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Multipole Relaxation Times of a Weakly Perturbed Spin System*
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Simple, general formulas for the multipole relaxation times of a weakly perturbed spin system are derived.
A simple formula for the Zeeman splittings of multipole relaxation times has been derived for a magnetic
perturbation.

I. INTRODUCTION II. THEORY

~ 'HE relaxation of an ensemble of spins is often
characterized by a number of longitudinal and

transverse relaxation times. ' Only in the case of spin--',

particles is there a single longitudinal and a single
transverse relaxation time. Although the different
longitudinal and transverse relaxation times are often
of negligible importance in conventional nuclear mag-
netic resonance experiments, they play a very important
role in studies of the relaxation of optically pumped
vapors. I'or instance, Cohen-Tannoudji' has shown that
the relaxation of polarized Hg'" vapor is due largely
to the interaction of the quadrupole moment of the
Hg'P' nucleus with the Ructuating electric-field gradi-
ents experienced by the atom while it is stuck to the
walls of a quartz container. One of the most important
pieces of evidence in support of this view is that two
distinct transverse relaxation times are observed experi-
mentally. One relaxation rate, which corresponds to
transverse components of the quadrupole moment of
the vapor, is twice as large as a second relaxation rate,
which corresponds to the transverse components of the
dipole moment of the vapor. If the relaxation had been
caused by the coupling of the magnetic dipole moment
of the atom to a fluctuating magnetic field, one would
have expected the quadrupole relaxation rate to be
three times as great as the dipole relaxation rate.

The purpose of this paper is to present certain simple
formulas Li.e., (12) and (17)j that relate the relaxation
rates of a spin system to the strength, multipolarity,
and correlation time of a weak, fluctuating perturba-
tion. After this paper was completed we discovered
that very similar results have already been obtained
by GabrieP in a study of the inhuence of the environ-
ment on angular correlations of nuclear radiations. We
feel that our work is still useful, since our derivation is
simpler and since we bring attention to several im-

portant examples of the role of multipole relaxation
times in optical pumping experiments.
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I

Consider an ensemble of atoms of spin E. The atoms
are situated in a static field II, which defines the s axis
of a coordinate system. We assume that each atom is
subject to a weak, fluctuating perturbation U, which
varies in a random way from atom to atom. Then the
Hamiltonian of an individual atom is

X=toE.+V,

where co=aH is the I.armor frequency of the atoms in
the static field, and p is the gyromagnetic ratio. We
represent the state of the ensemble with a density
matrix p or with an interaction picture density matrix tT.'

ester
~z tpg

—scoÃz t (2)

We shall expand the density matrix and all other atomic
operators in terms of sperical basis operators TI.~.

a= P ( 1) ~r, ~T—i~,
L, 3II

where

T =P ~E,m)(E, m —iV~( —1)

&&C(EEI.; m, M m) . (4)—
The coefFicient C(EEL; m, M —m) is a Clebsch-Gordan
coefFicient, and the basis functions ~Em) are eigen-
functions of E,.

(5)E, iEm)=miEm).

Our phase conventions and notation correspond to
those of Rose. '

According to the general theory of relaxation, ' for a
suKciently weak perturbation, the density matrix
obeys the equation

Here,
p'sc(t) —etwKetl1'(t) caKezt

is the perturbation in the interaction picture. The
symbol ( ), denotes an average over all atoms of the

4 U, Fano, Rev. Mod. Phys. 29, 74 (1957).' M. E. Rose, E/ementary Theory of Angu/ur 3fomentunz (John
Wiley R Sons, Inc. , New York, 1957).

A. Abragam, The Princi p/es of NzIc/ear 3fggnetzsm (Clarendon
Press, Oxford, 1961), Chap. VIII.
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ensemble. We assume that the temperature can be
considered infinite so that at statistical equilibrium all
atomic sublevels will be equally populated.

Let us assume that the perturbation V has a well-
defined multipolarity /:

V(t) =Q(—1)"Vt (t) T(

(V -()V - (t —))-= ( 1)mesc r/r~—

2l+1

Here v is the root-mean-square amplitude of the per-
turbation, and 7., is the correlation time of the
perturbation.

In order that Eq. (6) be valid, we must assume that
the perturbation is weak, i.e., that

(".)'«1.

A. Isotropy; Multipole Relaxation Times

Suppose that the external magnetic field is zero.
Then the atoms are subject to an isotropic environment
and (6) reduces to

(d/dt) sl,sr yr. (t)oz——,sr . — .

For instance, if /= 1, Eq. (8) would represent the inter-
action of the magnetic dipole moment of the atom with
a fluctuating magnetic field. If /=2, Eq. (8) would
represent the interaction of the electric quadrupole
moment of the atom with a Quctuating electric-field
gradient.

