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Exact Isotherm for the E Model in Direct and Staggered Electric Fields
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Both staggered and direct external fields are applied to the E model. At a particular temperature, the
properties can be evaluated exactly. As the fields are varieQ, the system undergoes two transitions between
states of zero, partial, and complete direct polarization.

'HE F model of an antiferroelectric' has been
solved exactly both with and without applied

electric fields. ~ However, only low-temperature ex-
pansions' are as yet available when a staggered field
(one alternating in sign on successive bonds) is applied.
The application of such a field is of interest since it
resolves the degeneracy of the ordered state and com-
pletes the description of the phase transition, playing a
role similar to that of the magnetic field in the Ising
model (see discussion on p. 2 of Ref. 3).

We obtain here the exact solution for the F model in
both staggered and direct fields at the particular
temperature4 T given by

e2e/kT
)

and find the following behavior:

(a) For a nonzero staggered field, there is no direct
polarization unless the direct fields are sufficiently
large. Thus, although T lies above the critical tempera-
ture T, of the zerofield F model, application of a
staggered field makes the direct polarization behave
similarly to the T& T, case.

(b) in zero fields the staggered susceptibility is infi-
nite a.nd correlations at large distances r decay only asr, implying that the lattice is in an ordered state, even
though T) 1,.

(c) Complete direct polarization, and zero staggered
polarization, can be achieved by applying suKciently
strong, but finite, direct fields in both the horizontal and
vertical directions. However, if one of these fields is
zero, complete polarization is achieved only when the
other is infinite.

The model can be interpreted as placing an arrow on
each bond of an M-by-E two-dimensional rectangular
lattice so that there are two arrows pointing in to each
vertex, and then associating an interaction energy
with the first four of the allowed vertex configurations
shown in Fig. 1.Direct fields h and v are then applied in
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the horizontal and vertical directions, so that each
horizontal arrow contributes an energy —h (+h) if it
points to the right (left), while each vertical arrow
contributes —v (+v) if it points upward (downward).

To apply the staggered field $, divide the vertices
into two sets (sublattices) A and 8 such that each
vertex in set 3 is joined by bonds only to vertices in set
B, and vice versa. Then each horizontal (vertical)
arrow further contributes an energy —s (+s) if it
points from an 2 vertex to a 8 vertex, and a,n energy
+s (—s) if it points from 8 to A. Noting that each
arrow is shared by two vertices, all these energies can be
absorbed into the configurational energies shown in
Flg. 1) giving

A vertex:

8 vertex:

61=6—h, —V)

t3= e —'/1+'V )

65=2$)

65 = —2$,

'2 ——6+&+0,
E4 = t'+h —'v.

c6 = —2$.

66 =2$.

(2)

FIG. 1. Six possible vertex configurations with associated energies.

The partition function can now be calculated by
representing the arrow configurations by lines, and then
showing that these lines correspond to dimers on a
decorated lattice. First consider a basic configuration in
which all A vertices are in state 6 of Fig. 1, and all 8
vertices are in state 5. Any arrow configuration can then
be represented by drawing lines on bonds where the
arrow points oppositely to the basic configuration, and
the six vertex states are represented by either no lines on
the surrounding bonds, two lines at 90', or four lines.

Now replace the original lattice L with a decorated
lattice L' in which each vertex is replaced by a "city" of
four internally connected points, as indicated in Figs. 2

and 3. Regarding lines on L as dimers on the external
bonds of L', dimers can be added to the internal bonds
so that L' is completely covered, giving the seven
possible dimer coverings of a city shown in Fig. 2. On an
A (8) vertex, the arrow configurations 1, 2, 3, 4, 5

(2, 1,4,3,6) of Fig. 1 then correspond, respectively, to the
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pendix A it is shown that in the limit of M and N large
the quantity P= (MÃ) ' 1nZ, which is proportional to
the free energy per vertex, is given by

Fro. 2. Possible dimer coverings of a "city" of the decorated
lattice L', corresponding to arrow configurations at a vertex
of L.

d0dg lnL2 coshS

dimer coverings 1, 2, 3, 4, 5 of Fig. 2, while the sixth
(fifth) arrow configuration corresponds to both the
sixth and seventh dimer coverings.

