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Hubbard Model. I. Degeneracy in the Atomic Light*
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The atomic limit of the Hubbard Hamiltonian is extremely degenerate. The ground-state degeneracy,
in particular, makes the zero-temperature Green's function for this limit ambiguous. The manifestations
of the degeneracy in the one- and two-particle Green's functions are found. The degeneracy gives rise to
nonlocal spatial correlation of physical significance which must be taken into account in narrow-band-
regime perturbation schemes for the model.

I. INTRODUCTION

HE Hubbard model' is essentially a cell model
describing electron motion in a crystal with the

electronic Coulomb repulsion screened out except
between electrons in the same cell. In its simplest form,
only a single s band is considered; that is, there is only
one spatial state per lattice site. The strength of the
term in the Hamiltonian that contains hopping from cell
to cell, or, equivalently, from lattice site to lattice site,
is characterized by the parameter A. This parameter is
closely related to the bandwidth. In Hubbard's nota-
tion, the Coulomb energy associated with two electrons
of opposite spin on the same site is I. The narrow band
limit kT(&6(&I of this model is very interesting and is
related to the problems of itinerant magnetism and the
electrical properties of Inany materials. In this paper, '
we will clarify the mathematical and physical implica-
tions of the extreme degeneracy which becomes im-
portant for kT =0, 6&&I.

Any attempt to solve the Hubbard model in this
narrow-energy-band limit faces two serious (and not
unrelated) obstacles. First, we are dealing with a large
potential energy and, hence, may not use any of the
ordinary perturbation expansions in powers of the
potential. Second, any expansion in powers of the
hopping parameter must be done with caution because
of the degeneracy. For zero 6, or no hopping, a complete
set of energy eigenstates can be labeled simply by the
up- and down-spin occupation numbers for all the sites.
However, the eigenvalues of the Hamiltonian depend
in this limit only on the total number of doubly occupied
sites in the eigenstate. This means that there is degener-
acy of very high multiplicity reQecting the number of
ways that electrons can be arranged on a lattice under
the constraint that the number of doubly occupied sites
is fixed by the energy. Most important, the ground state
is, in general, extremely degenerate, The multiplicity of
the ground state can be so large that degenerate per-
turbation theory in its usual form may not be employed.
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However, it is essential that any approximation that
takes advantage of the smallness of the kinetic energy
incorporate the essence of degenerate perturbation
theory. The point is that for finite hopping the degener-
acy is broken and the ground state is unique. As the
hopping vanishes, the ground state evolves into a
particular one of its many degenerate ground states.
Certain phase relations persist between electrons on
diferent sites. One manifestation of these phase rela-
tions, which we will explicitly verify, is that the one-
particle Green s function which describes single-particle
propagation is nonlocal even for vanishing kinetic
energy. Another manifestation we find is that the non-
local spin-density correlation function which describes
the coupling between both parallel and antiparallel
spins on different sites is nonvanishing. Hence, there are
zeroth-order nonlocal correlations even though the zero-
order Hamiltonian is a sum of commuting parts, each
of which refers only to a single site.

Harris and I.ange' have enumerated other physical
manifestations of these phase relations. They exactly
solve the two-site problem and then, by applying some
very general moment techniques to the E-site case,
show that these phase relations are essential if one is to
get the correct first-order terms in an expansion in the
hopping parameters.

Many solutions to the Hubbard Hamiltonian have
been proposed for the A((I regime. All of these solutions
either explicitly or implicitly utilize the fact that 6/I is
small. Usual Green's functions or equations of motion
decoupling neglect the zero-order manifestations of the
ground-state degeneracy. Any procedure which intends
to calculate 6 finite and use the 6=0 model as a
jumping-off point must begin with the proper solutions
which fully reAect the spatial coherence implied by the
degeneracy.

After defining necessary quantities in Sec. II, we
derive, in Sec. III, the full implications of the ground-
state degeneracy as manifest in the Green's functions
and correlation functions for 6=0.

