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Resonance-Tunneling Spectroscopy of Atoms Adsorbed on Metal Surfaces: Theory
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Using a perturbational approach, we consider the theory of resonance tunneling of 6eld-emitted electrons
through atoms adsorbed on metal surfaces, 6rst treated by Duke and Alferieff. It is shown how one can
proceed from the observed total energy distributions to information concerning the energy-level spectrum of
the atom perturbed by the metal surface. The major alteration of the spectrum manifests itself in a shift
and lifetime broadening of the atomic energy levels due to con6guration interactions with the continuum
of metal states. In past work, this shift and broadening have been theoretically calculated by various workers.
Theories have also been advanced for calculating dipole moments and, consequently, work-function changes
and binding energies in which the final expressions for these quantities require knowledge of the perturbed
atomic energy-level scheme. The plan in the present paper is to present a method of analyzing the data
obtained in resonance-tunneling spectroscopy so that values for the shift and broadening of the energy levels
can be obtained. To proceed towards this end, a simpli6ed model is treated in a mathematically systematic
manner. We believe, however, that the present approach maintains sufficiently close contact with the
physics of the processes involved and thus, because of its transparency, is a potentially more valuable tool
than past theories. The first experimental data of resonance tunneling in field emission, obtained by Plummer
and Young and reported on in the preceding paper, are analyzed within the context of the present theory.
These data include tunneling through single Zr atoms in which a single broad ground-state level is seen,
tunneling through Ba atoms in which both a broad ground state of 6s' character and two narrow excited 6s Sd
states are seen, and tunneling through Ca in which a somewhat narrow 4s 4P excited state is seen. Most
aspects of the data are satisfactorily accounted for in the present theory, and the observed shifts and
broadenings of the levels are in good agreement with past calculations.

I. INTRODUCTION

HE importance of resonance tunneling of field-
emitted electrons from metals upon which atoms

are adsorbed has recently been pointed out by Duke and
Alferieff' (DA). Resonance effects should. be observab1e

as structure in the total energy distribution (TED)' of

field-emitted electrons reflecting the perturbed energy
levels of the adsorbed atom. The generally accepted
picture of electropositive atom adsorption is as follows.
An atom is brought into contact with the metal as
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FrG. 1.Energy-level diagram relevant to a metal-surface impurity problem. The dashed curve is the ion-core potential for the particle
at in6nity. The solid curve is a schematic of the combined atomic and metal potential for the atom a distance s from the surface. The
details of the potential between the atom and metal are only qualitatively depicted here. U; represents the ionization energy of the
isolated atom, AE is the shift of the energy level, and F is the natural broadening due to the atom s interaction with the solid. The
"tornadolike" structure depicts this graphically.

' C. B.Duke and M. E. Alferieff, J. Chem. Phys. 46, 923 (1967).' R. D. Young, Phys. Rev. 113, 110 (1959).
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shown in Fig. 1. The originally unperturbed ground-
state level is shifted and broadened into a virtual state
due to a configuration interaction with the continuum
of metallic states. ' "The situation is quite analogous
to the formation of localized real and virtual impurity
states in the solid. " '5 A major aim in theoretical treat-
ments of the atom-metal interaction at the surface has
been calculation of the parameters characterizing the
atom-metal interaction, namely, the energy shift AE
and the level width I'.4 Knowing the values of AE
and I', it is then possible to calculate the effective charge
on the adatom, ' the dipole moment of the atom-metal
complex, "and the atomic binding energy. ~ ""Hence,
an experimental means of observing the perturbed
atomic energy-level scheme is desirable. Previously,
these quantities have been experimentally accessible
only through the ion neutralization experiments of
Hagstrum and co-workers. "However, difficulties in the
unfolding of the observed transition densities limit the
ease and reliability of an accurate determination of AE
and I"."

DA, in what is perhaps one of the most significant
recent advances in surface physics, realized that in fact
some manifestation of the line shapes of the perturbed
atom spectra could be observed in tunneling experi-
ments. In field-emission experiments, as shown in Fig.
2(a), the TED of emitted electrons is given by an
expression of the form dj &/dE= (Jp/d)e~'" at zero tem-
perature for energies below the Fermi level with Jo
equal to some constant and 1/d=0. 51'"'/F eV '
where q is the electron work function in eV, E is electron
energy, and F is the applied field in V/A. Typically,
0.1 eV(d(0.2 eV in field-emission experiments. How-
ever, in the presence of an adsorbed atom with a narrow
energy level lying within the energy range measured,
resonance tunneling can occur, giving rise to the ideal-
ized TED shown in Fig. 2(b). If the energy of the tunnel-
ing electron lies within an energy level of the atom, the
electron can tunnel into the atom, get across the spatial
domain of the atom without any decrease in probability
amplitude, and then tunnel through the considerably
narrower barrier as shown in Fig. 3. (Figure 3 is not

' U. Fano, Phys. Rev. 124, 1866 (1961).' R. Gomer and L. W. Swanson, J. Chem. Phys. 38, 1613 (1963).
5 A. J. Bennett and L. M. Falicov, Phys. Rev. 151, 512 (1966).
"J, W. Gadzuk, Surface Sci. 6, 133 (1967).' L. Schmidt and R. Gomer, J. Chem. Phys. 45, 1605 (1966).
'8 T. B. Grimley, Proc. Phys. Soc. (London) 90, 751 (1967).
9 D. M. Edwards and D. M. Xewns, Phys. Letters 24A, 236

(1967)."D.M. Newns, Phys. Rev. 1'78, 1123 (1969)."J. W. Gadzuk, in The Structure and Chemistry of SoLid Surfaces,
edited by G. A. Somorjai (John Wiley 8z Sons, Inc., New York,
1969)."K. Hartman, J.W. Gadzuk, and T. N. Rhodin (unpublished)."G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954);
96, 1208 {1954)."P.W. Anderson, Phys. Rev. 124, 41 (1961).

'5 A. M. Clogston, Phys. Rev. 125, 439 (1962)."H. D. Hagstrum and G. E.Seeker, Report on Twenty-seventh
Physical Electronics Conference, MIT, Cambridge, Mass. , 1967,
p. 122 (unpublished); and Ref. 11.

