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Simple, general formulas for the multipole relaxation times of a weakly perturbed spin system are derivefl.
A simple formula for the Zeeman splittings of multipole relaxation times has been derived for a magnetic

perturbation.

I. INTRODUCTION

HE relaxation of an ensemble of spins is often
characterized by a number of longitudinal and
transverse relaxation times.! Only in the case of spin-3
particles is there a single longitudinal and a single
transverse relaxation time. Although the different
longitudinal and transverse relaxation times are often
of negligible importance in conventional nuclear mag-
netic resonance experiments, they play a very important
role in studies of the relaxation of optically pumped
vapors. For instance, Cohen-Tannoudji? has shown that
the relaxation of polarized Hg?! vapor is due largely
to the interaction of the quadrupole moment of the
Hg™! nucleus with the fluctuating electric-field gradi-
ents experienced by the atom while it is stuck to the
walls of a quartz container. One of the most important
pieces of evidence in support of this view is that two
distinct transverse relaxation times are observed experi-
mentally. One relaxation rate, which corresponds to
transverse components of the quadrupole moment of
the vapor, is twice as large as a second relaxation rate,
which corresponds to the transverse components of the
dipole moment of the vapor. If the relaxation had been
caused by the coupling of the magnetic dipole moment
of the atom to a fluctuating magnetic field, one would
have expected the quadrupole relaxation rate to be
three times as great as the dipole relaxation rate.

The purpose of this paper is to present certain simple
formulas [i.e., (12) and (17)] that relate the relaxation
rates of a spin system to the strength, multipolarity,
and correlation time of a weak, fluctuating perturba-
tion. After this paper was completed we discovered
that very similar results have already been obtained
by Gabriel® in a study of the influence of the environ-
ment on angular correlations of nuclear radiations. We
feel that our work is still useful, since our derivation is
simpler and since we bring attention to several im-
portant examples of the role of multipole relaxation
times in optical pumping experiments.
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II. THEORY

Consider an ensemble of atoms of spin K. The atoms
are situated in a static field H, which defines the z axis
of a coordinate system. We assume that each atom is
subject to a weak, fluctuating perturbation V, which
varies in a random way from atom to atom. Then the
Hamiltonian of an individual atom is

C‘C:O)Kz‘{“v, (1)

where w=+H is the Larmor frequency of the atoms in
the static field, and v is the gyromagnetic ratio. We
represent the state of the ensemble with a density
matrix p or with an interaction picture density matrix o:

o= einztpe—-iszt . (2)

We shall expand the density matrix and all other atomic
operators in terms of sperical basis operators* 7'rys:

o= (- uTru, 3)

L,M

where
TLM:Z IK,m><K, m—M‘ (—1)m—M—K
XC(KKL;m, M —m) . (4)

The coefficient C(KK L; m, M —m) is a Clebsch-Gordan
coefficient, and the basis functions |Km) are eigen-

functions of K.
K.|Km)=m|Km). (5)

Our phase conventions and notation correspond to
those of Rose.?

According to the general theory of relaxation,® for a
sufficiently weak perturbation, the density matrix
obeys the equation

£0'=— co[V*(t),[V*(t—fr),a(t)]]afﬁr ave  (6)
= )

Here,
V*(t)=ein,tV(t)e—in=t (7)

is the perturbation in the interaction picture. The
symbol ( ).y denotes an average over all atoms of the
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ensemble. We assume that the temperature can be
considered infinite so that at statistical equilibrium all
atomic sublevels will be equally populated.

Let us assume that the perturbation V has a well-
defined multipolarity /:

V)=2(=1)"Viw(t) Tim - (8)

For instance, if /=1, Eq. (8) would represent the inter-
action of the magnetic dipole moment of the atom with
a fluctuating magnetic field. If /=2, Eq. (8) would
represent the interaction of the electric quadrupole

moment of the atom with a fluctuating electric-field
gradient.

We also assume that V is isotropic and has an
exponential correlation function:

6m, ,_m( — 1)"“1}26_7/7‘

2141

(Vlm(t) Vi (t—7))av= (9)

Here v is the root-mean-square amplitude of the per-
turbation, and 7, is the correlation time of the
perturbation.