II. FORMALISM AND DEFINITIONS

The Hubbard Hamiltonian is

x=g T;;c,.tc;,+ ',I g rI,.n; . -

' A. B. Harris and R. V. Lange, Phys. Rev. 157, 295 (1967}.
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The operator c;,~ creates an electron with spin
0 (0=&1) in a Wannier state centered at the lattice
site labeled by the position vector R;. These operators
are related to Bloch-state creation and annihilation
operators by

of the operators c& is given by

i(a/Btl) Ci.——LCI.,X.,j,
where

X,z
———',I Q zz,.zz, . (16)

P Cik R;C (2)

T Q , 6(k) Cik ~ (R,'—Rr )

Without loss of generality we will choose our zero of
energy such that T,;= 0. Using Eqs. (1) and (4), we may
rewrite the hopping term in (1) in the more familiar
form

K2 =P e(k) Ck, ,tck ..
k, o.

The interaction term in Eq. (1) represents the
screened Coulomb potential. Note that essentially all
it does is count the number of doubly occupied sites.
Here, the operator n, is defined, as usual, as

The operators c;,~ have the usual Fermion equal-time
anticommutation relation

{C; t, c, ) = BB,R,8, ~ .
The coefficients in the first (or hopping term) are
related to the Bloch energies by

Since we are working at zero temperature, the expecta-
tion value is over the ground state of H,~. But now we
encounter the difhculty. Because of the degeneracy,
there are many ground states of H,~. Corresponding to
this ambiguity in the ground state, there is an ambiguity
in the Green's functions. The correct ground state is
fixed by the condition that if we slowly turn on the
hopping and then slowly turn it off, we return to the
same state. The correct Green's functions correspond to
those unique functions one obtains by evaluating the
unambiguous Green's functions for finite hopping and
then taking the zero hopping limit.

In this paper, we establish the nature of the ambi-
guity in the one-particle Green's function. We then
express all ambiguity in higher-order functions in terms
of that which appears in the one-particle function. This
process clarifies the physical manifestations of the
degeneracy.

III. ATOMIC-LIMIT GREEN'S FUNCTIONS

A. One-Particle Green's Function

n;, =c,,c,.~ .
The parameter 6, mentioned earlier, is defined by

&=(—2 I
T'

I ')

(6)

(7)
i(8/Bti) GII,= BII +II'll „ (17)

In this section we find the most general form for the
one-particle Green's function for the Hubbard Hamil-
tonian in the limit of zero hopping, that is, the atomic
limit. This function then satisfies the equations

The following Green's functions will be needed Lin
these definitions, ( )+ is the time-ordered product; the
subscript in the operator ci refers to site E~ and time
tl]:

Gll'rr —z((clrrclrrr )y) r

I', ,= z((n .—c .c, .t) ),
II llr2r = —Z((CIrrCI rrC2r e Cl'rr )y) r (10)

((zzl zz2 ')+) (zzl )(zz2 ') (11)

SI , 2rr((CIrrCI —rr C2 rrC2rr )~) . (12)

The Fourier transforms are defined with a factor e+'"'
for the unprimed time variables, and e '"' for the
primed time variables. Much of the paper is devoted to
finding these functions in the atomic limit.

If G~~, and F~~, are functions of ti —ti. then
GB R ' (Idlidl') and I B B ~ (Idl&I ) may be wl'ltteII as

I'R,R, .(cd) = f(nl )/(Id —I+is) )8R,B, . (19)

Also, we only consider spatially homogeneous systems
so that (nl, ) is independent of RI. In the following, we
will take n.= (nl.).

Consider GR,R, .(Id) split into two parts:

GR,R...(id) = GR, R,.(id)+22rib(id)gR, R„„ (20)

where GR,B...(id) is that part not proportional to a 8
function in frequency. Equation (18) is actually only
sufficient to determine GR,R, ,(id) as follows:

IdGB,B;.(Id) =8R,R, +IrR, B, .(Id),

22GR1Rrrrr(id) = ~R1R1'+IIRrB1'rr(id) ~ (1g)

In Sec. III B we show that the correct expression for
I'R,R, ,(&d) including the boundary condition is

GR,R, .(Idlidi ) = 22rb(cdl —idli)GB, B,.((d) (13)

r „...(, , )=2 ~(,—,,)r„„,.(,).
We shall be interested in evaluating these functions

in the limit of 6 —+ 0. In that limit, the time dependence

/1 —zz .
~RrRxrI

r Id+Ze Id I+z2

~ZIa~
GB1Rrr o(Cd) 1+

~d+ze cd I+ze—(21)



