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Theory of Flux-Flow Noise Voltage in Superconductors~
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A theory of the time-dependent measured voltage and its associated power spectrum is developed for
conditions of magnetic flux flow in the mixed and intermediate states of superconductors, Expressions for the
measured voltage, appropriate for lux flow, are given and discussed. The case of a semi-infinite super-
conductor containing a single moving fluxoid is then examined as an illustrative model, and potentials and
fields are calculated from a London-model description. The resulting time-dependent voltage pulses are
computed and shown to depend upon the spatial configuration of the measuring circuit leads. The measured
time-dependent flux-flow voltage and the power spectrum arising from an array of fluxoids are formulated
and found to depend upon the measuring-circuit configuration, the internal flux distribution, the effects of
pinning, and the modes of flux motion. Previous experimental results by van Gurp are interpreted as lending
support under certain conditions to a description in terms of flux-line dislocation dipoles proposed by
Kramer. New experiments are suggested as tests of the theory.

I. INTRODUCTION

ECENTI.Y, several experiments have been carried
out to determine the power spectrum of the time-

varying voltage produced across superconductors during
the internal motion of magnetic Aux. ' ' Since these
experiments yield interesting information about the
nature of Aux Row, we propose to develop in this paper
a fraIIlework. within which Aux-Row noise experiments
may be interpreted.

The organization of this paper proceeds as follows:
In order to clarify what is meant by a measured Aux-

Aow voltage, we define and discuss the voltage measured
by a voltmeter when leads are attached to the surface
of a specimen in Sec. II. Since a calculation of the
required potentials and fields is prohibitively compli-
cated for the general case, v e perform a sample calcula-
tion in Sec. III for the simple case of a semi-infinite
superconductor within which a single fiuxoid is moving.
We also calculate the measured time-dependent voltage
and show that the resulting pulse shapes depend upon
the spatial configuration of the measuring circuit. In
Sec. IV, we express the measured time-dependent
voltage as a superposition of contributions from a dis-
tribution of Aux lines and compute the resulting power
spectrum. Various Aux distribution models are intro-
duced to illustrate the inRuence of the Aux distribution
upon the power spectrum. Experimental results are

briefly discussed. In Sec. V, we briefly describe how the
methods developed in this paper may be applied to the
case of pure Aux Row in the intermediate state of type-I
superconductors. We summarize our results and suggest
several experiments in Sec. VI.

II. MEASURED VOLTAGES IN
SUPERCONDUCTORS

where
V.g= V~ —Ve= V.g +V,g

t/aS =+a—+u

(2.1)

(2.2)

V A d1
c Bf

(2.3)

The scalar potential +, chosen to have units of electric
potential, obeys 7%'= —(m/e) Vp, where m and —e are
the electronic mass and charge. The term V ~~ is the
difference in this potential between the contact points
a and b. The term V, ~ ', involving the line integral over
the path C~ from a to b along the leads and through the
voltmeter, depends upon the spatial configuration of the
measuring circuit.

Alternatively, by application of Faraday's I.aw, we

may express V, & in terms of the time rate of change of
magnetic Aux through the measuring circuit:

where

V p=
1 8

E' d1 ———C'~s,
c Bt

(2 4)

(2.5)

is a gauge-invariant generalization of the chemical
potential gradient, 4 Cz is any convenient path from u

to b along the specimen surface, and

the chemical potential per unit mass p is produced along
the length of the specimen, and a time-dependent vector
potential A(VXA=B) is produced. If one attaches
zero-resistance leads from points a and b on the specimen
surface to terminals A and 8, respectively, of a sensitive
voltmeter, as shown in Fig. 1, the measured voltage (the
voltmeter "reading") is given by

When a time-dependent electric current passes
through a metal at constant temperature, a gradient of MS

P ndS (2.6)

*Work was performed in the Ames Laboratory of the U. S.
Atomic Energy Commission. Contribution No. 2609.

~ D. J. van Ooijen and G. J. van Gurp, Philips Res. Rept. 21,
343 (1966).' G. J. van Gurp, Phys. Rev. 166, 436 (1968).

3 G. J. van Gurp, Phys. Rev. 1/8, 650 (1969).

1

is the magnetic Aux through the surface Spy' bounded
by paths C» and Ch in the direction of the unit normal

Y. B, Kim and M. J. Stephen, in Superconductivity, edited by
R. D. Parks (Marcel Dekker, Inc. , New York, 1969), Vol. II,
Chap. 19, p. 1133.
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LTMETER

FIG. 1.Schematic voltage measuring
circuit attached to a specimen at
points g and b.

J= n, ev, = (nsc'/4~eh') v,—, —

we may reexpress Eq. (2.7) as

(2.12)

E'= r7+ (1/c) BA/Bt =—(47rX'—/c') 8J/Bt (2.13)

in superconducting regions. In a normal vortex core or
normal domain E' is obtained by making use of the
continuity' of +, A, and 8 at the normal-superconduct-
ing interface.

' J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197 (196S).

8 shown in Fig. 2. The measured voltage U, ~ is of course
independent of the path Cz chosen by Faraday's Law,
since any change in the first term on the right-hand side
of Eq. (2.4) is compensated by a corresponding change
in the second.

We are presently interested in the case of a super-
conducting metal specimen containing magnetic Qux in
the form of quantized vortex lines or normal domains.
We employ the local London model in which the super-
Quid velocity v, obeys'

dV, /dt —V'tbo —(e/n——z) [E+(V, XB)/c], (2.7)

where po is the chemical potential per unit mass in the
absence of currents or fields. Making use of the following
expressions:

dv, /dt= Bv,./N v, -X (TXv,)+—Ve, '/2, (2.8)

the London equation,

VXv, = eB/mc,
the electric field,

E= V'4 (1/c) B—A/Bt—, (2.10)

the chemical potential per unit mass p, '

p= tbo+v, '/2 —eC/m= —e+/m, (2.11)

and the electric supercurrent density J expressed in
terms of the penetration depth P,

When the current density and magnetic field are
time-independent, we see from Eq. (2.13) that E'= 0 in
superconducting regions. Furthermore, if all Qux-con-

taining normal regions are surrounded by superconduct-
ing regions, E'=0 throughout the specimen. Thus, we
see from Eq. (2.4) that V,b= 0 in this case.

For the case of magnetic Qux motion we may regard
A, B, and J within the superconductor as prescribed as
a function of time. The contribution U, q is calculated
with the help of Eq. (2.13) to determine 4, and V,b~ is
calculated, if necessary, with the help of Eq. (2.14)
given below, to determine A outside the specimen. In
the Coulomb gauge (V' A= 0), A(r, t) may be thought of
as arising from the currents in the superconductor via'

(2.14)

where the integration extends over the volume of the
specimen. As will be demonstrated in the following
sections, for the case of Qux Qow under constant applied
current the term V,~~ may be regarded as the most
important contribution to V ~, since the time average
of V & vanishes. In fact, in some cases V &' may be
made to vanish identically by an appropriate spatial
arrangement of the voltmeter leads.

The calculation of the measured voltage V ~ for
arbitrary specimen shape, Qux distribution, and circuit
geometry is quite complicated. As a beginning step, we
turn our attention to the behavior of V ~ in the simplest
model imaginable, that of an isolated singly-quantized
vortex line in a semi-infinite superconductor, a model
which, in spite of its simplicity, demonstrates most of
the important features of time-dependent Qux-Qow

voltages.