In order that Eq. (6) be valid, we must assume that
the perturbation is weak, i.e., that

(o)1 (10)

A. Isotropy; Multipole Relaxation Times

Suppose that the external magnetic field is zero.
Then the atoms are subject to an isotropic environment
and (6) reduces to
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That is, all (2L+41) components of the density matrix
of multipolarity L relax at the same rate (see
Appendix) :

vi()=20r [ QK+ 1)'—W (LKKL; KK)]. (12)

Excluding the monopole relaxation rate, v,(7) =0, which
must be zero if no atoms are added or removed from
the ensemble, there are 2K potentially different re-
laxation times. Because of the isotropy there is no
distinction between longitudinal and transverse re-
laxation times.

For illustrative purposes we have sketched the
multipole relaxation times for several different values
of the spin K and for all allowed multipolarities of the
interaction (see Fig. 1). It is interesting to note that
the multipole relaxation rates are closely analogous to
the zero-field hyperfine intervals of an atom with
nuclear spin /=K and atomic spin J=K. It is well
known that if I and J are coupled by an interaction of
multipolarity /, the zero-field energy displacements of
energy levels of total angular momentum F are’

Ep=constX W (FKKI; KK). (13)

Comparison of (13) with (12) shows that the relative
spacings of the multipole relaxation rates are identical
to the relative spacings of the hyperfine energies of an
atom with 7=J=K. For instance, if the relaxation is
caused by a fluctuating magnetic field (multipolarity
I=1), then the spacing between the relaxation rates
obeys the Landé interval rule

yr(1)—vz-1(1)=const X L. (14)

Just as one can determine the hyperfine coupling

I16. 1. Zero-field relaxation rates.
Tor each interaction multipolarity the
relaxation rates have been normalized
to the dipole relaxation rate. The
relaxation rates are analogous to the
zero-field hyperfine energies of an
atom that is subject to an interaction
of multipolarity /.
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1 MULTIPOLE RELAXATION TIMES

constants of an atom from the energy intervals at zero
field, one can determine the multipolarity of the inter-
actions that are responsible for the relaxation of a spin
system by measuring the relative sizes of the different
relaxation rates at zero field. For instance, in optically
pumped Hg®' (K=3$), the quadrupole relaxation rate
is found to be twice as large as the dipole relaxation
rate,? while in optically pumped Cd*® (K=3%), the
quadrupole relaxation rate is found to be 2.6 times
greater than the dipole relaxation rate.® From Fig. 1
we see that the observed ratios strongly suggest that
in both Hg? and Cd* relaxation is caused by the
coupling of the electric quadrupole moment of the
nucleus to fluctuating electric-field gradients.

B. Axial Symmetry: Zeeman Splitting of Relaxation
Rates in a Magnetic Field

In the presence of a large static field, the environment
of a spin system is no longer isotropic. However, axial
symmetry around the magnetic field is maintained.
Consequently, we can expect a kind of Zeeman splitting
of the multipole relaxation rates into a number of
different transverse and longitudinal relaxation rates.
Before discussing this problem in more general terms,
- we first consider an instructive special case.

1. Zeeman Splitting of Relaxation Rates Caused by
a Fluctuating M agnetic Field

Let us assume that the relaxation of the atom is due
to the interaction of its dipole moment with a small,
fluctuating magnetic field whose root-mean-square
amplitude is %, and whose correlation time is 7, [see
Eq. (9)]. Then from (12) we find that the zero-field
relaxation rates are [compare Eq. (4) of Ref. 9]

'YL(I) =%[(h7)2TcL(L+ 1)] )

where v is the gyromagnetic ratio of the atom.

Now let a static magnetic field define an axis of
symmetry (z axis) and a Larmor frequency w for the
atoms. Equation (6) becomes (see Appendix)

(15)

(d/d)ory=—yLmoLM, (16)
where
yiu=vr(\J Ly (wre), an
and the function J () is defined by
1 L2—M?+L
Tom(e)= ——— a2 }
L(L+1) 1+a?
—iMx
+ ———. (18)
L(L+1)(14x)*
We note that
Jru(0)=1. (19)

8 M. Leduc and J. Brossel, Compt. Rend. 266, 287 (1968).
9 M. A. Bouchiat and J. Brossel, Phys. Rev. 147, 41 (1966).
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(in units of y‘)

Relaxation rates

Magnetic field parometer wr

F1c. 2. High-field relaxation rates for a magnetic interaction
(!=1). The rates have been normalized to the dipole relaxation
rate at zero field. The splitting of the relaxation rates is analogous
to the Zeeman splitting of atomic hyperfine structure.

