w3017) B0

_ I(w1—I)(w2—1)
[o—I(1—n_¢) [we—I(1—n_s)]
I’G Ry r1e(w)GRror30 (w2)
+
[w1i—I(1—n_0) Lwe—I(1—n_0)]

oot
—Dpgirs % (w1—wer, we—w1) S RiRy S R3R1 00,0’

+2mi8(w1t w2 —wr —ws) Sriral OR1RY T RiRy —o (W) O R1Ry T R3RY {017) 105~}

GRlREU(wl)GRzREv'(w2)WR§R1’Rz'v(w1+w2, wy’, w2’)5—a,¢'

— ——
{Drirs ™" (w1—wy, wa—ws)0r Ry SRRy

—Srirs(w1—ws, we—w1) SR Ry ORIRY 000’

(67)
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Equation (67) relates the two-particle Green’s
function to the one-particle Green’s function. It is still
an implicit relationship since on the right-hand side we
have certain density and spin correlation functions
which are unknown. However, this equation may be
used to generate a series of coupled equations relating
these spin correlation functions to themselves and to
G4, and this is done in Sec. ITT G. They are then solved
giving explicit expressions for all two-particle functions
in terms of G; alone. These expressions are then ana-
lyzed. Using these results one may obtain the general
G, in terms of G

Before proceeding with this program, it will be con-
venient to return once more to time coordinates. We
define

dor Griryo(@)

Fiuoe= | —efrtra)———  ~ (68)
2 wor—I(1—n_y)

~ dw1 . (wl_I)GRﬂh’v(wl)

Five= — g ter(ti—ty) (69)
2w w1—I(1—n_,)

It follows from the form of G; that these integrals are
well defined, regardless of how one goes around the
point wi=7(1—n_,) in the integration. In terms of
and F, we have

Gro127” — Gy oGar o+ G oG21/ 600
=IFuFs Wiy o0
+I2F 11 6F 29 oDy
—I?F196F210Dor1™ 7 804
—I?F19 6l 210521/ 60—g,00
+iT¥(Fry ol ov—olvo—g

+F12’aF22’—¢1P2’1’47)5—|7,0" . (70)

G. Correlation Functions D and S

In Eq. (70), G2 is expressed in terms of the functions
D and S. These functions, however, are themselves
particular projections of the general two-particle
Green’s function. In this section we find and solve the
equations for D and S which are implicit in Eq. (70).

We define #,+ and 7~ by

ﬂa+:F11+q, e = Fll-lf' (71)
Using Eq. (70) and the definition of D, we get
D1577 = — G212+ G117 6Go2* o
=Gr20Gor1,—1* (1) D1z
+I?F19,F 01D, (72)

We will only consider a nonmagnetic ground state and,
in this special case,

D1279= D1y 7= Dy;°" (73)

and
G120G210

14+t 1)2—I?F12.F 214 .

Dlg‘m' = (74:)

AND R. V. LANGE 1

Again using Eq. (70), we get
D17 7= —Gra1*2*" "+ Gu1*Gaz*—s
= ~11111§0F2§—0W§120‘
—il2 (o1 oT10o—n_otF12,1015)

—I'n_ D17+ 1% F19.F 91 6S21.  (75)
and
S12,6=G12271-77°
=Gr2oGorotTF13:F 35 W 321”
+il2(n_s F12:T 01— o—%, Fa1_oT120)
+I?F196F 21 eDoy™" — I m_s"S125.  (76)

Further symmetry following from our restriction to
the nonmagnetic case is contained in the equations

Dy 7= D1579=D9;* 9= Dy, 77)
S120=S12-6=S210, (78)

and
Wa1e7=Waa1"= W15 (79)

From Egs. (71), (68), and (69), we can calculate the
following relationships:

0 dw eiaw

%g+=]"11*,,-= lim
a0t | 2rw—I(1—n_,)

1—n_, Nq
X( + : +27ri6(w)g11.1>

w-t1ie w—I+1e
1g P _7:77/—47
- = , (80)
—I(l—n_) I(l—n_,)
* dw giaw
ne, =F1_,=lim _—
a0t | 2 w—I(1—n_,)
1—n_, N—q )
X< — + — +21r¢5(w)gua>
wtie w—I+ie
1'—%_‘6 N—q
B
—I(l—n_) In_,
18110
S =n,". (81)
—I(1—n_,)

Incorporation of the symmetries, and simplifications
of Egs. (77)-(81) into Egs. (75) and (76), leads to
Dio? o= —IF 5,35 W 315

—i2(ntFa1_oTio— et Fi26'215)
—I'ngtn_gt D1 4 1?F12eF o1 0S120,  (82)
and
S12,6= Gi2/Go1 ot IF 13,755 W31”
+ilz(n—u+F12aP21—a'+no+-F21—vP12v)

1P 130 91 eD12” " — 10, n_gtS120.  (83)
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These are simply algebraic equations and their solution gives (for the nonmagnetic case)

G126Go1-0I *F12:F 21— o — X 195 1+ (012 —1?F12,F 210 |

Dma,—cr= (84)
d (14t D) PP =1 19,F 210 ]
an
Gl2aG21—a[1 - (na+1) 2:|+X12c7[1 - (n¢7+1) 2+]2F1241F21—a] (85)
12,0 = )
(14 (ot D)2 —[12F 120 F 21— ]
where . .
X9 =1TF 125l 25— eW 312" +11* (05t For o101 F12:T01-0) . (86)
IV. CONCLUSION as for 5% 7,
. . lim{cisc;o) 70, (87)
We should note carefully what has been achieved in A-0
deriving the above expressions. All quantities appearing
in the Egs. (84) and (85) are known once one knows because of the degeneracy
the one-p.a{rticle Greel‘l’s f_unction. To the same extent, HM((ioj0) — (i) (1150)) 0 (88)
all quantities appearing in Egs. (70) or (67) for the A0
general two-particle function are known. The path we and . .
have taken in evaluating G2 and G for the Hamiltonian IAILI&(CWTCFV”J'—” ¢ie)7#0. (89)

H,; is complicated, but guarantees that the time-
independent parts of these functions which manifest
the ground-state degeneracy have not been lost or
prejudiced. Seemingly simpler or more straightforward
solutions of the hiearchy of Green’s function equations
obscure the important spatial dependence we have
shown to exist. The ambiguity in G4, expressed through
the function g1/, appears in the general two-particle
Green’s function and in the density and spin correlation
functions in a complicated way and will play an essential
role in determining properties of the model in the
narrow-band, or A/I<1, regime.

An inspection of Eqgs. (84) and (85) shows that, just

Thus the degeneracy leads to nonlocal spatial coherence
in the density and spin correlations in the zero-hopping
limit.

The function embodying the ambiguity, g:;,, cannot
be determined without going to the finite A problem. In
fact, g:;» depends on the details of the hopping that is
turned off as A — 0.

ACKNOWLEDGMENT

It is a pleasure to acknowledge several stimulating
discussions with Dr. David Adler.