J. D. Jackson, Classica/ E/ectrodyna~nics (John Wiley R Sons,
Inc. , New York, 1962), Chap. 6, p. 182.
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III. ISOLATED FLUXON IN A SEMI-INFINITE
SUPERCONDUCTOR

A. Vector Potential, Magnetic Induction,
and Current Density

We consider a semi-infinite superconductor in the
half-space s(0, containing a single Quxon whose axis is
perpendicular to the surface s= 0. We suppose that the
Quxon intersects the surface at the origin and consider
the problem of the determination of the local values of
the vector potential a, magnetic induction b, and
current density j if the fluxon is at rest. (We shall use
lower-case symbols to denote fields associated with
isola, ted Quxons and upper-case symbols to denote
macroscopic fields obtained by superposition. ) The
solution of this problem is most easily accomplished
using the London-model description of the vortex line,
in which the core radius (of the order of the coherence
distance $) is regarded as vanishingly small by com-
parison with the penetration depth ) . The basic equa-
tions to be solved are Maxwell's equations, the Coulomb
gauge condition V a=0, and, inside the supercon-
ductor, the first London equation, '

b= —(4 X'/~)&Xj, r/0, (3 1)

and the analog of the Bohr-Sommerfeld quantization
condition,

where

ao„(p,s) = (q o/2~p)(1 —s/r),

ho = d'or/2~cr',

bo*(p s) = (po/2~r') (s/r)

bo.(p,s) = (q o/2~r')(plr),

r =ix+gy+Ss.

(3.6)

(3.7)

(3.8)

(3.9)

Just at the surface (s=0), the vector potential,
magnetic induction, and current density are given by

where J& is the Bessel function of order unity. The local
magnetic induction bo= V')&Ro has components parallel
and perpendicular to the vortex axis, bo, (p,s) and

bo, (p,s), respectively. The current density jo, describing
the supercurrent which Rows within a penetration
depth or so of the surface and the vortex axis to shield
the magnetic induction from the bulk, is given by
Ampere's Law, jo= (c/4~)VXbo, in the superconductor
and is of the form jo= jo„p, where

Jo„(p,s) = (c/4+X') [q 0/2~p —ao„(p,s)j. (3.5)

Well above the surface of the superconductor (s))X)
the fields appear as if they were produced by a point
monopole of magnetic charge q = po/2~= hc/2e at the
origin. The vector potential and magnetic induction
there are given to good approximation by

4n X'q kc
b nds+

~ j dl=&po ———,
S ci c 2e

for any path C bounding surface 5 with unit normal 8
and encircling the vortex axis in the counterclockwise
sense.

The problem defined above may be solved by the
method developed by Pearl. ' (We shall denote the
solutions by the subscript 0.) In terms of cylindrical
coordinates p=- (x'+y') "', p =- tan 'y/x, and s, with unit
vectors p=x cosy+)sing, /=)cosy —x sing, and 5,
the vector potential is found to be of the form
ao= ao&y, where

bp p(p, 0) = (ipo/2+X')

X [(X/p)'(1 e&'~) (X/p)—e—I'i~j, (3.12)

io.(p 0) = (~~o/8~'~')

X [(X/p) Ii(p/2X) E'o(p/2X) 7 (3.13)

where I„and K„are modified Bessel functions of the
first and second kind of order n.

Deep within the superconductor (—s))X) the vector
potential, magnetic induction, and current density are
given to good approximation byIi(kp)

ap„(p, s) =
i

dk
2+X'i o (k'+X ')

(
k exp[(k'+X ')"'sj)

X 1— i, &&0 (33)
k+(k'+X ')"' i

Ii(kp)

~op(p, s) =(po/2~p)L1 —(p/~)&i(p/~)3, (3 14)

bo (p s) = (v o/2'ir~')&o(p/~) (3.15)

(3.16)

(3.17)

bo, (p,s) =0,

B. Scalar Potential

dk
(k'+X ')"'

exp( —ks)
X s&0 (3.4)

[k+(k'+X ')"'j
7 P. G. de Gennes, Superconductivity of Metals and Alloys {W.A.

Benjamin, Inc. , New York, 1962), Chap. 3, p. 57.
8 F. London, Superfl uids I, Macroscopic Theory of Super-

conductivity {Dover Publications, Inc. , New York, 1961), Sec. 3,
p. 29.

~ J. Pearl, J. Appl. Phys. 3'7, 4139 {1966).

k2~X'i

If the vortex line intersects the plane s= 0 not at the
origin but at the point r;= (x;,y, ,0), and if the vortex
line moves with a velocity v;=f';=(x, ,j;,0), then to
lowest order the vector potential, magnetic induction,
and current density move rigidly along with the vortex
axis and are given by the above solutions but with a
lateral displacement appropriate to the new vortex

3.2 iso„(P,O) = (q&o/2+X) Ii(p/2X) Ko(p/2X), (3.10)

bo (p,0) = (po/27r&2) [Eo(p/2~)Io(p/2")
—Ei(p/2X)Ii(p/2X) ), (3.11)
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position:
a(r, t)=ap(x —x; y —y; s) (3.18)

b(r, t) = bp(x —x;, y —y;, s), (3.19)

J(r ")= Jp(x x' y —y', s) . (3.20)

C. Measured Voltage

We are now in a position to compute the resulting
time-dependent voltage V b measured when voltmeter
leads are connected to the superconductor surface at
contact points a and b, having positions r,= (x„y„0)
and rb (xb, yb, 0).Ac——cording to Eqs. (2.1)—(2.3), we have

The scalar potential f, produced in the supercon-
ductor by the vortex motion, may be calculated from
Eq. (2.13), which here becomes

e'(r, t) = f'P(r—,t) (1/c—)Ba(r,t)/N
= (4s& /c )Bj (r,t)/Bt, (3.21)

where j is given by Eqs. (3.20), (3.5), and (3.3). Aside
from an additive constant, P is given by

P(r, t) =
happ tb'&(v, /2s-cp", s&0 (3.22)

where pp ——ppps and y'=x(x —x,)+g(y —y,). The scalar
potential P may be though of as arising from a motion-
induced surface-charge density on the vortex core. '

regarded as the negative of the phase diRerence of the
order parameter between the points 5 and u.

It is of interest to consider the case for which the
velocity v, is constant in time, for then V b8 as a func-
tion of time may be written as a sum of two Lorentzians.
One of the Lorentzian curves has its maximum magni-
tude at the time of closest approach of the vortex to
point u, the other to point b. The magnitude of the time
integral of each Lorentzian is equal to pp/2c=h/4e,
but the shape of the Lorentzian becomes narrower and
more sharply peaked as the distance of closest approach
decreases. The magnitude of the time integral of V, b

is either pp/c=h/2e, if the vortex line passes between
the points u and b, or zero, if not.

A simple example of this behavior is the case of a
vortex line whose intersection with the surface at time
t is given by r, =(O,st, O) where the speed v in the
y direction is constant. We obtain from Eq. (3.26)

fks f x, Xb
V.b'(t) =

I

—
I

—— (3 28)
(2e kx, '+(y, —st)' xbs+(yb —st)'

The 6rst term on the right-hand side of this equation is
the Lorentzian corresponding to passage by point u, the
second by point b. The time integral of V b is easily
shown to be

where
V.b(t)= V.b (t)+V.b (t),

V.b'(t) = 4 (r., t) 4(rb,—t)

(3.23)

(3.24)
V,bs(t)dt = (k/4e)(sgnx, —sgnxb), (3.29)

(")= (1/ )(~/cjt) a(r, t) dl. (3.25)

"B.D. Josephson, Advan. Phys. 14, 419 (1965).

The scalar potential P is given by Eq. (3.22) and the
vector potential a is given by Eqs. (3.18) and (3.4).