"H. D. Hagstrum, Phys. Rev. 150, 495 (1966).
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drawn to scale. In actuality s=3 A, whereas s&=20 A.)
Also shown schematically are electron wave functions
for the Inetal, virtual atomic, and free states. The
direct-tunneling amplitude is proportional to the over-
lap of

~
m), the metal wave function, and

~ f), the free
function, whereas the resonance tunneling is propor-
tional to the overlap of ~rl) and

~
u) times the overlap of

~ f) and
~
a), where

~
a) is the virtual atomic-state wave

function. In Fig. 3, the atomic potential is represented
by a square well of an appropriate depth and width
to be the "right size" for the atom and also to produce
bound states at the proper energy. DA characterize
resonance tunneling by an enhancement factor

where dj /dE is the TED in the presence of the atom.
Comparing the schematic TED's in Figs. 2(a) and 2(b),
it is seen that structure will then appear in R(E) which
should in some way reflect the virtual atomic state.
We should point out, however, that both j' and jo'
must be corrected for area effects since the probe hole
through which the field-emission current is measured
sees an area of about 25 surface atoms. "The addition
of a single adsorbate atom will aBect the TED only
within the limits of an appropriate area ratio factor. "
The maximum in the enhancement factor for emission
through the impurity can be very large, falling within
the range 1(R(E)(10'.

E. W. Miiller, J. Appl. Phys. 26, 732 {1955)."E.W. Plummer and T. N. Rhodin, Appl. Phys. Letters 11, 194
(1967).

(b)
+4
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FIG. 2. (a) Model potential and total energy distribution for
field emission from a metal. (b) Model potential and total energy
distribution for resonance-tunneling field emission from a metal
with a narrow-band adsorbate.
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FIG. 3. Schematic model
showing the idealized po-
tentials relevant in reso-
nance tunneling. The elec-
tron wave functions are:
g, the unperturbed metal
function; p, the localized
virtual impurity function;
and Py, the emitted electron
function which will be used
in subsequent calculations.

ST

DA chose to exhibit the resonance-tunneling effect

by adopting a model first used by Ioganson. " In this
model DA use idealized potentials such as those shown
in Fig. 3 and do an exact evaluation, through a match-
ing-wave-functions technique, of the transmission co-
efficient with and without the atom. The atomic po-
tential is represented both by a square-well attractive
core and repulsive 6-function pseudopotential perform-
ing the role of orthogonalization to core states. How-

ever, it is hard to generalize their model calculation to
more realistic systems, and because of the numerical
nature of their final results it is difFicult to go from the
shape of the R(F) curve to a statement of the values of
the energy-level parameters AE and I".

Since the goal of the present work is to show how the
measured R(E) curves can be analyzed to obtain values
for AE and I', we chose to reformulate the theory of
resonance tunneling in a much different manner, mak-
ing closer identification with the concepts and notation
of past work on surface-impurity virtual states. ' "A
theory which is a hybridization of the Oppenheimer
perturbation theory, "rearrangement collision theory, "
configuration-interaction theory, ' %KB tunneling
theory, " and surface-impurity theory' " is presented
here. The end result of the calculations, a current-
enhancement factor R(E), is given as a function of the

"L.V. Iogansen, Zh. Eksperim. i Teor. Fiz. 45, 207 (1963);
4'7, 270 (1964) )English transls. : Soviet Phys. —JETP 18, 146
(1964); 20, 180 (1965)j.

2' J. R. Oppenheimer, Phys. Rev. 31, 66 {1928)."T. Y. Wu and T. Ohmura, Quantum Theory of Scattering
(Prentice-Hall, Inc. , Englewood Cliffs, N. J., 1962), p. 211.

23K. Merzbacher, Quantum 3/Iechanics (John Wilf.v 8r. Sons,
Inc., New York, 1961),p. 112.

previously mentioned quantities AE and I' plus other
system parameters and tunneling matrix elements or
tunneling probabilities. Preliminary versions of the
theory have been successfully used to interpret experi-
mental resonance-tunneling currents through Zr atoms"
and Ba atoms. "The effects of Inultilevel atoms and
excited states of the atom are displayed. Comparison
between theory and the experimental reuslts of Plum-
mer and Young, given in the preceding paper, " are
made or, alternatively, the experimental results are
analyzed within the context of the present theory. Of
major interest is the work. pertaining to Ba on tungsten.
In this system a true energy spectrum is seen which we
believe to be some manifestation of a 6s' ground state,
a 6s5d triplet excited state, and a 6s5d singlet excited
state. The observed resonance-tunneling spectrum is in
good agreement with theoretical calculations, a fact
which we think lends support to the validity of the
theoretical picture outlined here. The relative computa-
tional ease in which theoretical enhancement factors are
calculated also makes the present theory potentially
useful and attractive for analyzing future resonance-
tunneling spectra.

The structure of the paper is as follows. In Sec. II,
the general philosophy of the theory is put forth. The
relationship between the atomic level parameters AA
and I' and other aspects of the resonance-tunneling

'4 E. W. Plummer, J. W. Gadzuk, and R. D. Young, Solid State
Commun. 7, 487 (1969)."J.W. Gadzuk, E. W. Plummer, and R. D. Young, Bull. Am.
Phys. Soc. 11, 399 (1969).

26 K. W. Plummer and R. D. Young, preceding paper, Phys.
Rev. 3 1, 2088 (1970).
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phenomenon is established. General formulas for the
current-enhancement factor are obtained in terms of
various matrix elements. The effects of two-electron ex-
cited states are considered. Section III is basically a
technical section devoted to the calculation of the re-
quired matrix elements. In Sec. IV, the numerical re-
sults appear. Here the experimental E(E) curves are
analyzed in terms of the theory of Secs. II and III and
assignments are made for the values of hB and F.
Cases considered are Zr, Ba, and Ca on tungsten. Section
V is devoted to general conclusions and discussion.