HUBBARD MODEL. I. DEGENERACY IN ATOMIC LIMIT 2233

(n,.) = 2 li—m
o, -+0+

dc'—e'-GB,B,.(~)
Q0

&n Eq. (21) we have arbitrarily imposed a certain
boundary condition on the portion contributing to a
zero-frequency pole. The difference between GB,R, ,(td)
defined for this boundary condition and a similar
function defined for the opposite boundary condition
(1/(&u —ie)) is proportional to a 8 function in frequency.
This ambiguity may be absorbed into our definition of

gR, R, , Using Eqs. (20) and (21), we have for the most
general solution to Eq. (17) for less than one electron
per site,

1—Q tr 'S

GBtRt'rr(ttr) tiBtBt' +
trt+Zf tti I+ZE

+2n2t't(td-) gB,B;. (.22)

Note that the diagonal portion of gg, g, , is determined
by the number condition

states of H,~. Furthermore, for the number of electrons
less than the number of sites, none of the ground states
of H, & contain any doubly occupied sites. Hence the
ground state of IX for 6 —+0 does not contain any
doubly occupied sites. Denoting this ground state by

~ 0), we then have, for all Ri, /i,

ni.nl .~0)=-0.

Fy~ can be written as

(27)

but
{CirrC2a' 1 = CltrC2tr' +C2r' Clr r (29)

Fll' Z((Cl 221 121—Cl' )y) ~ (28)

Further, for 6 —& 0 the commutation relations of
operators referring to different sites at different times
are equal to their equal-time commutators. This may
be seen from the following sets of equations, where we
define II,„' as In;tn;t (in these equations, we restrict
RlWR2, but keep tl and t2 general):

= —i lim
e-+0+

dM

GB Bi (~)
c 2'r

de
= lim —e' "2lrti((u)gR, B,.——gB,Bt.

2C

(23)

1 c 't —eiag&ticR e 'aptly&eiag&t2c~, e
—iaatt2

10 20' Ri o. B2o'

etaat'tlcR e—iaat'tieiaat't2ca, te—iaat't2
R1o. 82 o'

—e&aat &lc e&aat ~2e &aat ~lc te ~aa& ~&

= ei(aat &1+aat &2)cg cg,~e i(aalu +aat &2)
Bio Bg o' (30)

These manipulations used the commutation relations
Here the contour C is closed in the upper half-plane.
The oB-diagonal portion gg,~g, , is unspecified, and,
indeed, the arbitrariness in this function corresponds to
the arbitrariness in our choice of a degenerate ground
state. To choose this function prematurely would be to
prejudice the possible manifestations of the degeneracy.
Rather, we will leave this function unspecified. This
function can only be determined in the 8, —+0 limit.

From Eq. (17) we see that Gii, for RlQRi is
independent of tl abd tt . Hence, from Eq. (20),

Hence,

{ ,t\ I ~g —ei(aat ~i+aat &2)lo) 2o' y ) Bi/82

)({c c,tl I & e—t(&rt tt+&rt t21= 0

(31)

(32)

L221.» .,Ci.')~B,~B, =o. (33)

In these last few equations, cg, has been used to
represent that operator referring to the site at Ej at
some reference time zero. It follows that

Gl 1'~
I Bt&Bt' —2gRtA Rt' ~ ~ We see from Eq. (28) that for A~ 0,

(243

In particular, for t» =1~+, and for E~NRj, we have

Gll'e ( ti'=tl+= 2(C1'a Cltr)
~
tt'=tt ZgBiRir rr.+

From Eqs. (23) and (25), we have

gBtBt' rr (Cir e Clrr)
~
ti'=ti ~

(25)

(26)

This information may be used to solve the following
equation of motion for F»

i(8/84) &ll' till'('+1 —)+If'll' ~ (35)

B. Two-Particle Green's Function I »

Having obtained the most general form for the one-
particle Green s function in the limit of zero hopping,
we turn to the two-particle Green's function. The very
interesting result is that for paramagnetic ground states,
the ambiguity in this latter function may be expressed in
terms of the function gripy First, we obtain an ex-
pression for a particular two-particle Green's function
(1'll.,), and then we consider the general two-particle
Gl cell s fllllctloll (G121'2 ).