The term V,b~ is independent of the spatial con-
figuration of the voltmeter leads above the super-
conductor surface; it depends only upon the relative
positions of the points u and 5 and the vortex axis. A
convenient explicit expression for V,b is

v.b'= (tt/2e) I x~(yb'/pb" y-/p-')—
i(xb/pb' * lp ')j—(3 26)—

where the coordinates of the point u relative to the
vortex axis are described by x„=x„—x;, y„=y,—y, ,
and p, ,.s= x„'+y„', and corresponding expressions hold
for the point b. We note that U b~ may also be written as

V.be= (ts/2e)cj(S b, —S „;)/Bt, (3.27)

where yb; and q; are phase angles, measured in a
counterclockwise sense about the vortex axis, and
(pb; —q „)is the angle subtended by the points b and a
at the vortex axis. Equation (3.27) may be interpreted
as the josephson condition, 'P and (&pb; y~) may be—

where sgnx=x/IxI. We note from Eq. (3.28) that V bs

does not vanish when the vortex line passes outside the
two contacts even though the time integral of V,b~

does vanish in this case.
The term V,b~(t) given by Eq. (3.25) can be large in

magnitude only when the vortex line is in the vicinity
of the measuring circuit. However, the time integral of
V b~ vanishes if Ir;I ~~ in the limits t ~ & ~, as is
appropriate for Qux Qow, since

V.b~(t) dt

(1) b

La(r, —~)—a(r, ~)j d1=0. (3.30)
(el ~Ãbf]

The specific behavior of V,b~ depends upon the spatial
configuration of the voltmeter leads above the super-
conductor surface.

To demonstrate some of the characteristic features of
V,b(t) arising form the measuring circuit configuration
dependence of V,b~, we consider the idealized experi-
mental configuration shown in Fig. 2. Uoltmeter leads,
attached at the points u and b, extend perpendicular to
the surface to points u' and b' at u height so above the
surface. The lead from point a then passes parallel to
the surface straight over from u' to O'. From this point
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VOLTMETE R

A

probe contacts, a sharply peak. ed voltage pulse of
narrow width is produced.

For the case of arbitrary sp, provided sp))), V,&~ may
be computed with the aid of Eq. (3.6). The resulting
value of V, ~ in the simplifying case that x~ ———x, and

y = y&=—0 is given by

b

ZQ

CM
I

0

JlCM

k~ X&sp

U.s(t) = ——
2+s 2+ (~t) 2]l/2

(
1 1

X +—
~

(3 32)
x.'+ (nt) ' so'+ (r t) 'I

In the limit as sp ~~, we return to the simple
Lorentzian description discussed above, except that the
two Lorentzians coalesce under these conditions into a
single one

V.p(t) = (»/e) x./[x. '+ (vt) '], (3.33)

with full width at half-maximum 2x,/v determined by
the probe separation. This is shown in Fig. 4 as the solid
curve labeled ep/x = ~ . As so decreases, the pulse shape
is altered by the presence of a new characteristic length
sp as shown by the dashed and dot-dashed curves in
Fig. 4. In the limit as so/x, —+ 0, Eq. (3.32) takes on
the value

V. (t) = (»/e)»/Leo'+(~t)'] (3.34)

FIG. 2. Measuring circuit for which voltage pulses are calculated
in the text. Voltmeter leads connect the voltmeter terminals A
and 8 to points g and b on the superconductor surface as shown.

the two leads lie alongside each other and extend out to
the voltmeter, to which they are connected at points A
and B. In evaluating the integral in Eq. (3.25) for this
circuit, we note that since a has components only
parallel to the surface, its line integral vanishes along
those segments of the path C~ which are perpendicular
to the surface. Furthermore, the contributions along the
adjacent leads extending from 6' to the voltmeter cancel
each other. We may assume that a is suKciently small
in the vicinity of the voltmeter that the contribution
there may be neglected. Thus, the only contribution to
V,g~ is that along the straight line path C~' from a' at
r,'= (x„y,so) to fp' at rb' ——(x&,y&,so), such that

i.
V.,~(t) a(r, t) dl. (3.31)

c Bt

Let us now examine the dependence upon sp of the
pulse shape, V b versus t, produced by a vortex line of
coordinates r;= (O,vt, 0) moving with constant speed v

in the y direction.
In the limit as sp —+~, V,g~ vanishes, and we have

simply V g= V, g . The resulting voltage pulse V ~

versus t, given by Eq. (3.28), is shown in Fig. 3.We note
that as the vortex line passes very close to one of the

with full width at half-maximum 2sp, 'v determined by
the height sp of the crossing lead above the supercon-
ductor surface. The decreased width and increased peak
height is seen clearly in the solid curve in Fig. 4 appro-
priate for the case so/x =- 0.1.

As sp decreases to zero, one might suppose that the
resulting voltage pulse becomes a 6-functionlike peak
of infinite height and zero width. However, this is not
the case, since the penetration depth X becomes the
characteristic length and 2X/v becomes the charac-
teristic width of the pulse. The shape of the pulse in the
limit sp —+0 is no longer Lorentzian, but, as is seen
from Eq. (3.10), must be calculated numerically using
modified Bessel functions. When sp=0 and X((x„ the
resulting pulse shape V, q versus t is as shown in Fig. 5.

The above calculations demonstrate the usefulness
of the London model, which enables the scalar and
vector potentials to be calculated in a relatively simple
fashion. A possible objection to this treatment is that
the London model does not correctly account for the
electric current and the magnetic induction in the
vicinity of the superconductor surface and the vortex
core. We note, however, that although P is calculated
from the I.ondon equations which contain the single
parameter X, the resulting solution for 4 outside the
core is independent of X and is expressible simply in
terms of the fundamental constants $z and e, the vortex
velocity, and the appropriate macroscopic lengths. This
suggests that our result for V b8 for probe contacts
outside the core region is exact and that the same result
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CONTACT a

(xo yo O)
)) y

I

() -=VORTEX I

V

CONTACT b

(x b, yb, 0)
I 1

I IO I

r; = (O,vt, O}

I I I I I I
I I I I I I

Ub=liv/2e xb

TIME t
y, /v

FIG. 3. Theoretical measured voltage pulse V, & versus time t produced by the motion of a vortex line (magnetic Aux p0 out of the
paper) with coordinates r;= (O,vt, O) through the circuit of Fig. 2, with s0 ——~, whose relative dimensions are shown in the inset. The
total pulse (solid curve) is the sum of two Lorentzians (dashed curves), as discussed in the text. The area under the curve of U q versus
t is ep/c=h/2e.

will be obtained with any more correct theory. By the
same argument, our result for U b~ is probably also
exact under these conditions, provided the voltmeter
leads extend perpendicular to the superconductor
surface to a height somewhat greater than X and there-
after are kept farther than X from the surface. Ke thus
expect that, for most experimental geometries used for
Aux-Qow measurements, voltage pulses may be accu-
rately calculated by the methods used in this section.

tion to the measured voltage at time t from vortex i,
which we denote by V,bb(tp;, v,), is a function only of

y, (t) and v, (t) = I'),(t) Moreover. , V,bs(y;, v,) may be
expressed, in general, as the time derivative of a function
F,b which depends for a given measuring circuit only
upon g;(t):

V. (bye;, )v= BF.b(tp;)/ctt. (4 &)

For the case of the semi-inhnite superconductor Ii,~ is
given by

IV. FLUX-FLOW NOISE VOLTAGE AND
POWER SPECTRUM

A. Basic Formalism
where

n(r —g,) = a(r —g,}—a'(r —g,) .