II. RESONANCE-TUNNELING THEORY

There exist in the literature, various theoretical
studies treating different aspects of field emission from
perfect free-electron metals, "" metals with band
structures, " " arbitrary metals, " and superconduc-
tors, " "mostly from a WEB point of view. Theoretical
workers in normal metal and superconductor junction
tunneling have framed the problem of tunneling within
a Hamiltonian point of view. " "In these treatments,
the full Hamiltonian of the system is divided into three
parts, the first and second being the unperturbed
Hamiltonians of the left- and right-hand sides of the
junction if the other side was not present and the third
being what is called the tunneling Hamiltonian, the
operator which allows each side to know of the other
side's existence and thus measures the rate of tunnel-
ing. Essentially this operator is the matrix element or
overlap integral of the exponentially damped tails of the
left- and right-hand-side states with some appropriate
barrier potential. Often this matrix element is evaluated
within the %KB or effective-mass approximation. '
This procedure is reasonably easy to carry out provided
the problem can be reduced to an effective one-dimen-
sional problem and the form of the junction barriers
is simple. However, this approach is limited when one
considers three-dimensional systems or tunneling which
involves various angular momentum states of atoms.

In the past, it has been customarily accepted that
tunneling eff ects of electrons between metals and virtual
atomic states associated with adsorbed atoms could be

"L. gT Nordheim, Proc. . Roy. Soc. (London) A121, 626 (1928)."R.H. Powler and L. W. Nordheim, Proc. Roy. Soc. (London)
A11g, 173 (1928)."R.Stratton, Phys. Rev. 135, A794 (1964)."F.I. Itskovich, Zh. Eksperim. i Teor. Fiz. 50, 1425 (1966);
52, 1720 (1967) [English transls. : Soviet Phys. —JETP 23, 945
(1966);25, 1143 (1967)j."J.W. Gadzuk, Phys. Rev. 182, 416 (1969)."J,W. Gadzuk, Surface Sci. 15, 466 (1969)."G. A. Gogadze and I. O. Kulik, Fiz. Metal. Metalloved. 23,
606 (1967).

'4 A. Leger, J. Phys. (Paris) 2g, 646 (1968).
35 W. A. Harrison, Phys. Rev. 123, 85 (1961)."J.Bardeen, Phys. Rev. Letters 6, 502 (1961).
"M. H, Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev.

Letters 8, 316 (1962).
'8 R. E. Prange, Phys. Rev. 131, 1083 (1963).
"V. Ambegaokar and A. Barato6, Phys. Rev. Letters 10, 486

(1963)."D J. BenDaniel a. nd C. B.Duke, Phys. Rev. 152, 683 (1966).

FzG. 4. The potentials and electron wave functions for field
ionization of hydrogen atoms treated by Oppenheimer.

satisfactorily considered within the context of the Op-
penheimer field-ionization approximation ~ "'~" In
the original work of Oppenheimer, the field ionization
pf an isolated hydrogen atom was considered as shpwn
in Fig. 4. A strong electric field was applied to the atpm,
reducing the potential barrier on one side thus making
tunneling from the atomic state to a free Airy-function.
state possible. The tunneling was viewed as a transition
from an atomic to free state induced by the perturba-
tjpn pf the applied field. The dynamics were then
handled through time-dependent perturbation thepry
in which the transition probability was characterized
hy a matrix element T=(free~eFs~atom) in which

~
atom) is the atomic wave function, ~free) is the Airy

function, and Ii is the applied field in the s direction.
This approach has been discussed further by I.anczos. 4'

In many senses, this manner of thinking is fprmally
equivalent to configuration interactions between the
bpund atomic configuration and the free continuum
configuration at the same energy. ' There is also a
formal similarity between this type of approach and
that used in rearrangement collisions between states of
different unperturbed initial and final Hamilto-
nians. """ Although there exist some manageable
mathematical difhculties due to the fact that one deals
with transitions between nonorthogonal states, some
of these problems can be dealt with by properly orthog-
onalizing the initial and final states. ' ""In spite of

4' C. I,anczos, Z. Physik 68, 204 (1931).
4' J. W. Gadzuk, Surface Sci. 6, 159 (1967)."M. H. Mittleman, Phys Rev. 122, 193.0 (1961),
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up= (fl v, jm&. (2)

We next suppose that an atom is adsorbed on the
metal surface, thus providing an additional term in the
Hamiltonian, the atomic potential as seen in Fig. 2(b).
I'urthermore, the presence of the atom will induce
screening or polarization charge in the metal, possibly
changing the form of V slightly. 44 The new Hamil-
tonian will then appear as

H = KE+ V '+ V +VF, (3)

where V ' is the new metal potential and V is the
atomic-core potential. We now introduce another set
of states, the unperturbed atomic eigenfunctions

these formal problems, the Oppenheimer approach has
proven useful and has provided results in surface-
impurity theories which are in quite good agreement
with experimental results. ' ' ' "Another virtue of the
approach is that it enables one to calculate relative
transition or tunneling probabilities between atomic
states of various angular momentum quantum numbers
and other relative transition probabilities.

The general philosophy to be used in this paper is as
follows. We wil1. view field emission from metals in a
manner similar to Oppenheimer field ionization of
atoms. Whenever we require relative tunneling prob-
abilities or the ratio of two diferent probabilities, we
will obtain this ratio by tak. ing ratios of Oppenheimer
probabilities. However, when we need absolute values
of tunneling probabilities we will use the more widely
accepted WEB results. For example, in the present
scheme the tunneling probability from, say, a d level
would be given by (Po»"/Po»'}P wKB' where the sub-
script Opp means the probability evaluated within the
Oppenheimer scheme. In this way we hope to capture
some of the influences of various atomic states in our
theory which could not be treated in a standard WEB
wav.