The ground state of the Hubbard Hamiltonian as
6 —+0 is a certain linear combination of the ground

(Our ground state is assumed to be translationally
invariant, so that (ni, ) is independent of Rl.)

Using Eq. (35), we obtain

((ui —I)I'R„R, .(coicoi )= 2irB(col col )bB,B;n,—(36).
In order to solve Eq. (36) with the proper boundary

condition, we will need to consider the spectral form for
I'», . One may obtain a spectral form for F» in
precisely the same way one obtains a spectral form for
Gii . 1'B,B,.,(~) may be expressed

8M c4BtBt'g (ttr)
&R,R, .((o) = — . (37)

2m. cu (a+i » sgn(cu —p)—
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In opposition to G~~ „the function I'~~ has no ambi-

guity for Rl&R1 . From Eq. (34) we see the off-diagonal
terms vanish. Hence, Eq. (37) may be rewritten as

f B1RI r(~) ~B181'
de A R1R1' (CO)

(3g)
22r (o —co+i2 sgn(o) —p)

Using Eqs. (36) and (14) we get

pR)Ry'r(~) ~R1R1'
eke 22m —5(ld I)

22r co cu—+i2 sgn(40 —p)

=~a1a1-
(a I+i—2 sgn(I —p)

~R1~1'
~—IX&~

(39)

since for n(E, p —+ 0 as 6 —+ 0.
As an aside, note that this restriction n(cV (number

of electrons less than the number of sites) is not an
essential one. For n)1V, the ground state of H (as
6 —+ 0) does not contain any empty sites. We may use
this information to make corresponding arguments for
this case.

C. General Two-Particle Green's Function

We now seek an expression relating the general two-
particle Green's function G2 to the one-particle Green's
function Gq.

For any 6, and for Go» ' defined by

we have4
G 12 8(fl t2) 8ByB22(8/N2) y (40)

G'12 ' —T12= (&13+I&13.)G '32. . (42)

We will need the following specially defined higher-
order Green's functions':

F121 2
—((nl .cl,c2, c2, cl, )+), (43)

F 121'2' — ((nl rClrn2 —r'C2r'C2~r~ CPr )+) . (44)

The equation of motion for G»» ' for any 6 is

(G 11' 2 11')G121'2'

G, —S G„.,S„.+n' ~ ~ . (45)

The left-hand side may be rewritten with Eq. (42) as

(G'll' Tll')G121'2'
= (~„+Ir„.)G„,—G„, , - .

4 We implicitly sum and/or integrate over repeated indices so
that, for example, in Eq. (47) ere sum over sites R2 and integrate
over time t2.' The Fourier transforms of these functions are dedned in the
same way as for the functions dered in Eqs. {8}—(12}.

(G'l2 '+7'»)G21 .= &11 +I&11.. (4&)

For finite 6, there is no ambiguity in the one-particle
Green's function, and the solution to Eq. (41) has a
well-defined inverse which allows us to write

Now for any 6, we have

(
o.a'G 22o' ~ 22) + 121'2' ~22'~11'a ~21'I 12'a~ao'

+ lf 11'2' 812~r',—r+If 12112 ~ (47)
Hence,

(G llr 211)(G 22r' I22)G121'2'
= S„S„yIS„.r„.—~„~„S...—I~„.r„..c..

+Ib22 Fll'r —IB21'F12' 8rrr+IB12W11'2' 8r', r

+I'r*„,, -'. (48)

This becomes

oa'G121'2' Gll'rG22'r'+G»rrG21'r$rrr
= (S,—,+Ir,—,.)-'(S„-+Ir,—,.)-'

XI~3.G23- ~3i 2 ~",—.
+PG13rG24r~(&3r+ II'3rr)

x (a„-+Ir',—,.)-'r'-, -„. .-'
—e[(S,—,+Ir,—,.)-'r-„.jL(S2—,+Ir2 —,.)-'

Xf'-. j(G, .«.—G .G .&-). (»)
This equation expresses the two-particle Green's

function in terms of the one-particle function, the
function I', which is unambiguous and known, and the
functions t/t/" and I'*. The 6 —+0 limit for 8' and I'*
must now be analyzed.