(4.2)

(4.3)
In Sec. III we developed a method for determining

the voltage pulse produced by a vortex line in a semi-
infinite superconductor whose intersection at time t

with the surface is specified by the coordinates r;= y,
= (x,,y;,0) and which moves through a prescribed mea-
suring circuit. In the usual Aux-Row experiment the
measured voltage arises, of course, not from a single
vortex line, but from a distribution of Qux lines through-
out the specimen. The fiux-Row voltage may thus be
expressed as the algebraic sum of contributions from
individual vortex lines.

In order to formulate this, it is useful to note that for
a given measuring circuit con6guration, the contribu-

The term a, dehned as

where
a(r e') = tto (p s)0—

t
'= L(~—**)'+ (y —y') 'j"'

O'=
t y(~ —~') —*(y—y') j/t ',

(44)

a'(r —e') = (v p/2~t ')
~t

' (4.5)

is just the vector potential produced in the space above
the superconductor by a vortex line at y; and is given
by Eq. (3.4) or by Eqs. (3.6) and (3.10) in the ap-
propriate limits. The term a', dehned as
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-zo /x~ =O. l

2.5 nv/e x,

I M
I
I 1
t

1

—zo /x~ =0.5

zo/x~ = I

zo/x~ = 2

zo/x() =

-3xg
V

-2xg
V

Xa
V

0

TIME t

Xg

V

2X ci

V

Fn. 4. Theoretical measured voltage pulse V ~ versus time t produced by the motion of a vortex line of coordinates r;= (O,vt, O)
through the circuit of Fig. 2 but with xq= —x~ and y, =ye=0, for various values of the ratio so/x, . The area under each curve of Vcy
versus t is gab/c=h/2e.

is chosen such that

1B
a'(r —g„) dl =P(r.) —f(r b) (4.6)

c 83 ~tgM

gives the scalar potential difference between points g
and b produced by a vortex at g; moving with velocity
v, . The measured flux-flow voltage V,b(t), produced by
a given distribution of vortices, is thus expressible as
the sum of the individual contributions,

where the sum extends over all vortices i in the
superconductor.

We now wish to examine the dependence of V,b(t)
upon the distribution of Aux within the specimen. It is
thus convenient to express the vortex density function
in terms of a set of two-dimensional 8 functions centered
at the vortex positions,

(4.8)

The vortex current density,

V-b(t) =2 V. '(e', v') =2 ~~. (.')/~t, (4 /) 3(e,t) =Z i'(t) ~"'(e—e'(t)), (4 9)
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I.O—
I I I I pressed as

+(T)=2 d'p d'p'&-s(9 e' T)L~F.b(e)/»-j
aP

xC».b(9')/»'pj, (4.14)

0.5

O
-6X

V

-4X
V

-2)
V

TtME t

2X
V

where the vortex-current correlation function E p,
dehned by

&- (»T)=(L3-(,t) —(3-( )) j
X L3s(e', t+T) —(3s(e')) j), (4.»)

contains information about the Aux distribution, the
transport current density, and the inQuence of pinning.
The dependence of 4(T) upon the measuring circuit
configuration enters only through the terms in Eq.
(4.14) involving F,b

The experimentally measured power spectrum w(f)
is derived from 4'(T) via the relation"

FIG. S. Theoretical measured voltage pulse V, & versus time t
produced by the motion of a vortex line of coordinates r;= (O,vt, O)
through the circuit of Fig. 2, but with xf = —x, y =yf

——0, and
so=0. The area under the curve of V, b versus t is q b/c= h/2e

w(f) =4 dT 4(T)cos2'IrfT.

We note that, by the inverse Fourier transform,

(4.16)

obeys the continuity equation describing conservation
of Aux lines,

'It(T) = df ro(f) cos21rfT. (4.17)

Bn(p, t)/Bt+V' ~~(y, t) =0. (4.10)
The mean square noise voltage is related to w(f) via

The time-dependent measured voltage may then be
written in the following ways:

V. (t)=Z» ( ')/cit=E "~F ( ')

(~V., ),=e(O) = df~(f) . (4.18)

B. Model Calculations

dp3( pt) VF.b(9)

d'p3 (p, t) BF.b(y)/Bx, (4.11)

where n=1(2) denotes the x(y) component.
The time average V & of the measured voltage may

be expressed in terms of the time-average vortex-
current density (3(y))&.'

V.b
——p d'p(3. (y)),cIF.b(9)/». . (4.12)

(We shall henceforth denote space averages with
brackets and time averages either with bars or with
brackets and subscript t).

The autocorrelation function,

As shown above, the experimentally measured
quantities V, b and m(f) may be calculated from the
vortex current density Q(p, t), However, such a calcula-
tion requires, in general, detailed knowledge of the
transport current density distribution which drives the
vortices, the distribution of pinning sites and their
dynamical effects, and the vortex density distribution.
ln the following, we shall carry out a few model calcu-
lations which illustrate some of the main effects upon
the experimental quantities.

and

3(g,t) =n(p, t)v,

(3),=nv,

(4.19)

(4.20)

Constant Vortex Velocities

We consider first the hypothetical case in which all
vortices in the specimen move with constant velocity
v= vg in the y direction. If n is independent of position,
then

%(T)= (bV, (t)bV, (t+T))„ (4.13) V.b

nappe(x.

xb)——/c— (4.21)

"D. K. C. MacDonald, Eoise and Jt/uctuations (John Wiley
where 8V, b(t)= V,b(t) —V, b, may be compactly ex- Sons, Iuc. , New York, 1962), Chap. 2, p. 48.
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where

&»(9)=n"9"'(9)+ng(e) —nj.
The radial distribution function is defined as

(4.24)

We have used the result that F,b(x,y) has the value
F,b(x, —~) =0, and that it either attains the value
F b(x, ~ ) = pp/c if the vortex passes between the voltage
probe contacts (xb(x(x,) or else returns to the value
F b(x, ~)=0 if the vortex passes outside the contacts
(x(xb or x)x,).

The vortex-current correlation function in this case
has the form

E a= 5 u5a2n'([n(y, t) —n$[n(y', t+ T) —n$) &. (4.22)

For the case of a liquidlike vortex line arrangement
within the specimen, the density-density correlation
function may be expressed, using procedures applicable
to the electron gas, " in terms of a two-dimensional
6 function describing the correlation of a vortex with
itself and a radial distribution function g(p) describing
its correlation with all the other vortices. Then

E.a(y, g', T)= Kg, (y —g'+ vT) b~rhpg, (4.23)

tions the radial distribution g(p) has the value unity in
the limit A ~~, and the autocorrelation function
becomes

+(T)= rin~G( vT) .
Since G also obeys

(4.29)

d TG( rrT) =—(rpb/c) '(x. xb—)/2v, (4.30)

the corresponding power spectrum w(f), given by Eq.
(4.16), obeys, in the limit f +0, —

re(0) = 2nv(rpb/c)'(x, —xb) = 2V, b pb/c (.4.31)

To be more realistic, however, we should take into
account the short-range correlation between vortex
positions. Let us assume that g(y) has an appropriate
spatial variation out to some characteristic range of
correlation p„beyond which g(y) =g„, a constant. A
measure of the correlation between vortex positions is
the integral

g(e) =(n-~') '2 & ~'"(e+er —e*), (423)
d2p[ng(y) —nj= 1V, , p( p, (4.32)

where the sums are taken over the X vortices in the
specimen. (We shall be interested, however, only in the
limit iV —+~ .) The quantity ng(g) is the average
density of vortices per unit area at a point g when a
vortex is known to be located at the point y=0. As

p —+ 0, g(g) —+ 0, since vortices repel each other at close
range, and as p —+~, g(g) ~ 1, since there is no correla-
tion between vortex positions at large separations.