At finite magnetic fields (ws£0), the multipole re-
laxation rates are no longer independent of M. We
call vy (1) a longitudinal relaxation rate if M =0 and
a transverse relaxation rate if Ms£0. Except at zero
magnetic field, the transverse relaxation rates are
complex. The imaginary part of the relaxation rate
gives rise to frequency shifts in the magnetic resonance
spectrum of the atoms.

The real parts of the relaxation rates have been
plotted as a function of wr, in Fig. 2. Note that the
longitudinal rates approach zero at high magnetic
fields, while the transverse relaxation rates approach
a finite limit

vru — 5Ly)*rM*] (20)

as w—> . The high-field limits can be understood
fairly easily on physical grounds. Consider a coordinate
system rotating with the Larmor frequency w around
the z axis. In the high-field limit, the transverse com-
ponents of V* will be rotating backward too rapidly
[see (7)] to have any effect on the spins. Only the
longitudinal components of V* continue to fluctuate
at low frequencies. The fluctuating longitudinal com-
ponents cannot cause transitions between the different
sublevels of the atoms, and consequently, no transfer
of population or longitudinal relaxation can occur.
However, over a time interval 7,, random phase
errors on the order of

hyM7./N3

will be produced between the amplitudes @, and @y
of a superposition state

| Km)+ @y sr| Km+M).

A simple random-walk calculation then leads to (20)
for the relaxation time of (@m@my a1 )ay-
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The imaginary components of the relaxation rates
are

WTe
Imypa=—%§(y)?r. M. (21)
14+ (wre)?
This is equivalent to a simple shift
Te
Aw=5(hy)re—— (22)
14 (wr.)?

in the Larmor frequency of the spin system. The fre-
quency shift is also plotted in Fig. 2.

2. Zeeman Splitting of Relaxation Rates Caused by
Fluctuating Electric-Field Gradients and
Higher-Order Interactions

For quadrupole and high-order interactions the
problem of finding high-field relaxation times becomes
more complex. The relaxation of the density matrix is
governed by the coupled equations
d
P o=y Rip(M)op sy, L'=L,L£2,..., L+(21—2).

¢ 12

(23)
The elements of the relaxation matrix are

Rip(M)=—7r2 1+ (—=1)L+1"] 2; [1—(—1)HER]

XA+ D)W (NKK ; LK)W(NKK,L'K)
CUNL; py M —p)C(NL' 5 py M —p)

24)
I 1+iw[.t'rc

Several selection rules reduce the number of coupled
equations somewhat. Because of the axial symmetry,
the relaxation matrix couples only those components
oy and oy of the density matrix that have the same
azimuthal quantum number M and satisfy the con-
dition

(—1)H+Y =1, (25)

Furthermore, (24) implies that Rpz (M) is zero unless
|L—L'|<21—2. (26)

Unfortunately, (24) is still rather cumbersome, and
although it is possible to transform it into a number of
equivalent forms by the application of sum rules, we
have been unable to reduce it to a simple formula,
except for the special case /=1, which has already been
discussed.

Once the relaxation matrix (24) has been evaluated,
it is a straightforward matter to solve (23) by assuming
an exponential solution and solving the secular equation
that results. Although the longitudinal relaxation rates
are real, the transverse relaxation rates will, in general,
be complex. An example of the calculation of high-field
relaxation rates for /=2 can be found in Ref. 2.