D. Analysis of I *

For 6 —+0, we have

Li(B/Nl) —I)0*1212

811'( 2)((nl —n2—C2 C2 )~)
—b12. (—i)((nl .n2 .c2.cl..)+), (52)

L2(~/~tl) I7L2(~/~—4) Ill'*»1'2—"
(~11'~22' ~12'~21)(nl—n2 —) (53)

L(C2l c1/fl) IjF 121'2

811'(—i)((nl .n2 c2—c2'— )+)
8».( i)((c—l,cl t—n2 c2 cl 2)+), —(54)

Using Eq. (42), inverting the corresponding Gl' terms,
and using the symmetry +2 2412+21 +2 812221 for
functions only of difference coordinates, we obtain

(Br+If'll'r) (42+I&2zr )G121'2""
= Gll .G22 .—G12 .G21 .B...+IG11..G22. r22 .

—IG12 .G2;.r21.8..+IG22;Glr. r;1,
—IG»..G,—,.r»..~...+IG».G2 2 .W» 2 g ...

+I GllrG22r'1 121'2'

Equation (49) may be rewritten as

(811+ I'll )(r822+ IF 2r2)

X (G121'2 Gl 1' rG22' r+ G12' rG21' r~rr')
= IG1-.G =.W-1 41. . .+PG1-.G2-. 1'*—1

I Fllrf 22r'[GI1'OG22'r' G12' G12r' G21r' 8 rj.rr(50)
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I 2(a/ai, ) —I)L2(a/ai2) —I)r*»..2"—.
~ll'~22'(221 —02—)
+2812 (811'I 12'—rr+ 812' I 21r rr)

—512r 821r ((Clrrc1 rr lt2 rrc2a )+) ~ (55)

These equations allow us to relate the function F* to
the functions D and 5 defined in Eqs. (11) and (12).

E. Analysis of W

It was necessary to invoke the spectral form of F»,
in order to obtain its correct boundary condition (see
Sec. III 8). Now W112" has no simple spectral form,
since it is a function of two time differences. However,
it will be possible to use the previously determined
boundary condition on F» to fix the boundary con-
dition for 8"» 2

Consider W11.2' for 6 +O. Equation (1O) may b
rewritten as

= —1&m
a ~0+

d07y~ dG02~

g
—j+I'(tl—tl t)

Xe'"'"WBtBt B,"(Mi M2 ) . (62)

Fourier transforming, we get

e .~aIaI—= —i lim
Ml I+ZE 22r Mlr+M2r —I+2eV(M1')

XLSB,R„G, .( )+G '.( ')).

The boundary condition in Eq. (59) is only essentia
when Ml +M2 =I, hence x may be replaced by y. Having
reduced the arbitrariness in the boundary condition to
(at most) a dependence on Mi. , we may relate W112 to
F~~ to fix this condition:

dcoy A) y~ do)2~

2' 2' 2'
XC—t(rrrltl —rll'trl' ld2 t2')tet'~2 aWB B B, (M1M1,M2, )

W„„"=—i((cl.cl .12,.ni .c2 ."cl .')+). (56)

For n(lV, the function 8'» 2 vanishes unless Ri=R~
and/or R2. This information will be used to solve the
following equation of motion for 6 —+ 0 in a fashion
similar to that employed for j. »

g ~ = —'L llIIl
+~0+

F2~
GRtRt ~(M2r)

This is an identity for all ~~'
Further, we recall that

(64)

Pi(8/Rl) —I)Wll 2"= i'll G12 .+ib12 Gll „(57)
and, therefore,

(Mi —I)WR, R, B,"(M1Mi M2 )
ZORtRt'GBtBtr rr(M1 Ml'r M2')—

+&BRtB2'GBtBt'e(M1 M2'r Ml') ~

22r25(M1 —Ml~ —M2r)

WBtRt R2' (MiM1'M2') =
(58) Ml —I+ZE

This then fixes y(M1) as independent of Ml and equal
to +1.