The first item is to consider normal-field emission as
shown in Fig. 2(a). Here the full single-electron Hamil-
tonian is written as

H=KE+V +Vp
=Hp"+ Vr =Hp'+ V,

where KE is the kinetic-energy operator, V, the po-
tential of the metal, equals 0 for s(0, equals EF+ (p8

for s& 0 with EF equal to the Fermi energy and p,
equal to the electron work function and V&=ebs, the
potential of the applied 6eld. From Eq. (1) we can
identify two sets of states, the first being eigenfunctions
of the metal Hp lm)=8mjm) and the second being
eigenfunctions of the applied-field potential Hpfl f)
=8fj f) Within t.he Oppenheimer scheme, tunneling
from the metal to the free states would be characterized

by a matrix element

through Hgjap)= (KE+V,) lap)=B, Pjap). If we con-
sider the part of the full Hamiltonian, Eq. (3),

due to the configuration intera, ction of the discrete
atomic state with the continuum of metallic states. The
atomic state is mixed with metal states and in first-
order perturbation theory, the new atomic state
satisfying

is given by

(KE+V '+ V,) l
a) = 8.'

l a)

lm)(mlV 'jo,)
l~&= jop&+2

jV jV
(6)

Although one might question the validity of using such
a perturbational approach in which mixing between the
impurity and continuum states is treated only in lowest
order, we should note that this approximation is en-
tirely equivalent to using the Anderson Hamiltonian in
the single-electron approximation. '' ' " This is dis-
cussed at greater length in the Appendix. We feel that
since an adsorbed atom is more isolated from the host
metal than an impurity of the Anderson type, it cer-
tainly is a reasonable first approximation to use the
weak-coupling theory for bulk impurities to describe
the even weak. er-coupling case of a surface impurity.
Another check on the validity of our procedure is
related to the magnitude of the imaginary part of the
virtual-impurity-state energy. If this lifetime broaden-
ing is much less than the width of the metal conduction
band, then the simple mixing given by Eq. (6) is an
adequate first approximation. From past work we know
that this is the case; the atomic energy level for an s
state acquires a lifetime width of about 1 eV as con-
trasted with a conduction-band width of more than 10
eV. Thus the Anderson virtual-impurity-state theory
seems to be a reasonably justified way of looking at the
problem.

The full Hamiltonian of Eq. (3) is now written as

H =Hp™+V, .

To consider the possibilities of resonance tunneling due
to an intermediate state in which the tunneling electron
sits at the atom-core site, write the Oppenheimer
tunneling matrix element, Eq. (2), one higher order in
perturbation theory with the Hamiltonian divided as in
Eq. (7). Thus

a—m KF+V &+V

it is seen that this is the same Hamiltonian used in past
work on virtual surface-impurity states. 4 ' In these
works it was shown that an electron in an unperturbed
atomic state will experience an energy shift AE
= (ap l

V
l ap& and a lifetime broadening

1=2~P.S(E—E )l(mlV. 'j.p)jP

44 J. W. Gadzuk, Solid State Commun. 5, 743 (1967). I (fl Vf+ Vp(E Hp' ) 'Vzl m).
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For illustrative purposes first assume that we are dealing
with a single-level atom perturbed by the metal po-
tential. Also assume that the metal, atom, and free
states are orthogonal. Then we can insert the "complete
set" of intermediate perturbed atomic states given by
Eq. (6) into Eq. (7) with the result that

(E—&o ") '
I )(E—@.') '( I.

At this point we need an explicit expression for 8,
given by Eq. (5) as 8,'=(alKE+V +V~'la). Using
the perturbed atomic states, Eq. (6), we get

h =(«lap + v
I ap&

(~o I
&p'+ V-'lm&&ml V-'I ~o&

E—E

The current-enhancement factor in resonance tunnel-
ing is de6ned as the ratio

djo
R(E)=-

dE dE

where j' is the TED under resonance conditions and
jo' is the TED without the atom present. Within the
Oppenheimer scheme, the TED is proportional to the
square of the tunneling matrix element. Thus jo'
=pl Tpl' and j'=pl Tl', where Tp is given by Eq. (2),
T by Eq. (11), and y is an unspecified grouping of
constants and densities of final states which need not
be considered here since we are taking only the ratios
of tunneling probabilities consistent with our plan for
using the Oppenheimer method. If we identify

(ml Ifo +V-'I «&(«I V-'lm&

m

&fl V, I~&(~l V, lm&
T.(E)=

&flv I &

(12)

(m'I&o +V-'lm&(ml V-'I«)(«l V-'lm')

(E—E-)(E—E-')

The first matrix eleinent is simply («IHo'+V~ I«)
g o+(«I V

I
«):$ '+&E, where B,o is the unper-

turbed eigenvalue and AE is the erst-order shift calcu-
lated previously. ' The last term is a small correction to
AE which can be handled using a procedure established
by Fano. ' The matrix elements in the second and third
term are («IHp'+ V 'Im&= h '(«lm)+(«I V 'lm)
=(«I V 'lm) owing to the assumed orthogonality,
(«Im&=0. Thus

l(ml V-'I «& I'
8,'=B,o+AE+2 Q

E—E

Now if we take (E—E„) '=P(E—E„)—'+i~8(E—E„)
with I' a principle-part integral which is taken to be a
negligible correction to the real part of the energy, then

S.'=S.o+ZEyi2 P ~(E—E„)I(ml V„'I«) I

=E„+ir, (10)

where E„=—8,o+hE and 1' is the natural broadening
of the atomic level, also calculated previously. ' ' Con-
sequently, inserting Eqs. (9) and (10) into the resonant-
tunneling matrix element, Eq. (8), yields

&fl V~I~&&~I V~lm)
T=(fl V, lm)+ (11)

E—E„—iF

which is the usual type of matrix element describing a
resonance process. The resonant intermediate state is
characterized by a shift in its position and a finite life-
time, or in other words, a complex energy. "

45 A. Messiah, QNantgns Mechanics (John Wiley R Sons, Inc. ,
New York, 1962), Vol. II, p. 1006.

then the resonance-enhancement factor assumes the
form

E(E)= =1+
ITol'

T.'(E)

(E E )2++2

-(s—Ols —s—w&(s= s—ur
I
s—s+ie&(s= s+ie

I
e sz&

where each amplitude is that to get from the left-hand
limit to the right-hand one. We have (0 I

s —ie) e "' "i,
(s—wl s+m) 1, and (s+ie

I
sr&= e ~'i' ~"'. Conse-

quently, the resonant amplitude is e
—I (»'—'~). The

ratio of the amplitudes with and without the atom
which is essentially what T,(E) is, would thus be e'P".
Hence we will expect the more detailed calculations of
T (E) to take a basically e"' form with