We also assume that V is isotropic and has an
exponential correlation function:

Ep ——const&& W(FKK/; KK) . (13)

Comparison of (13) with (12) shows that the relative
spacings of the multipole relaxation rates are identical
to the relative spacings of the hyperfine energies of an
atom with I=J=E. For instance, if the relaxation is
caused by a fluctuating magnetic field (multipolarity
l=1), then the spacing between the relaxation rates
obeys the Lande interval rule

71.(1)—yr, i(1)= const&(L. (14)

Just as one can determine the hyper6ne coupling

That is, all (2L+1) components of the density matrix
of multipolarity L relax at the same rate (see
Appendix):

yr, (t)=2e'r, t (2K+1) '—W(LKK/; KK)g. (12)

Excluding the monopole relaxation rate, y, (t) =0, which
must be zero if no atoms are added or removed from
the ensemble, there are 2K potentially di6erent re-
laxation times. Because of the isotropy there is no
distinction between longitudinal and transverse re-
laxation times.

For illustrative purposes we have sketched the
multipole relaxation times for several different values
of the spin K and for all allowed multipolarities of the
interaction (see Fig. 1). It is interesting to note that
the multipole relaxation rates are closely analogous to
the zero-field hyperfine intervals of an atom with
nuclear spin I=K and atomic spin J=K. It is well
known that if I and J are coupled by an interaction of
multipolarity /, the zero-field energy displacements of
energy levels of total angular momentum P are~
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FIG. 1. Zero-field relaxation rates.
For each interaction rnultipolarity the
relaxation rates have been normalized
to the dipole relaxation rate. The
relaxation rates are analogous to the
zero-field hyperfine energies of an
atom that is subject to an intera t'on
of multipolarity l.

Multipolarity of the interaction, JL

' C. Schwartz, Phys. Rev. 9/, 380 (1955), Eq (2). .
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The imaginary components of the relaxation rates
are

COT c
ImyL~ ———-', (hy) 'r, M.

1+(d'or, ) 2
(21)

This is equivalent to a simple shift

t) (o= ', (h-y)'r,
1+((or.) '

(22)

in the Larmor frequency of the spin system. The fre-
quency shift is also plotted in Fig. 2.

Z. Zeerlae Splittirtg of RelaxatiorI Rates Caused by
Fluctuating Electri c-I'i eld Gradh erlts arid

Higher-Order IrIteracti ops

For quadrupole and high-order interactions the
problem of finding high-field relaxation times becomes
more complex. The relaxation of the density matrix is
governed by the coupled equations

III. CONCLUSIONS

We have shown that in the limit of a small magnetic
field the relaxation of a spin system by a weak, Quc-

tuating perturbation can be described by a set of
multipole relaxation rates. These rates are given by
the simple formulas (12) and. (15). If the atoms are
subject to a static magnetic field of arbitrary size, and
relaxation is caused by a small, fluctuating magnetic
field, the longitudinal and transverse relaxation rates
are given by the formulas (15), (17), and (18).We have
been unable to find analogous, simple formulas for
high-field relaxation rates caused by fluctuating electric-
field gradients or by higher-order interactions. How-
ever, we do present a formula for the relaxation matrix,
from which relaxation rates can be calculated for any
specific case. Finally, we mention that all of these
results can be generalized to the case where several
interactions of diferent multipolarities or correlation
times are simultaneously present. Some of these results
also have close analog s for atoms with hyperfine
structure.

—)ILsr ——Q RLL (M))IL II) L' =L) L+2). ~ . ) L+(2l—2).
dt L I

(23)
The elements of the relaxation matrix are

RLL (M) = —r"'I:1+(—1)"'3E L1 —(—1)"""j
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APPENDIX

X (2K+1)W(lXKK; LK)W (lXKK)L)K)

C(lAL; t«, M t«) C(lXL', t«, M ——t«)

1+I«ot«r«

In order to evaluate (6), we make use of the com-
mutation relation

(24)
&TL~,TL ~ )=P TL".~+~ D2L+1)(2L'+1)3'"

( 1)IjL' (25)

Several selection rules reduce the number of coupled
equations somewhat. Because of the axial symmetry,
the relaxation matrix couples only those components
0.1,~ and 0-1, ~ of the density matrix that have the same
azimuthal quantum number M and satisfy the con-
dition

)&W(LL'KK L"K)C(LL'L" MM')

XL(—1)'+'+"—1], (27)

which can be proved from the definition (4) by re-

coupling of angular momentum. We note that

Furthermore, (24) implies that RLL. (M) is zero unless
V*(t) =P e'""V& „T«( 1)~. —(28)

I
L—L'

I
&2l —2. 26

Applying (27) twice and making use of (9), we obtain
Unfortunately, (24) is still rather cumbersome, and
although it is possible to transform it into a number of
equivalent forms by the application of sum rules, we
have been unable to reduce it to a simple formula,
except for the special case l= 1, which has already been
discussed.