All ambiguity in the pole positions is thus resolved
and we have

This gives
22I'25(M1 —M] r td2 )

WRtRtr Rtr (M1M1 M2 )rr
Ml'+M2' I+ZCX((dlrM2r)

XLtiBtBt'GBtB2' —r (M2')+tiBtR2'GBtBt'rr(Mlr)) ~ (59)

Here x (=&1) can at most depend on the frequencies.
This follows since 8» 2 vanishes unless R~= R~
and/or R2 . Hence, there is no spatial ambiguity left in
Eq. (58) as opposed to the ambiguity in Eq. (18).

We define

XI~B.., G..., .(')+~....G..., .( )). (65)

F. Compilation of G2

Sections III A—III E must be compiled to give the
general two-particle Green's functions. Using Eqs. (53)
and (55) for the I'* functions, now expressed in terms of
the functions D and 5 of Eqs. (11) and (12), and the
fact that the Fourier transform of (811+II'll. ) ' is

given by

x(M1'M2') I ~t'+tt2'=& y(Mi') (6O)
tiRtBtr X22rti(M1 —Ml )

M 1
—I(1—t2,)

(66)

WRtRtr Rtr (M IMl'M2')

2irti(Ml Ml'r M2')WRtBt'Rt' (Ml'M2') ~

we get the following expression for the Fourier trans-

(61) form of the general G2 in Eq. (51):

GR1R2RI'R2' (M1M2M1'M2') GRtR1'tr(M1M1')GBtB2 e(M2M2r)+GRtB2r e(M1M2')GR2Btr rr(M2M1 )8rrrr r

I erg —I or2 —I

I GBtBrrr(M)GB2B2rr'(M2)

{ —O —0'~
DRiB2 ' tMl Ml'r M2 M2') ~BtBtr ~B2Btr

L
—I(1-~--))I .-I(1—~-"))

DRrR2 ' (Ml M2'r M'& Mi')~ R '
Bi T2'tBirr2, Rrr'ttr5BtR2(M1 M2r M2 Ml')tiRrR2'tiR2Bt'~rr, rr'—

+22rit't(M1+M2 Ml M2 )t'tB ,B,pB ,B—, rR ,—R, .(M"-)+-tt'B--,B, I'B-;B,.(M1))ti.. .}. (67)

( )( )
GBtB2rr(M1)GR2B2rr'(M2)WR2Rt'R2' (Ml+M2r Ml'r M2')d rr,rrr—

LM I(1—t2,))I M2 —I(1—22—, ))
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~67~ relates the two-particle Green'sEquation ~ ~~ re a
function to the one-particle Green's function. is s i
an implicit re a ions '~l

'
l t hip since on the right-hand si e we

have certain ensi y and 't and spin correlation functions

these spin correh
'

lation functions to themselves an to
Gl, and this is one in ec.h d Sec. III G. They are then solved
giving exp ici expl' t ressions for all two-particle functions
in terms of Gl alone. These expressions are then ana-
lyzed. Using these results one may obtain the genera

Before proceeding with this program, it wi e con-
dinates. Wevenient to return once more to time coor ina

de6ne

Again using Eq. (70), we get

G121+2+ +Gll aG2212

= —IF12.~2z ~~'»2
+iI2(n +F21 f12 a —n 12rr 21a)

I'2n +n +D12 a a+I F12aF21—aS21a
and

~12, o G122 1

G12aG21 a+IF—12aF22 a~221—

+iI ('n F12 p21— 'n F21—p12 )
+I'F F D ' —Pn, n, S12,. (76)12o 21—o' 21

~ ~

Further symmetry following from our restriction to
the nonmagnetic case is containe in e qin the e uations

dQ&1 GR1R1'a(M)—jc01(t1—t1 )

22r (el —I(1—n )
(68) ~12 ' D ' D21 ' D21 '

)12 (77)

(78)

d(rll ((rl1 I)GR&R&r a((rl1)
g
—~~o1(t1—t1 )

22r u)1 —I(1—n, )

It o ows romf ll f the form of Gl that these integrals are
well defined, regardless of how one goes aroun e

oint col=le —n, j~ in the integration. In terms of F
and F', we have

and
~ 212 + 221 ~212 ~ (79)

e,+=F11+,= im
n ~0+ „22r (0—I(1—n, )

From Eqs. (71), (68), and (69), we can calculate the
following relationships:

G121' 2 G11' aG22' a+ G12' rrG21' a
T oIF12& 22—o'1'~ 21'2' ~—o', o'

—o. —a'+I »1 aF22raDlr2r '
—o —o'I ~12'o.I'21'o.D2'1' ' ~o'o.