Upon introducing a change of variables we note that
the autocorrelation function may be written as

4(T) =na d p[8~ (y)+ng(p) n]G(p vT), (—4.26)—
where

G(e) = d'p'[» b(e'+9)/~y'jPF-b(e')/~y'j (4 2&)

contains all the information concerning the spatial
configuration of the measuring circuit. The function

G(p) is large only in the region between and near the
voltage probe contacts, is typically a slowly varying
function of p by comparison with g(y), and decreases
rapidly as p exceeds a length of the order of the voltage
probe contact separation. Using the same argument as
that leading to Eq. (4.21), we 6nd that

d'pG(e) = L~o(x. »)/c j'— (4.28)

In the event of no correlation between vortex posi-

"D. Pines, Elementary Excitations in Solids (W. A. Benjamin,
Inc. , New York, 1963), Chap. 3, p. 72.

where we interpret X, as the number of vortices whose
positions are correlated with the position of a given
vortex. This number would be large, for example, if
vortices tended to travel in "clumps" or "bundles" of
high vortex density. If the range p, is small by com-
parison with the range of G(y), then, since g„—+ 1 in
the limit Ã —+~, the autocorrelation function becomes

0 (T)= (1+1V,)na'G( —vT) . (4.33)

The corresponding power spectrum rc(f) obeys, in the
limit f~0,

(0)=(1+&.)(21'. o/) (434)

We note that the magnitudes of this autocorrelation
function and the power spectrum are larger by a factor
of 1+%, than those in the uncorrelated case, Eqs.
(4.29) and (4.31). A similar enhancement factor was
required in the interpretation of van Gurp s experi-
mental results, ' in which this factor was regarded as the
number of Ruxoids in a Aux bundle.

As an explicit example of the power spectrum result-
ing from Eqs. (4.33) and (4.34) for a, given measuring
circuit configuration, the theoretical result for the ex-
perimental configuration of Fig. 2 with so= ~ is

ro(f) = w(0)( —', exp( 2rr f/f, ) cos(2 f/f—„rr)

+2(f /2rrf)[1 —exp( —2rrf/f ) cos(2rrf/f„))}. (4.35)

The details of this calculation are left to Appendix A.
The shape of the power spectrum is determined only
by the characteristic lengths of the measuring circuit,

I
x bl

=
I
x —xbI »d ly. bl = ly. —ybl »d t"e speed

v of the vortex motion, which together fix the charac-
teristic frequencies f,=a/Ix bl and f„=m/ly, bl. The
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Pro. 6. Theoretical reduced power spectrum w{f)/w{0) versus
reduced frequency f/f„where f =o/Ix, —xbI, for the measuring
circuit of Fig. 2 with s0 = ~ and for the model described in the text
of vortex motion with constant speed v in the y direction. The
dependence upon the circuit geometry is shown for several values
« f*//. = Iy.—yb I/I*.—» I

reduced power spectrum w(f)(w(0) is plotted versus

f/f, for several values of f,/f„= ~y b~/ ~

x b~ in Fig. 6.
An interesting feature of this power spectrum is the
behavior w(f) ~ f ' as f +~, arising —physically from
the sharply peaked voltage pulses produced by vortices
passing very close to the voltage probe contacts, here
assumed infinitesimal in size. This leads to a log-
arithmic divergence in the mean square noise voltage
(8V,b')=4'(0). In a realistic situation the power spec-
trum will decay more rapidly than f ' for frequencies
above f, e/L, , where L„„ is the larger of the
radius of the probe contact or the vortex core radius.

Z. iVoise Reduction mith Long-Range Correlation

For the case that the range of correlation p, of the
intervortex separation is large by comparison with a
typical measuring circuit dimension, as in the case of a
nearly perfect vortex lattice, there should be a great
reduction in the noise voltage. A simple argument,
though involving some rough approximations, may be
helpful to demonstrate this effect: Each vortex which
passes between the voltage-probe contacts produces a
voltage pulse whose time integral ls pp/c. Since the
width of the pulse in time is of order L/e, where L is a
typical circuit dimension and v is the vortex speed, a
vortex makes a contribution to the measured voltage
of order v go/cL when it is in the vicinity of the contacts.
The voltage measured at a given time is of order
V,b(t) E'epp/cL, where 1V' nL' is the number of
contributing vortices between and near the probe con-
tact sat this time. The time-average voltage is thus of

order V, b nqpLe/c If. the positions of vortices are
uncorrelated, then the number iV' of contributing vor-
tices fluctuates statistically with time with excursions
of order (E')"' n"'L from the average value E' nL'.
This produces a fluctuating component bI/' ~ of the
measured voltage and a mean square noise voltage of
order (5V,b')i n(&go/c)' V b(wpo/cL)

However, if there is a high degree of correlation
between vortex positions over a range p, large by com-
parison with L, the number of contributing vortices E'
and, hence, the measured voltage V,b(t) E'ey p/cZ are
maintained essentially constant over times of order
p,/e, large by comparison with L/e. This results in a
low-noise situation in which the magnitudes of the
fluctuating component of the measured voltage, the
mean square voltage, and the power spectrum are
reduced from those in the uncorrelated case.

It would be interesting to see whether such a state of
long-range correlation, as in the case of a nearly perfect
vortex lattice, could be produced experimentally during
Qux-Row measurements. Perhaps this could be accom-
plished at fields near H, 2 when the vortex lattice pre-
sumably becomes very rigid. The chief experimental
evidence for such a state would be a significant change
in the shape of the power spectrum from that calculated
using Eq. (4.33) for the case of short-range correlation.
If the range of correlation p, were much larger than a
typical circuit dimension L, then the autocorrelation
function 4'(T) would vary on a time scale given by p, /v
rather than L/e and the power spectrum w(f) would
vary on a frequency scale given by v/p, rather than
e/L. Moreover, the shape of the power spectrum versus
frequency would be independent of the spatial con-
figuration of the voltmeter leads above the surface of
the superconductor. If p, does become infinite at II,2,
this would lead to the intuitively pleasing situation in
which the power spectrum in the mixed state changes
shape as the applied field is increased and goes over
continuously to the normal state value, essentially
zero, at H, 2.

3. Pinning sects
%e now consider some effects of an inhomogeneous

distribution of pinning centers upon a set of uncorre-
lated vortices. As a model to compute these effects we
shall assume that all vortices move in the y direction
but with a speed determined by the local pinning forces.
It is convenient to introduce a function V(x, , t —t;)
which specifies the y coordinate of a vortex i of x
coordinate x; which crosses the x axis at time t,. Then
the vortex position ti, (t) = (x;,y, (t)) is given by

(4.36)

We note that y, (t;) = 0 by definition. The vortex density
distribution is then

n(p, t) =g 6(x—x,)5(y —V(x, , t —t,)), (4.37)



JOHN R. CLEM

The time average of the vortex current is now easily
computed by replacing the sum over vortex positions

by an integral

dx; dt;(n. )0(x;), (4.39)

where (n) is the space-average density of vortices per
current area of the specimen and 8(x;) is the time-

averaged speed of a vortex as it moves along the plane
x=g;. Thus,

&3(x)) = (n)8(x).

The measured voltage V,b(t) is given by

(4 40)

(t) = d p3(ti t)BF. (ti)/By (4.41)

and its time average is

and the vortex current is 3=~~/ where

Q(y, t) =Q Y(x;, t —t,)b(x—x;)

X~(y —Y(*' t —t')) (4 38)

determined by the spatial variation of 8(x) over the
specimen.