W. HAPPER 1

III. CONCLUSIONS

We have shown that in the limit of a small magnetic
field the relaxation of a spin system by a weak, fluc-
tuating perturbation can be described by a set of
multipole relaxation rates. These rates are given by
the simple formulas (12) and (15). If the atoms are
subject to a static magnetic field of arbitrary size, and
relaxation is caused by a small, fluctuating magnetic
field, the longitudinal and transverse relaxation rates
are given by the formulas (15), (17), and (18). We have
been unable to find analogous, simple formulas for
high-field relaxation rates caused by fluctuating electric-
field gradients or by higher-order interactions. How-
ever, we do present a formula for the relaxation matrix,
from which relaxation rates can be calculated for any
specific case. Finally, we mention that all of these
results can be generalized to the case where several
interactions of different multipolarities or correlation
times are simultaneously present. Some of these results
also have close analogs for atoms with hyperfine
structure.
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APPENDIX

In order to evaluate (6), we make use of the com-
mutation relation

[T, Tow =2 T omen[(QL41)(2L'4-1) 712
LII

XW(LL'KK; L"K)C(LL'L'"; MM")

XL(=DF*er =17, (27)

which can be proved from the definition (4) by re-
coupling of angular momentum. We note that

V() =3 ertV o Tuu( — 1)k (28)

Applying (27) twice and making use of (9), we obtain

< / LV OLV = Ten Ty
=vir T (=) i1 (=15 1] o

X (AW NKK; LK)W (INKK ; L'K)
COUNL; py M —p)C(INL' 5 py M —p)

, (29)

2 1—iwuTt,

which leads to (24).
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In the limit wr, — 0, Eq. (24) becomes
Ri(M)=—50020%r. > [1—(—1)HHIH]
A

X (2\+1)W2(INKK; LK) . (30)

Noting that
(=1)HEFA=[(204+1) QL+ 1) V2 W (WLL; ON) (31)
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and making use of the sum rules 6.13 and 11.11 of
Rose,® we obtain (12). For the special case /=1, we
must have L'=\A=L in (24), since a magnetic field
simply rotates the atoms of an ensemble and does not
couple different multipole moments. Then one can use
tabulated Clebsch-Gordan coefficients (Rose,? p. 225)
to obtain (17) from (24).
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The spatial distribution of the conduction-electron spin polarization has been calculated for the Anderson
model using the Hartree-Fock approximation. An expression for low temperatures has been obtained. The
long-range behavior of spin polarization at absolute zero temperature is compared with the Ruderman-

Kittel-Kasuya-Yosida result.

I. INTRODUCTION

HERE are two models (the Anderson and the
Wolff-Clogston)—3 based on Friedel’s picture? of
virtual states to explain the appearance of localized
magnetic moments (henceforth called local moments) in
a dilute alloy of magnetic atoms in a nonmagnetic host.
Both of these models are capable of predicting qualita-
tively the appearance of local moments in many cases.
Several recent review papers®7 have discussed various
attempts to get the exact solution of the problem of the
local moments in different models.

Recently, Schrieffer, and Wolff® have shown that
under a certain transformation the Anderson Hamil-
tonian goes over to the exchange Hamiltonian form,
used by Kondo to show the Kondo effect.® The spin
polarization for an exchange Hamiltonian has already
been studied and the results are known as Ruderman-
Kittel-Kasuya-Yosida (RKKY) polarization.0—13 Sev-
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eral authors!4! have made calculations for spin polari-
zation due to a magnetic impurity in different models.

The present paper is aimed at deriving conduction-
electron spin polarization around a magnetic impurity
in the Anderson model, under the Hartree-Fock (HF)
approximation, as a function of the distance from the
impurity. An expression for spin polarization at low
temperatures is obtained. The long-range behavior at
absolute zero temperature is compared with the RKKY
result, %13 to see if Anderson’s description of the mag-
netic impurity conforms to the expected exchange form
of the conduction-electron-impurity interaction.

The magnitude of spin polarization is calculated for
the most favorable case for the appearance of the local
moments,! in which the levels for spin-up and spin-
down electrons are close to each other and lie sym-
metrically about the Fermi level. A comparison of the
magnitudes in our case and in the corresponding RKKY
limit is made.

II. THEORY

In the Anderson model we take an extra d orbital for
the impurity. The overcompleteness of the resulting set
has been discussed by Anderson and McMillan.!® They
have shown that such a description gives essentially
identical results with the case in which the impurity d
orbital is orthogonalized to the conduction band states.
In the present paper we calculate polarization in the
region beyond the range of the d orbital. Irrespective of
whether we start with an overcomplete set or an orthog-
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