Associating activities n, ~~, v~, w~, m 2 with dimers on
bonds as indicated in Fig. 3, one can regard the con-
figurations of Fig. 2 as having weights equal to the
product of the activities of dimers on internal bonds and
the square root of the activities of dimers on external
bonds (remembering that a dimer on an external bond
is shared by two cities). Equating these to the vertex
weights co, =e "/~ of the corresponding arrow con-
6gurations, one obtains from both A and 8 vertices the
six equations

GOy =S 'VgVi,

co3 =N 'VpD2,2 2

e = vi5@v@v2
—S

co2 =S 'V2'Wq,

co4 =Q P2'My,

es/2 2'

"w2

V) V2 V)

JIL WI

Fro. 3. Decorated lattice L' showing dimer activities and
orientations associated with the bonds. The "cities" on the left
and right correspond to A and 8 vertices of L, respectively.
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(John Wiley k Sons, Inc. , New York, 1964).

where 5=4s/kT. Using (2), these equations can be
solved for u, w&, n2, wi, w2 only if the condition (1) is
satisfied, in which case they can be chosen so that

2—I/2es/4
)

eII—S/4 p e
—II—8/4 (4)

nr~ ——ev—s/4
A@2

——e v—s/4
) )

where H =2k/kT and V=2n/kT.
At the temperature given by (1) the model is thus

equivalent to a close-packed dimer problem on the
planar lattice L', and hence the partition function Z and
correlations can be calculated by PfaS.ans. ' In Ap-

—2 cos(0+iH) cos(Q+iV) j. (5)

The staggered and direct polarizations Ps, PII, Pv can
be defined as the derivatives of f with respect to 5, H,
and V.

As is shown in Appendix 8, the integral (5) has a
different analytic behavior according as whether the
branch points of the integrand in the complex p plane
lie on both sides of the real axis for all real 0, some real 0,
or no real 0. These three cases are summarized below.

(i) coshH cosh V( coshS: In this case the lattice is in
a disordered state (i.e., correlations decay exponentially
with distance) and P is found to be independent of H
and V. Thus, both direct polarizations PII and Pv are
zero, and P is given by (5) with H and V replaced by
zero.

(ii)
~

sinhH sinhV~ (coshS(coshH coshV: The in-
tegrand of (5) has branch points at the rea/ values 0=0p,
Q =$0 where 0o $0 are defined by the complex equation
cos(00+iH) cos(go+i V) =coshS. If H and V are posi-
tive, this equation has a solution such that 0&00(—', m

and —-', ~(po(0, and it is found that Prr= —Qo/ir,

Pi =0o/7r. Thus the lattice is partially polarized. It is
also ordered in the sense that at large distances r
correlations decay only as an oscillatory factor divided

by r'. When H= V, the equation for 00, Po simplifies,
giving

Pir =Pi = (2') i cos 'L2 coshS —cosh2H]. (6)

(iii) coshS(
~

sinhH sinhV(: In this case P=—
(~H~~

+~ U~ —ln2$ and the lattice is completely ordered,
having complete direct polarization and zero staggered
polarization. Note that this can occur only if H and V
are both nonzero.

The states of zero, partial, and complete direct
polarization are clearly shown in Fig. 4, where Pii (=Pv)
is plotted against H for the case H = V, S=0.5. It seems
that in zero direct field the staggered field S "locks" the
lattice into a disordered state, and a direct field of
magnitude comparable to S is required to unlock it
again.

It is also interesting to consider the lattice when
H = V =0. In this case P is an analytic function of S for
S&0 and S(0, but near S=O the staggered suscepti-
bilitv —O'P/05' diverges like in~5~. Thus the system
undergoes a nonanalytic transition from positive to
negative staggered field. Further, at S=O the corre-
lations at large distances r are found to decay only as r ',
indicating that in zero fields the lattice is in an ordered
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F1G. 4. Plot of direct polarization against field for the case
H= U, S=0.5.

state, even though the temperature (1) lies above the
critical temperature of the F model.

The author thanks Professor E. H. Lieb for numerous
enlightening discussions.

When m+n is odd, vi, wi should be interchanged with

12, w2 in Eqs. (A4). Notice however that these two sets
of equations are independent, the first (second) relating
variables a, and b, for m+n even (odd) with

c, and d, „
for m+rs odd (even). Thus the determi-

nant of the coeScients of all 43EE equations is the
product of the determinants of the two separate sets.
Further, if 3I and E are even and appropriate boundary
conditions are imposed, these two determinants are the
same.