2« —E.) I T.(E) I

(13)
(E E )P+1 P

with the following interpretation. The first term on the
right-hand side is just the direct-tunneling probability.
The second term is the resonance-tunneling factor which
is a Lorentzian reflecting the line shape of the atomic
level and an energy-dependent tunneling-amplitude
ratio to be discussed below. The third term is an inter-
ference term between the direct and resonance-tunneling
channels. The ratio of tunneling matrix elements re-
jects the fact that the tunneling electron traverses the
spatial domain of the atom without losing any ampli-
tude, in effect cutting a hole out of the barrier as shown
in Fig. 3. In the simplest approach for a square barrier
of width sz, the tunneling probability amplitude would
be e ~»' with k the average propagation constant in
the forbidden region. On the other hand, if a hole of
width 2m centered at s=s were cut out of the barrier,
the tunneling probability amplitude would be
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E

EF

Fzc. 5. Model potential and TED for resonance tunneling
through a multilevel adsorbate.

the average propagation constant through a triangular
barrier. This sort of simple reasoning has been successful
in providing an interpretation of the preliminary Zr. on
tungsten resonances. '4

The generalization of these results to the case where
we consider multilevel atoms and thus excited states is
simply effected by replacing Eq. (9) with

(14)

Schematically the possibility of seeing excited states in
a perfect experiment is shown in Fig. 5. Resonance
tunneling could occur through any of the atomic virtual
levels producing a true-surface-impurity virtual-energy-
level diagram. It is interesting to note that Esaki, Stiles,
and Chang claim to have observed atomiclike spectra
of impurities in the barrier of PbTe-A1203-metal junc-
tions very similar to the type considered here. 4' We
should also note that processes other than direct elastic
tunneling could occur. Inelastic processes involving
phonons or localized vibrational levels probably are not
too important for the cases we consider here, simple elec-
tropositive atoms on surfaces. 4' However, radiative
decay, or more importantly, Auger neutralization with
the subsequent production of higher-energy electrons
above the Fermi level which could then tunnel could
be an interesting possibility. ' Although any Auger
electrons would be small in number compared to the

,elastically tunneling electrons, the reduced tunneling
barrier for the higher-energy Auger electrons would
serve to increase their chances of being observed. This
remains a question to be considered in the future.

Since one of the goals of this paper is to explain the
resonance-tunneling spectra of alkaline-earth atoms and
in particular Ba, we must now direct our attention to
ways of handling two-electron states of adsorbed atoms.
For instance, the ground state of Ba is a 6s' and the
two lowest excited states are 6s5d triplet ('D) and 6s5d
singlet ('D). We will assume that to a first approxima-

4' L. Esaki, P. J. Stiles, and L. L. Chang, Phys. Rev. Letters 20,
ii08 (1968)."J.Lambe and R. C. Jaklevic, Phys. Rev. 165, 821 (1968).

tion we can take the two-electron states to be a properly
symmetrized product state. Thus

I~'&=2-'"I I1(ri)&I2(rs)&+I1(rs)&I2(ri&&7, (»)
where each single-electron state is of the form given by
Eq. (6). We view resonance tunneling involving two-
electron intermediate states as a one-electron dynamical
process in the following sense: Originally a singly
cha, rged ion with one outer-shell electron (or actually
8,«& 1 as outlined by Bennett and Falicov depending
on the level position and width relative to the Fermi
level') and the tunneling electron in the metal are
present. The electron tunnels to the atom forming a two-
electron virtual state given by Eq. (15) from which one
of the electrons then tunnels to the vacuum. Exchange
tunneling is allowed and treated in the formalism auto-
matically by using properly symmetrized two-electron
states. The initial state is a properly symmetrized
product of a metal and atomic state, the intermediate
state is of the form of Eq. (15), and the final state is also
a properly s'ymmetrized product of a free state and an
atomic state. Whether the initial and final states are
symmetric or antisymmetric with respect to their spatial
wave functions depends upon the spin state of the inter-
mediate state. For instance, an intermediate 'D state
requires an antisymmetric spatial function whereas the
'D requires a symmetric spatial function. Simultaneous
tunneling of both electrons is ruled out by the arguments
advanced by Wilkins for pair tunneling in superconduc-
tor junctions in which two-electron processes are pro-
portional to the square of the very small tunneling
probability. 4'

Now we consider the specific case of resonance tunnel-
ing through Ba atoms. The unperturbed Ba spectrum
has a 6s' ground state with an antisymmetric spin state.
The first excited state is the triplet 6s5d with a sym-
metric spin state, about 1.1 eV above the ground state.
The second excited state is the singlet 6s5d with an anti-
symmetric spin state about 0.29 eV higher in energy. 4'

We wish to consider resonance tunneling through each
of these states. The first thought would be to allow for
three intermediate virtual atomic states in Eq. (14).
Then the tunneling matrix element, similar to Eq. (11),
would contain two additional terms corresponding to
the two excited states. Taking the square of T, there
would result four direct tunneling terms plus 12 terms
representing interferences between the various tunnel-
ing channels. However, since the 'D state has a sym-
metric spin state whereas all other terms involve anti-
symmetric spin states, for an assumed spin-independent
tunneling potential, vanishing matrix elements repre-
senting interferences of the singlet state with the ground-

"J.W. Wilkins, in Tunneling I'henonsena in Solids, edited by
E. Burstein and S. Lundqvist (Plenum Press, New York, 1969),
p. 333.

49 Charlotte E. Moore, Atomic L'nergy Levels, 51ational Bureau
of Standards Publication No. 467 (U. S. Government Printing
Office, Washington, D. C., 1964), Vol. I and III.
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and triplet-state tunneling channels would result. Thus
this particular problem of a three-level atom reduces
to the sum of a two-level atom resonance plus a single-
level atom resonance. .

First we treat the two-level part of the problem. The
initial and 6nal two-electron states are taken as

I
fn&= 2 "'I:lm(r~) & I

6s(r~)&+ lm(r&) & I
6s(rx) &],

1»n&=2 "'Clf(r~)&I6s(r2)&+If(r2)&I6s(r~)&],

and the intermediate states are

I~o&=2 "'I I6s(r~)) l6s(r2))+ l6s(r, )&I6s(r~)&],

l~&&=2 "'I I6s(r&)&I5d(r&))+ l6s(r~)&I5d(r~)&].