For the case that Y'(x, t) is not independent of time
but varies on a time scale set by L„/8 where L„ is the
characteristic distance between pinning sites, the auto-
correlation function +(t) has superimposed upon it an
oscillatory structure of period L„/8. The corresponding
power spectrum still obeys Eq. (4.47) in the limit as

f +0,—but possesses additional structure at a frequency
of the order of 8/L„. However, if L„is small by cornpari-
son with typical circuit dimensions, then this frequency
is relatively large and the corresponding structure is not
observed if one examines only the frequency range from
zero to 8/(x —xb). Moreover, at these low frequencies,
the power spectrum may be calculated to good approxi-
mation with the use of the autocorrelation function
%(T) of Eq. (4.46) in which only the time-averaged
value 8(x) appears.

The eRect of short-range correlation between vortex
positions may evidently be, taken into account, if only
crudely, by the inclusion of the factor 1+%, on the
right-hand side of Eq. (4.46). The quantity E„a
measure of the correlation of vortex positions, must be
defined in a fashion similar to that of Eq. (4.32). The
value of w(f) in the limit as f +0 thus -becomes

V. =(( )po/) dx8(x) . (4.42)
u (0)= (1+1V )(2V bop/c). (4.48)

The calculation of the vortex-current correlation
function, including only the correlation of a given vortex
with itself, Inay be expressed in terms of a sum on i.The
time average may again be carried out by the replace-
ment of this sum by the integral as in Eq. (4.39) with

the result that
E p=E225 25p2) (4 43)

where

K»(y, y', T) =(n)8(x) b(x —x') dtY(x, t) b(y Y(x,t))—

+(T) = d'p(n)8'(x) t'BF.b(x,y)/By j
X(BF b(x, y+8(x) T)/By j. (4.46)

Although the power spectrum w(f) obeys, in the limit
as f +0, -

(4.47)w(0) = (2V.bop/c),

the same value as in the case of a constant vortex speed,
the shape of the power spectrum is altered from that
appropriate for a constant speed. We may regard this
as arising from a spectrum of characteristic frequencies

)& Y(x, t+T) b(y' Y(x, t+T)). —(4.44)

For the case that Y(x,t) =8(x)t, we have

K»(ti, ti, T) = (n)8'(x) b(x —x') b(y —y'+8(x) T) . (4.4&)

The corresponding autocorrelation function is

Experimental studies of the power spectrum at high
frequencies and low current densities may, as discussed
above, yield information about the characteristic
distance between pinning sites. However, such studies
could be complicated by a similar phenomenon which
van Gurp calls Qicker noise. This noise, which occurs
only above the helium X point, arises from time-varying
vortex velocities associated with local temperature
variations produced by helium-bubble formation.

4. Flux Line Dislocatio-n Dipoles

Kramer" has shown that under certain conditions
Aux transport is best described in terms of the motion
of flux-line dislocation (FLD) dipoles. Since this de-
scription is likely to be an increasingly important key
to the understanding of Aux motion and Aux pinning, it
is useful to see how the above treatment of the noise
voltage can be used to account for I'LD-dipole motion.

We consider a semi-infinite superconductor in the
half-space s(0 containing vortex lines parallel to the
s axis. We suppose that the vortices form a perfect
triangular lattice except in the vicinity of two edge
dislocations of opposite sign, a dipole, sketched in
Fig. 7. These dislocations are parallel to the s axis, with
both sense vectors $ in the s direction, and intersect the
plane s= 0 at time t= 0 at the points g = (—-',x„—-', y,)
and ti+=(ipx„ i2y,). The Burgers vectors are for ti,
b = bg, and for y+, b+———bg. The length b of the

"E.J. Kramer, J. Appl. Phys. (to be published).
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where the sum extends over all dipoles, specifies the
number of FLD dipoles per unit area. The dipole current
density is given by

3~(e,t) =nd(e, t)v~ (4.51)

Since each dipole transports (n)bx, flux quanta, 'the
vortex current density is given approximately by

g(g, t) = (n)bx, Qg(p, t) = (n)bx, nd(y, t) vg, (4.52)

ys/2

x
I

and its time average is given by

(3),= (n)bx, (n,)v&.

Thus, the time-averaged measured voltage is

(4.53)

S SX x I

2, 2
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FIG. 7. Schematic view of a dipole of edge dislocations, indicated
by the symbol J, of glide plane separation x, in an otherwise
perfect triangular vortex lattice.

Burgers vector is equal to the intervortex spacing. Thus
b'= 2/(n)v3, where (n) is the space-averaged density of
vortices per unit area. The edge dislocations are as-
sumed unable to climb and able only to glide in the
parallel glide planes x= ——,'x, and x= ~~x,. From con-
sideration of the interaction energy between the dis-
locations, such a dipole is found to achieve a stable
equilibrium only when y, =x,.'4

If the dipole moves with constant velocity vz= uzi in
the y direction, scalar and vector potentials are gener-
ated by the collective motion of vortices in the vicinity
of the dipole. As shown in Appendix B, the measured
voltage V ~ produced by a dipole which is at the origin
at time 3=0 is given to good approximation by

V.p=(n)bx, aF.,(v.t)/at. (4.49)

As seen by comparison with Eq. (4.1), the resulting
measured voltage appears as if it were produced by a
bundle of (n)bx, Aux quanta at the site of the dipole
moving with the dipole velocity vd.

We now consider an array of such dipoles whose
centers intersect the plane a=0 at time t at the co-
ordinates r, = p, = (x, ,y, ,0). The dipole density function,

where the sums are taken over the Ã~ dipoles in the
specimen.

In the case of no correlation between dipole positions
we obtain the analog of Eq. (4.29),

4 (T) =n~((n)bx. )'v~'G( —v&T). (4.58)

The corresponding power spectrum, given by Kq.
(4.16), obeys, in the limit f +0, —

w(0) = ((n)bx.)(2'V,
p happ/c) . (4.59)

If there is correlation between dipole positions charac-
terized by a range p&, as wouM be the case if dipoles
tended to travel in groups as suggested by Kramer, '
then a measure of this correlation is the integral cor-
responding to Eq. (4.32),

d'pound gg(p) ng) =X,g, —p(qg. (4.60)

%e interpret S,~ as the number of FLD dipoles whose
positions are correlated with the position of a given
dipole. If pd is small by comparison with the range of
G(y), then the autocorrelation function is given by Eq.
(4.58), multiplied by (1+IV,&). The corresponding power
spectrum obeys, in the limit f~ 0,

w(0) = (1+iV,g) ((n)bx, )(2V.p happ/c) . (4.61)

V.p
——(n)bx, (ng)q pug(x. —xp)/c. (4.54)

For the case of a liquidlike arrangement of dipoles
within the specimen the vortex-current correlation
function has the form

I'-s(t. t.'») =It»(t. t. +v—d&)b-pat p, (455)
where

& ( ) = (( )b*.)' " .Lb'"( )+ ~ .( ) —.3 (4.56)

The dipole radial distribution function gq is defined as

g~(e) =(n~&~) 'Z Z b"'(e+ei —e') (4.5&)
i jwi

nd(p t) =Q b"'(p p'(t))

' P. R. N. Nabarro, Advan. Phys. 1, 271 (1952).

(4.50) The prefactor (1+%.q)((n)bx, ) plays the role of the
number of flux quanta in a flux bundle as defined
operationally by van Gurp. '
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If the range of correlation p& is large by comparison
with typical circuit dimensions, there should be a
significant reduction in the noise voltage and in the
value of w(f), as discussed earlier.