I F12'o~21'—o2-) 2'1'o~—o, o'

+»'(Fil aF21

+F„..F„. .r, , .)~ .... . (70)

G. Correlation Functions D and S

E (70) G2 is expressed in terms of the functionsIn q. y ) 2 is
D and 5. These functions, however, are t.,ems

f the eneral two-particle
Green's function. In this section we find and solve t e
equations or anf D d S which are implicit in Eq. (70).

We define n + and n0 by

Zg1 1o' Zg o

)—I(1—n, ) I(1—n, )

e, =F11,= lim
a ~0+ „22r (d —I(1—n, )

x('" + +22ri(l((0) g„a
~

M I+2t—
1—S o

i +-
-r(r —rr .) rrr .)

1 R o e
x — +— +2 H( )r„.)M+26 M I+2E

(80)

1$ +=Fll+, 'fl = Fll- (71)

U
' E (70) and the definition of D, we get

G121+2+ +G11' aG2212

=G12.G21.—I'(na+) 'Dl,——
+PF12,F21,D21 . (72)

Ke will only consider a nonmagnetic groun
I

nd state and )

in this special case,

+ — —=n.+. (81)—I(1—n .)
Incorporation o e sf the symmetries, and simplifications

of Eqs. (77)—(81) into Eqs. (75) and (76), lea s to

D12 ' = IF12oF22 o&212
—iI2(n,+F21,F12,+n,+F12aF21a)

—I 'na 'n a D12 ' +I F12aF21—a 12a 82

D12 D12 D21 (73) ail

G12oG21o'

1+(n,+I)' —PF12,F21

(74)

S12,a G12aG21—a+IF12aI 22—a~221

+iP(n .+F12aI'21 .+n.+F21 aI'12a)

PF F .D12' —I'n,+n .+S12.. (83)
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These are simply algebraic equations and their solution gives (for the nonmagnetic case)

and

where

D 0,—a
12

G12~G21—~I +12rp21—n X12n[1+(22~ I) I I 12n~21 (r]—

[1+(22.+I)']'—[I'P,2.I"21 .]'
G12.621 .[1—(22.+I)']+X12.[1—(N,+I)'+I'F 12.I"21 .]

[1+(21+I)2]2 [I2+12n+21 ]—2

(84)

(85)

X12 IF12 F22—W212'+2I'(22, +F21 I'12,+22—,+F12 F21.—) . (86)

IV. CONCLUSION

We should note carefully what has been achieved in
deriving the above expressions. All quantities appearing
in the Eqs. (84) and (85) are known once one knows
the one-particle Green's function. To the same extent,
all quantities appearing in Eqs. (70) or (67) for the
general two-particle function are known. The path we
have taken in evaluating G2 and G~ for the Hamiltonian
B,~ is complicated, but guarantees that the time-
independent parts of these functions which manifest
the ground-state degeneracy have not been lost or
prejudiced. Seemingly simpler or more straightforward
solutions of the hiearchy of Green's function equations
obscure the important spatial dependence we have
shown to exist. The ambiguity in G~, expressed through
the function g~~ „appears in the general two-particle
Green's function and in the density and spin correlation
functions in a complicated way and will play an essential
role in determining properties of the model in the
narrow-band, or 6/I«1, regime.

An inspection of Eqs. (84) and (85) shows that, just

as for i~ j,
lim(c, .tc,.)40,
Q~P

because of the degeneracy

lim((n, .22,.)—(n,.)(12,.))AO (88)

hm(c;. c;,c; .'c;,)40
2~0

(89)
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Thus the degeneracy leads to nonlocal spatial coherence
in the density and spin correlations in the zero-hopping
limit.

The function embodying the ambiguity, g;,„cannot
be determined without going to the finite 6 problem. In
fact, g;, depends on the details of the hopping that is
turned off as 6~0,