Taking the perturbation to be of a symmetric form
V~= Vs(r~)+U~(r~) and using the symmetric spatial
wave functions, the resonance-tunneling matrix ele-

ments, in analogy with Eq. (11), become

(f I Vs I 6s)(6s I Vp I m)
T„=(fIV&lm&+

E—E„6 —zF„

g v, l5d)(5dl v, lm)
(16)

g —g„D—zF1D

where E„"and E„' are the appropriate values of the
shifted 6s' and singlet 6s5d levels, respectively, and
similarly for F6, and F~D. These quantities will be calcu-
lated in subsequent sections.

with the obvious definition for E„'D and FSD. The total
probability is obtained by adding the properly normal-
ized individual probabilities such that

I
Tl '=', Tl.~~I

'
+2 I

T,„&;I '. Each case is weighted equally since we have
not bothered to distinguish between different j levels
in the triplet. We do this since the resolution of the
experimental apparatus was not sufficient to do so.
Next we make the following identifications:

Mp=(fl Vplm&,

~ =(flv I6s),

cv, =(6sl v, lm),

~.=- Vl v. l5d&,

M, =(5dl V
I ).

(18a)

(18b)

(18c)

(18d)

(18e)

Then from R(E) =
I
Tl'/I Tol'with To given in Eq. (2)

and T obtained from Eqs. (16) and (17), and using
Eqs. (18a)—(18e), the current-enhancement factor is, for
the three-level atom,

The remaining excited state, the triplet 6s5d, is
handled in much the same manner except that spatially
antisyrnmetric two-electron states are used. We then
obtain

(fl Vz
I 5d)(5dl Vz lm&

T..a;
——(jl Vp lm)— (17)

E—E„'D—i FSD

3fg'3l g'

R(E) =1+
2 (E E 6s)2+r 2

3f3'3EI4' 1 1

jv —jv D 2 F 2 p —g

M M (E E")—
+

Mo (E—E„")'+r6.'
M 3M 4 (E E„'D) — (E E„'D)—

(R—z„' )'+r (~—~„' )'+r )
3fg3fgMSM4 ((E E6 )(E—E '—)+r,.r-~]

(19)
L(E E 68)~+r6,2]L(E E»)+r;nq

The structure of this result is as follows. The first term
represents the direct-tunneling channel. The next two
terms are the three resonant-tunneling channels. The
fourth and fifth terms are interference terms between
the direct and three-resonance channels. The last term
is an interference between the resonant 6s' and 6s5d
triplet channels. As mentioned previously, owing to
spin statistics there is no interference between the 6s.~d

singlet channel and the other resonant channels. We
expect the form of R(E) to have a broad nonsymmetric
peak representing the wide 6s' state and two more
narrow peaks for the two excited states. Since the triplet
state interferes only with the direct channel, the shape
of this peak should be similar to the single-level-atom
enhancement factor such as that for Zr atoms. '4

We have now reached the first plateau in this study

of resonance tunneling, the determination of the current-
enhancement factor for multilevel atoms. To proceed,
the relevant matrix elements given by Eqs. (18a)—(18e)
must be calculated as must the various values of Ii.„
and F. Section III deals with these rather technical
details. It should be noted though that we are now
finished with the present theory of resonance tunneling.
The remainder of the paper is devoted to the implemen-
tation and exploitation of the theory.

III. MATRIX ELEMENTS CALCULATIONS

To proceed we now require explicit expressions for
the tunneling matrix given by Eqs. (18a)—(18e) and also
values for the various I:„'sand F's. Unfortunately, this
will be a long drawn-out procedure which will not be



J. W. GADZUK

3s 1s' —'

2$ 2s'

particularly enlightening until we get to the end results. be combined to yield
This section is divided into four parts. Section III A is
concerned with the functional form of the perturbed 3.6 3 s

metal potential t/' .'. Calculations of E„ for various
V'=- 1 ——— (21)

atomic configurations are given in Sec. III B. The level
width I' is calculated in Sec. III C. Finally, the tunnel- If we expand the denominator of Fq. (2]), take
ing matrix elements are calculated in Sec. III D. s=r cosa, and keep all terms less than 0(yp/gp) we get

A. Atom-Metal Interaction

In the literature of atom-metal interactions, it
is known that one of the effects of the interaction
is to push upwards the electronic energy levels of the
atom, eRectively decreasing their ionization poten-
tials. ' ~ "" '7 The physical reason for this is as follows.
First consider the case of only an electron near the sur-

face. The metal electrons readjust their positions to
screen the field of the electron within the metal. A

squashed exchange and correlation hole appears near

the surface causing an effective attraction between the
electron and the metal. ""In the classical limit, this
is the origin of the image force attraction V, ;
= —3.6/s eV with s the normal distance from the sur-

face in angstroms and with the origin on the surface.
However, if there is also an ion core present, the metal
electrons will be attracted to the core in an effort to
screen the field of the positive charged ion within the
metal. 44 Within an image-force approximation the
atomic electron sees a repulsive potential U;;
~14.4/(2s+s) eV where s is the effective distance be-
tween the ion core and the image plane. "Details of this
potential have been discussed elsewhere. ' The system
of image charges is shown in Fig. 6. Consequently, the
total potential outside the metal seen by the atomic
electron is

1
V '=14.4 —— eV,

where we have now shifted the origin so that it is
located on the ion core. The two terms in Eq. (20) can

J

R

3.6 1 t'P

1———cos'0+0 —
i

2 s' s')

or in terms of spherical harmonics

3.6-p 1 r' 1 r'p4~ '~' (~3
V„'=

] 1 ——————
(

— I, ,(e, p )+0(—
s k 6s' 3s'(5 ks'

or

3.6 1r')4~ '~'
I'p, p(o, p )+

3 s'&S

(22)

when (r, )(s as it is in the cases considered here. It is
felt that truncation of the sum at this point is valid
for the following reasons. The operator V ' will appear
in matrix elements involving very localized atomic func-
tions. These functions certainly will be localized to a
region in which (r)(s since typically s =3 A."Thus the
higher-order terms would produce smaller matrix ele-
ments. Furthermore, as will be seen soon, angular mo-
mentum selection rules will eliminate most of the
higher-order terms. Thus Eq. (22) gives the effective
metal potential outside the surface that we will deal
with in Secs. III 8 and III C.