The influence of an inhomogeneous distribution of
dipole pinning centers upon a set of identica, l FLD
dipoles can be estimated with a model similar to that
lea, ding to Eqs. (4.42)—(4.48). The results may be ex-
pressed in terms of the time-averaged dipole velocity
Pd, (x), for dipoles moving in the y direction with
x coordinate x, and the correlation factor Ã,& of Eq.
(4.60). The time-averaged measured voltage is

V, q ——((n) bx, (na) po/c) dx8d(x), (4.62)

where (nz) is the spa, ce-average density of dipoles per
unit area. For short-range correlation the power spec-
trum obeys Eq. (4.61) in the limit f +0. If—the typical
distance between dipole pinning centers I,„d, is small by
comparison with a characteristic circuit dimension I-,
then the power spectrum should exhibit structure at
high frequencies of order Sd/L„&. However, at low fre-
quencies of order Hd/L and below, the power spectrum
may be calculated to good approximation from

4(T)= (1+1V,g)((n)bx, )'(na) d'p[Hd(x)]'

XLBF„&(x,y)/By]LBF„&(x, y+Ha(x) T)/By]. (4.63)

Evidently, long-range correlation and the accompanying
noise reduction can occur only near H, ~. However, at
this field pinning effects are relatively unimportant.

and current density increased. The present analysis thus
lends support to Kramer's" conjecture that, at low
values of the apphed magnetic field and the transport
current density, Aux Bow is characterized by the corre-
lated motion of FLD dipoles. At higher values, pre-
sumably 1V,a and (n)bx, would decrease, reducing the
value of Eg. As the applied field approaches H, 2 and at
high current densities, the FLD dipole density evidently
becomes very large and) the flux distribution is probably
better described in terms of correlated motion of in-
dividual vortices. Near H, ~, where van Gurp found
N &

= 1, the noise spectrum seems to be characterized by
the motion of individual vortices in an essentially
uncorrelated, Auidlike distribution.

A puzzling feature of van Gurp's experiments' is that
w(f) was observed to exhibit a maximum at a low fre-
quency and a sharp decrease at still lower frequencies.
This behavior implies structure in the autocorrelation
function %(T) at times T large by comparison with the
time taken for vortices to traverse the measuring circuit.
However, such behavior is not found for the simple Aux
distribution models considered above. Perhaps some
sort of time-dependent, long-range correlation of the
Aux distribution is responsible for this effect. The
physical origin of the low-frequency maximum in w(f)
remains, we feel, an open question and warrants addi-
tional experimental and theoretical investigation.

So far we have seen that by examining the zero fre-
quency limit of w(f) a physically interesting quantity,
the bundle size Ã&, may be obtained. Another important
piece of information bearing upon the validity of the
FLD dipole description should be obtainable from an
examination of the frequency dependence of w(f) We.
consider the dimensionless parameter

C. Discussion of Previous Experiments R= cV,b/Bf, L~L2, (4.65)

The effective bundle size, using the name given by
by va,n Gurp' to define the quantity

iV b= w(0)/(2V. gq p/c), (4 64)

has the following values under the conditions described
above:

(1) 1Vq= (1+1V,a)(n)bx„ for motion of flux-line dis-
location dipoles of Burgers vector b and glide plane
separation x, with short-range correlation,

(2) 1V b (n)bx„ f=or uncorrelated motion of FLD
dipoles,

(3) 1V b (1+1V,), for ——motion of individual vortices
with short-range correlation,

(4) 1Vq= 1, for uncorrelated motion of indivudal
vortices, and

(5) 1Vb«1, for long-range correlation.

In van Gurp's experiments, ' the value of E~ was
observed to be very large (10'—10') at low applied 6eld,
low temperature, and low transport current density,
but to decrease towards unity as &he field, temperature,

where 8 is the average magnetic induction threading
the specimen, I.q and I.2 are appropriate measuring
circuit dimensions, and f, is a frequency, characteristic
of the low-frequency behavior of w(f), suitably chosen
such that: (1) R=1, for the uniform motion of indi-
vidual vortices, and (2) R=(na)bx„ for the uniform
motion of FLD dipoles of space-averaged density (nd).

As an example, we consider the uniform motion of
either individual vortices of velocity v= vg or of FLD
dipoles of velocity va= aqua through the measuring
circuit of Fig. 2 with so= ~ and y =y&. The ap-
propriate measuring circuit lengths for this circuit are
Lr Lg ~x, xb~. If th—e flu——x flow is described by the
motion of individual vortices, then f,= v/

~
x,—x q ~,

and from Eqs. (4.21) and (4.65) we obtain R=1.EIow-
ever, if the Aux Row is described by the motion
of well-separated ((na)x, '«1) FLD dipoles, then
f,=aq/~x, —xb~, and from Eqs. (4.54) and (4.65) we
obtain R= (na)bx, «1. It should thus be easy to deter-
mine experimentally which of the two Aux-Qow de-
scriptions is appropriate.
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Applying this analysis to van Gurp's experimental
results, ' we find additional support for the FI.D dipole
description at low transport current density. For the
interpretation of his experiinents, van Gurp found it.
necessary to introduce an empirical quantity p which
he called the pinned fraction of vortices. From Eqs. (3)
and (9) of Ref, 2, we note that 1-P plays the role of R
defined by Eq. (4.65) above and may be regarded in the
present context as the fractiori of vortices (nq)bg, which
are effectively transported at the FLD dipole speed eg.
Kith this interpretation, van Gurp'8 experimental
results indicate that, for the specimens studied,
R= (1—P) =- (nd)bx, was considerably less than unity at
low transport current density, implying low FLD
dipole density, and that R increased at higher currents,
implying increased dipole density.

V. TYPE-I SUPERCONDUCTORS

As was shown by Solomon, " the behavior of type-I
superconducting strips in the intermediate state is in
many respects similar to that of type-II superconduct-
ing strips in the mixed state. At low applied transverse
fields, Aux enters the type-I strips in the form of normal
domains containing Aux C))po, which move under the
inAuence of an applied current and produce a Aux-Aow

voltage. At high fields the normal regions coalesce into
immobile domains which align themselves across the
specimen perpendicular to the applied current. The
current then Aows through rigid normal domains, re-
sulting in an Ohmic voltage drop across the specimen.
Thus, the measured voltage arises from Aux Aow at low
fields and from Ohmic resistance at high fields.

In the low-field case the time-dependent Aux-Aow

voltage and its corresponding power spectrum may be
calculated by methods similar to those used in the
previous sections, except that the Aux unit yo must be
replaced by C. As in Sec. III, the scalar potential 0'
generated by the Aux motion may be regarded as arising
from a motion-induced charge density on the bound-
aries of the moving normal domains. The measured
voltage V,b(t) may be expressed in terms of V„b (t) and
V,b~(t), which have the same qualitative properties as
discussed in Secs. III and IV. The power spectrum
calculations of Sec. IV thus apply to the intermediate
state, provided po is replaced by C. For example, in the
case of the motion of a liquidlik. e distribution of un-
correlated normal domains, the power spectrum w(f)
has the value w(0) =- 2V bC /c in the limit f +0. —

Park. 's conjectures' that the potential term V &

obeys V &8-- 0 in the intermediate state of type-I super-
conductors and that V.t, '((t/".