It follows that detD is equal to the determinant of the
coefficients of the 4' equations obtained from (A4)
by letting m and e assume all values such that 1 &~ m &~ M
and 1~& a~& A. %hen M and E are large we can impose
cyclic boundary conditions' on the equations and make
a similarity transformation to the variables a„~,b„,

„

c„,„d„,„where

a„,,= g g a„,„exp(21ri(mp/M+mq/N)) (A5)
m=1 n=1

APPENDIX A

Z'= detD) (A1)

where D is a 4SIE by 4' antisymmetric matrix with
elements D(I,I') such that

Using the Pfaffian method, ' one can see that an
appropriate orientation of the bonds is that shown in
Fig. 3. Supposing the vertices of I.' to be labeled in
some way as I=1, 2, . . . , 4MS, it follows that

for 1&p &~M, 1&&q~& N, and b„,„c„,„d„,, are similarly
defined in terms of 6,„,c,„,d „.In terms of these
variables Eqs. (A4) break up into MN independent sets
of four equations, giving

3f N

(A6)
@=1 @=1

where 6„,is the 4-by-4 determinant

D(I,I ) = D(I,I) =Q) Vi) 8—2, Wi, W2, (A2a)

if the vertices I and I' are connected by a bond with
associated activity u, v1, e2, m1, m», oriented so as to
point from I to I';

D(I,I') =0

if I and I' are not connected by a bond.
The determinant of D is of course the determinant of

the coeKcients of the 43' linear equations.

I —I
0 wgP'

—imp & 0

n, P being defined by

~2)r j/M g ~27ri/N
I

From Eq. (4) it follows that

(A7)

(AS)

Q D(I,I')x(I') =0, (A3)
6„,,=2 coshS —2 cosL2m.p/M+iII]

Xcos(2m-q/N+i Vj . (A9)

where x(I) is an unknown variable associated with the
Ith vertex of I.'. These variables can be written as
a „,6,„,c,„,d,„,corresponding, respectively, to the
upper, lower, left, and right vertices of the city in the
mth row and eth column of the lattice. Supposing that
cities of type-A have m+ri even, the Eqs. (A3) can then
be written explicitly as

where

(cVN)
—' lnZ —+ P (A10)

dods 1ogL2 coshS

Substituting this expression into (A6) and (A1), it is
found that in the limit of M and S large

+~f m, n
—~ldm in= 0, ,

waif'm, n + 1'2Cm+1, ta

2b~1 „+1—nc~1 „—Id~+1 „——0

1 1C1ii, nm+1+Car~ i,n+Qdmpl, n 0 ~—
when m+n is even.

(A4)
—2 cos(0+iII) cos(P+iU) j. (A11)

This is the expression quoted above for the free energy.

6 P. W. Kasteleyn, Physica 2/) 1209 (1961).
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d8 lnLcos (8+iH) ev]

de/4, (e)+4,( e)]— (B.6)

is e uation can be per-The erst integration in t is eq
formed, giving

y =-', LH+ V—ln2]
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E (5) that p is an evenp model or directly ro q

'th t any loss ofand V. IIence witunction of ~~ H
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~5) be ~~~luated as aThe p in«gra '

~;o plane. I.et 4'i(8)contour integra }in the complexs=e p
be the two values of 4'gs or simply Cz and C'2, e

domain

cos(eyiH) cos(Q+iV) =

2iV and they can beThenltcanbeseenthat4'1+ a=- '
ordered so that Imi i&~

fo nd th«With these conventions, it is oun a

de p(8), (B2) deL4, (e)+4, (—8)7. (B7)

where
F(8) =in/cos(8+iH)ev]

ImL4, (8)]&O,

(B3a)

Ii (8) = in Leos (8+iH) ev] —i4 i 8 (B3b)

ImL4, (8)]g0.
ntioned in the text can now beThe three cases mentione in e

discussed.
coshS: In this case 4i(8) has a(i) coshH coshV&cosh
art for all rea . opositive imaginary p
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follows that

de 1n{coshS

+Lcosh'S —cos'(8+iH)]i"}. Bcos — ' ' "' . (B4)

)
'
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and V.
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