3.6 3.6 1(47r~ 't'
(~pi «)—

$ 3&5)
r2

XC (+n, l(r) +~,l(r))(I t, re
~
I p, p j F L,m) . (23)

$2

B. Determination of E„
The simplest case to consider first is for single-electron

energy levels. We take the atomic wave function in the
form ~ap)=C~u, ~(r))

~

F'~, (e, q)). The value of E„
= h„& +AZ is simply obtained through

S--

FIG. 6. Classical picture of the atom and the image
charges it induces in the metal.

"H. J. Juretschke, Phys. Rev. 92, j. j.40 (1953)."J.W. Gadzuk, Surface Sci. 11,465 (1968).

Strictly speaking, the limits of integration should be
restricted to only the outside of the metal. However,
since most of the atomic wave function is well localized
outside, only a small error will be introduced by letting
the integrations range over all space. The resulting
simplifications in calculations seem well worth this ap-
proximation. With this assumption, (ap~«)=1 inde-
pendent of the atomic state. Thus all energy levels are
shifted an equal amount Alp=—3.6/s. However, de-
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where the Gaunt coefficient is nonvanishing only for
m=m' and

~

l' —2~ &l&l'+2. For instance, if the ground
state is an s state so that f=l'=0, then c'(20,00) =0
and AE, = 680. On the other hand, for a d state l= 3'= 2,
c'(20,20) = 2/7, and thus

(F20 [ r2Q [ F20) (5/21r) /7 ~

Under these circumstances, the energy shift of the d

state, from Eq. (23) is

3.6 2
»~=»0 — —&n-, ~(~) Ir'/~'In-, 2(r)) (25)

s 21

As a result of the negative sign in the second term, the
shift in the d state is not as great as an s state. Thus the
splitting between an s state and a d state in an atom will

appear smaller when the atom is sitting on a surface
than when the atom is not perturbed. This is physically
tenable when one considers that the d electron is more

tightly bound to the ionic core. Thus it cannot feel as
great a perturbation and hence its shift is not as large.

The quantity we are most interested in here is the
change in the s-d splittings AE, d= AEd, —AE, . To get
a rough idea of this change, the radial integral must be
performed. We use as an order-of-magnitude estimate,
Slater functions for the radial wave functions. "Thus
Cu„,~(r) =Cr" 'e "with a=(n 1)/r, w—here r, is ap-
proximately- some sort of shell radius. "The normaliza-
tion constant is obtained by requiring

ICI' IN, q(r) I'r'dr=1.

As an example consider a Sd level. Performing the
integral in Eq. (25) yields

AE, q »0(3.14/s'a'), ——— (26)

when s is in A and a in A '. For reasonable values of
a=1.5 A ', s 3 A, and»O=1 eV the levels come
closer together by a few tenths of an eV, a phenomenon
we will see experimentally later. We will not totally rely,
however, on the calculated values for AE, q treating this
parameter more as an adjustable constant.

52 M. Tinkham, Grouj Theory and Quantum Mechanics
(McGraw-Hill Book Co., New York, 1964), p. 175.

5' J. C. Slater, Phys. Rev. 36, 57 (1930).
~4 K. S. Pitzer, Quantum Chemistry (Prentice-Hall, Inc. ,

Englewood Cliffs, N. J., 1953), p. 82.

pending on the angular momentum state of the elec-

tron, the higher-order term could be important. Group-
theoretical considerations give the general result that
the integral of three spherical harmonics is related to the
tabulated Gaunt coefficients which are certain products
of Clebsch-Gordan coefficients. "The angular integral
is thus given by

1 (2l+1
&l ~,.ll'2, DID~, )= c'(20,1'm'), (24)

The next thing to consider is the effect of the surface
perturbation on simple two-electron levels. Using the
properly symmetrized product functions, we find the
change in the total energy for an ns' ground state is
simply

and thus the change per electron is the same as in the
single-electron atom.

For the 6s5d singlet and triplet states, the change in
total energy is

C Determination of I
Quite detailed calculations for the lifetime broadening

of single-electron s levels mixing with m.etal states at
the surface have previously been given. ' "Little con-
sideration, however, has been given to the lifetime
effects on higher-angular-momentum states. From cal-
culations' ' and experiment" it is now believed that an
s state will acquire a width of about 1 eV. Due to the
spatial contraction of a (n —1)d state relative to an ns
state, we should expect that I"(„~)d&F„,. In order to
evaluate the current-enhancement factor in Eq. (19),
an idea of the d level width relative to the s level is
necessary. From Eq. (10) and past work it can be seen
that F is proportional to the square of the matrix ele-
ment of V ' between the atom and metal state. The
ratio of d to s level widths is thus

I& IU-'I5d)l'

I (ml U.') 6~) ['
(27)

The major task in evaluating Eq. (27) is obtaining the
matrix elements&~ =—

&m( U '~6s) and3I, —= &m( U '~5d).
We now address ourselves to this task.

For metal wave functions outside the metal we take
simple damped exponentials,

m =cmg —~"

with c a normalization constant which is not important

»6 w"'=&6~IU-'I6s)y&5d

It is also worth noting that AE6, ~~ is the same for both
the singlet and triplet state so an experimental observa-
tion of these levels in resonance tunneling should see
the same triplet-singlet splitting as in the isolated atom.
This point will also be returned to when we discuss the
data.