& in the mixed state of
type-II superconductors near the lower critical field are
not supported by the present model, nor is his conjecture
that the time-varying components of the measured

"P.R. Solomon, Phys. Rev. 1'79, 475 (1969)."J.G. Park, J. Phys. C2, 742 (1969).

voltage arise entirely from Auctuations in V,&~. In the
present model V,q= V, q in both the intermediate and
the mixed state. Moreover, Park's claims that the
decrease in noise in the mixed state observed with in.-

creasing applied magnetic field corresponds to the
decrease in the ratio V b~/V, b and that the noise
decrease has nothing to do with a decrease in size of the
Aux entities with increasing fieId are not justified in
light of the present calculations.

VI. DISCUSSION

The above model calculations provide a useful de-
scription of measured time-depend. ent Aux-Aow voltages.
Perhaps the chief asset of the calculation of Sec. III is
that the potentials, fields, and measured voltage pro-
duced by a moving Auxoid can be expressed in a simple
analytic form. An interesting result is that the time
integral of V, & over the history of a single Auxon yields,
a contribution of magnitude pb/c=h/2e if the fluxon
passes between the voltage probe contacts and zero
contribution otherwise. Of interest also is the result
that voltage pulse shapes are easily calculable and are
seen to depend upon the spatial configuration of the
measuring circuit leads. That the pulse shapes also
depend upon the specimen shape will be shown in a
subsequent paper.

That the distribution of Aux within the specimen and
the modes of Aux motion strongly affect the measured
power spectrum is nicely demonstrated by the present
model. These calculations also suggest experimental!
methods to determine whether Aux Aow in type-II
superconductors at low fields and current densities may
be best described in terms of Aux-line dislocation dipoles.

A number of experimental checks on the present
theory would be desirable:

(1) Power spectra could be studied using well-

behaved specimens approximating the geometry of Sec.
III by attaching voltage probe contacts on the center of
a Aat specimen whose dimensions were large by com-
parison with the probe separation. The shapes of the
power spectra versus frequency could be compared with
those calculated for a variety of configurations of the
leads above the surface.

(2) The predicted dependence upon the probe contact
dimensions could be tested.

(3) Power spectra for thin shbs could be compared
with those which may be calculated for small and large
ratios of the probe separation to the specimen width.

(4) Once the characteristic shape of the power spec-
trum for a specific circuit configuration and specimen
shape is well understood, the behavior as a function of
sample preparation, applied niagnetic field, tempera„-
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ture, and transport current density could be studied and
related to pinning e8ects, Aux distribution, and modes
of Aux motion.

The present theoretical description provides, we feel,
a basic framework for the interpretation of experimental
studies of time-dependent Aux-Aow noise voltages and
their corresponding power spectra. Such experiments
show promise of yielding important information about
the nature of Aux Row and pinning effects.
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APPENDIX A

For the measuring circuit configuration of Fig. 2 with
so= ~, the functions Ii ~ and G, obtained from Eqs.
(4.2) and (4.27), have the following properties:

y 3'—tan '
SQ S

BJ .(,(x,y) (po (x.—x) (xb —x)

By 2s.c (x,—x)'+ (y, —y) ' (x&—x) '+ (yt, —y) 2)

(y —y.b)' (y+y. b)'

(2n c x'+y' (x—x,()'+(y —y, ()' (x+x,)'+ (y+y, ()'

t'L(x —* ~)'+(y —y")'j((x+x.~)'+(y+y. ~)'ji

(x2+y2) 2

(A1)

(A2)

where x,z
——x,—x& and y,z=y, yb —The .autocorrelation function %(T), obtained from Eq. (4.33), is given by

4'(T) = (1+N,)nv'G(0, nT) . — (A4)

The resulting power spectrum i()(f) given by Eqs. (4.34) and (4.35) is obtained by carrying out the integration
prescribed in Eq. (4.16).

APPENDIX 8
The displacernent field u( y,xt) at time t for a vortex lattice subject to the edge dislocation dipole defined in

Sec. IV B and sketched in Fig. 7 may be obtained from expressions derived by Nabarro. ' The x and y components
of this field at time t= 0 are

(~ —2 )& (*+l*.)'+8+ix.)')N. (x,y,0) = — —ln
8s (1—0) (x—-', x.)'+(y ——,'y, )'

b (x+-,'x,)' (x——',x.)'
4 (~ —)((*+l*)'+(3+l3")' (*—l*)'+b' —h")'

f (x+lx )(y+2y. ) (*—2*.)(3 —ly. ) ) &,y+ly, y —ly

4 0 —)((*+l*)'+(7+F3")' (*—'**.)'+(x —lx.)'» *+-*'*
(Il2)

where b is the magnitude of the Burgers vector, cr is Poisson s ratio, x, is the glide plane separation, and y, is the
y component of the lateral separation, here assumed equal to x, for stability of the dipole.

If the dipole moves in the y direction with velocity vz ——i)dg, then u(x, y, t) =u(x, y —i)dt, 0), and the vortex-
velocity field is given by u(x, y, t) = i)&Bu(x,y, t)/By At time t= 0, t.he velocity field is thus given by the components

(y+kya)

bi)p (y+-', y.)(x+-',x.)' (y ——,'y. )(x—-', x,)'

2 8—)(L(*+i~)'+(7+ix)V ((*—l*.)'+b —*'x)V

(1—20.)bug
u, (x,y,0) =

~ (& —) (*+-:*)'+b+lx)' (*—l*.)'+8 —8 )'~
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boa t'(x+-', x,)P(x+-',x,)'—(y+-', y,)'j
4 (1—) & E(x+lx )'+(y+ly )'1'

(* ~)L)~ **)+O' 7 ) j)
L(x—'* )'+(y —ly )'3'

68g x+-,'x. x—2x,

2m x -,'x, '
y —,'y, ' x—-', x '

y —&y,
'

P = (J(po/c)(n) d'pu„(9, t) = (Jyo/c)(n)bx, r)d. (87)

The velocity field at arbitrary time t is given by drive the dipole with speed e& is thus
u(x, y, t) = u(x, y vent—, 0).

The measured voltage produced by the moving FLD
dipole may be expressed with the help of Eq. (4.11) in
terms of the vortex-velocity 6eld:

d'p&(e, t) ~F.b(9)

This power must be equated to the dissipation per unit
length arising from the viscous motion of the individual
vortices,

=(n) d'pu(g, t) )7F.b(9) . (85)

D =rt(n) d'pu'(y, t) =rtdvd', (8S)

V b (n)lx BF b(vent)/R (86)

the result quoted as Eq. (4.49).
In the absence of dipole pinning, the terminal dipole

speed vd may be related to the applied transport current
density I by a procedure similar to that used by Kramer
for a screw dislocation dipole. " We assume that a
uniform current density in the negative x direction,
J= —Jx, produces a force per unit length on a single
vortex given by F=JX po/c= (Jpo/c)y. The power per
unit length which must be supplied by the battery to

Since the velocity 6eld is well localized in the vicinity
of the dipole, V'F, b(9) may be replaced to good approxi-
mation by its value at y=v&t. After performing the
remaining integration, we may express the result as

where
oo ——(n)bx, Jq o/rtdc, (89)

(n)b' (5—12o+So')
g ln(x, /ro&2) . (810)

Sar (1—o')

"Y.B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev.
139, 1163 (196S).

where p is the viscosity coeKcient appropriate to the
motion of a single vortex' and q& is an effective viscosity
coefFicient for a FLD dipole described by the parameters
b and x,. Following Kramer, we approximate this
dissipation by twice the power dissipated by an isolated
edge dislocation in a cylinder of diameter x,V2, the
actual separation between the two dislocations making
up the dipole. To handle the logarithmic divergence of
the integral very close to the edge dislocation, the
integral is cut off at a radius ro b. This approximation
leads to a terminal dipole velocity given by