Once the relaxation matrix (24) has been evaluated,
it is a straightforward matter to solve (23) by assuming
an exponential solution and solving the secular equation
that results. Although the longitudinal relaxation rates
are real, the transverse relaxation rates will, in general,
be complex. An example of the calculation of high-field
relaxation rates for l=2 can be found in Ref. 2.

«L)"())L)'"i)—)r 2)
0

—~2r Q I ( ]))+). L1]L( ]))+) L—' ]jT—
X(2P.+1)W(DKK LK)W(lAKK L'K)

C(lXL; t«, M t«) C(D L'; t«, M —t«)—
x~ (29)

1—
ZCOP, Tc

which leads to (24).
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In the limit cor. ~ 0, Eq. (24) becomes

Rz, r, (M) = 8r—,r, 2esr, P L1—(—1)'+~+"j
and making use of the sum rules 6.13 and 11.11 of
Rose, ' we obtain (12). For the special case /=1, we

must have L'=) =L in (24), since a magnetic field

simply rotates the atoms of an ensemble and does not
+ ) ' ' ) ' ( ) couple different multipole moments. Then one can use

Noting that
tabulated Clebsch-Gordan coefficients (Rose, ' p. 225)

(—1)'+ +"=$(2l+1)(2L+1)j"sW(/lLL; OX) (31) to obtain (17) from (24).
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The spatial distribution of the conduction-electron spin polarization has been calculated for the Anderson
model using the Hartree-Fock approximation. An expression for low temperatures has been obtained. The
long-range behavior of spin polarization at absolute zero temperature is compared with the Ruderman-
Kittel-Kasuya- Yosida result.

I. INTRODUCTION

'HERE are two models (the Anderson and the
Wolff-Clogston)' ' based on Friedel's picture4 of

virtual states to explain the appearance of localized
magnetic moments (henceforth called local moments) in
a dilute alloy of magnetic atoms in a nonmagnetic host.
Both of these models are capable of predicting qualita-
tively the appearance of local moments in many cases.
Several recent review papers' ' have discussed various
attempts to get the exact solution of the problem of the
local moments in different models.

Recently, Schrieffer, and Wolff' have shown that
under a certain transformation the Anderson Hamil-
tonian goes over to the exchange Hamiltonian form,
used by Kondo to show the Kondo effect. ' The spin
polarization for an exchange Hamiltonian has already
been studied and the results are known as Ruderman-
Kittel-Kasuya-Yosida (RKKY) polarization. " " Sev-
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New Delhi.
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'A. M. Clogston, B. T. Matthias, M. Peter, H. J. Williams,
E. Corenzwit, and R. C. Sherwood, Phys. Rev. 125, 541 (1962).' J. Friedel, Nuovo Cimento Suppl. 7, 287 (1958).
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eral authors" '5 have made calculations for spin polari-
zation due to a magnetic impurity in different models.

The present paper is aimed at deriving conduction-
electron spin polarization around a magnetic impurity
in the Anderson model, under the Hartree-Fock (HF)
approximation, as a function of the distance from the
impurity. An expression for spin polarization at low
temperatures is obtained. The long-range behavior at
absolute zero temperature is compared with the RKKY
result, " "to see if Anderson's description of the mag-
netic impurity conforms to the expected exchange form
of the conduction-electron-impurity interaction.

The magnitude of spin polarization is calculated for
the most favorable case for the appearance of the local
moments, ' in which the levels for spin-up and spin-
down electrons are close to each other and lie sym-
metncally about the Fermi level. A comparison of the
magnitudes in our case and in the corresponding RKKY
limit is made.

II. THEORY

In the Anderson model we take an extra d orbital for
the impurity. The overcompleteness of the resulting set
has been discussed by Anderson and McMillan. "They
have shown that such a description gives essentially
identical results with the case in which the impurity d
orbital is orthogonalized to the conduction band states.
In the present paper we calculate polarization in the
region beyond the range of the d orbital. Irrespective of
whether we start with an overcomplete set or an orthog-

T. Moriya, Progr. Theoret. Phys. (Kyoto) 34, 329 (1965).
'5 M. S. Fullenbaum and D. S. Falk, University of Maryland,

Technical Report No. 632, 1966 (unpublished).
P. W. Anderson and W. . L. McMillan, in Proceedings of the

International School of Physics "Enrico Fermi, " Course 37 (Aca-
demic Press Inc. , New York, 1967).