Lastly we note that in a resonance-tunneling experi-
rnent in which the initial and final state of the adsorbate
is a 6s singly charged ion, as we believe to be the case
for Ba, the tunneling electron going through one of the
6s5d states will be in the 5d configuration and thus will
see a shift »= (Sd

~

U '
~
5d). Consequently, the split-

ting between the 6s' and 6s5d states will be decreased as
in the single-electron atom, this decrease being given by
Eq. (26).
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ex anded as a sum of spherical Bessel
f ll I '

lld herical harmonics as ofunctions an sp
known t ath

L4vr( 2l +1)]"'i'j)(kr) Y),o(0, op),

cal Bessel function of or eer /. Lettingp" "
jt, ~z an'))G d realizing that j& i r =-e'

then wrrte Eq. (. ,28 as

4~(2t+1)])j'(—1)tj,(l.)Y„(g,~) .
) r)G) =c e

—"' P L4n. 2

'
s in E . (27). The propagation con-

E)—]'", ith E th l

kinetic energy s
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—
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—kzm=c e

'
h the Sd state, M6 is obtainedThe maatrix element wi t e

he 5d wave function is
~ ~

ln a slimilar manner. T ie w

~
5d) = cdu G.(r,) Yp o 0

Thus M6 is

MG c„cde——' Q ['4~(2l+1)]"'(—1 '

s l

V dQr'j)(kr)uo p(r) dr Y) p YppYG p

1 4~ "' 1
rdj &(kr)u;, &(r) dr

3 5 s'

2

X I"i,o~2, oI'2o d~ . 32)

4~ -1~2&erical harmonic integral is 4z b~ 2.Here the first sphenca arm
erical harmonic integra ip

of the Gaunt coef6cients of Eq.

2l 1
c'(20,20) .

vanishing coefficients are c' 2020)=1,
20 =-2/7. Consequently, Eq.c'(20, 20) =2/7, and c'(20,20 =-

(32) reduces to

As before, the s state is

i 6s) = c,up, o(r) Yoo(g, dp) .

. (22). Consequently,V ' is given in q.p " m

the matrix element M5 can e wri

3.6 5 1/2

MG c„cde ——' (4~)'"
s 7r

1
r4jo(kr)uo, p(r) dr

3s'g5 21$2
r4 jp(kr)uo, &(r) dr

r' jp(kr)uo, p(r) dr

e "'—
t 4pr(23+1)]"'(—1)'Mo=c c.e "'— 4n.

s l

V dQ ———''() )rr, (r)dr V Vi, , )

YoodQ . (30)X r'j)(kr) u)o)(r) dr Y),o Yp, o Yoo

d )"'( 'j (dr)rr, d ) drMG ——c c,e "'- 4or
s

r'j (d )rr ( ) d )3s

3.6

s
(31)
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3.6 1l2
1/2 I IMG= ccrc,e "' (4pr)—

s

2+5———I5—
21$

IG . (33)
7(+5)s'

a,nner, the d to s level width fromIn a stra, ightforward manner, t e . o s
Eqs (27), (32), and (33) is

1 2+5 3
I4———I,- ——

3s'+5 21s' 7(+5)s'
—2

X I — I . 34
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Printing Once, Washington,
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r(7)
Ig =—— (7p, ' —35p, '+21p, '—1),

k'(p, '+1)'

r(12)
I2—

15k "p."

(35a)

(35b)

the radial integrals can be put into a standard form of a
regular Bessel function of half-integer order times its
argument raised to some power times an exponential.
Then the integrals are Laplace transforms of this
quantity which are exactly solvable in terms of Gauss-
ian hypergeometric functions. " However, these func-
tions depend upon four variables and have thus not been
tabulated to any extent. We will invoke an approxirna-
tion instead. For the energy ranges of interest in the
present experiments k = 1.2 A '. The average ra, dius and
hence the maximum in r(" ')e " occurs at r=2 A.
Thus the integral d is significant only for kr- 2 which
somewhat justices using the asymptotic form for the
spherical Bessel functions, j/(kr) —+ (kr)'/(2l+1)!! when

lW0. For /= 0 we use the exact form j b(kr) = sin(kr)/kr.
Using this approximation and performing the integra-
tions, we get

Numerical evaluation of these results will appear in
Sec. IV.

3f, b
—— — — — exP

zg

fk. [dE). (36)

Ke have assumed a free-electron band structure in the
metal. I and Lb are the lengths associated with the
allowed regions to the left and right of the barrier and

and k, b are the propagation constants

D. Determination of Tunneling Matrix Elements

The final item to be treated in this section is the
evaluation of the tunneling matrix elements of Eqs.
(18a)—(18e) or at least some suitable approximation to
them. Consistent with our strategy of using the Oppen-
heimer perturbation scheme only to calculate relative
matrix elements of d to s electron transitions, we will
evaluate the absolute transition probabilities involving
free, metal, and s electrons within Harrison's KKB
approximation. "From Eq. (8), of his paper, the tunnel-
ing matrix element for an electron going through a
barrier region in which s &s& sb, is

r(9)IS=-
15k'Pa'

r(8)
14—— (8P„' —56P„'+—56P„' 8Pg), —

k9(P 2+ 1)8
Zg

k, = ((2m/k') )EF+y, E eF(—s+s—)])'/'

35c
evaluated a,t the appropriate values of s. In the assumed
triangular barrier in field emission we will assume that
the integrand in the exponent can be replaced by an

( 5 ) a,verage k value such that

r(11)
I5

15k'P " (35e)

with
ZQ

!k, ! ds =ic(sb s.)—
I'(13)

I6=
945k'pd"

(35f)

"G. E. Roberts and H. Kaufman, Tables of Iap4ce Trgnsfornss
(W. B. Saunders Co., Philadelphia, ].966), p. 60.

Here the quantities P,=a,/k and Pz ——ay'k have been
introduced. Kith regards to the asymptotic approxi-
mation of the Bessel function, as mentioned I~ and I4 are
exact as they stand. Use of the exact functions in the
other integrals would somewhat reduce thei. r values.
As a result of the approximations, the actual broadening
ratio would probably tend to be somewhat smaller
than what we have calculated here and as such Ri
obtained from Eqs. (34) and (35a)—(35f) will be an

upper limit.
Finally, we have for the normalization constants

cq= [(2aq) "/r(11)j"' and c,= L(2a )"/r(13) ]'".
The absolute value of the s-level broadenirLg will be

taken from the more detailed calculations in Ref. 6.
These turn out to be roughly F,= 1 eV. The widths for
d levels will be obtained through F~=Ri-F, with Ri
given by Eqs. (34) and (35) and r, taken from Ref. 6.

k = ,'((2m/-k') (Ep+ y, E)]'/—2

I, &~2 I,
~o= g

—A, sy'

2m I.„,.t z

k2 k 1/2 ( k 1/2

!
Latom z=+w Lfree z=sp —s

~
—T (sg —s—w)

(37a)

(37b)

Sf'= &
—f (s—w) (37c)

In the expression for the enhancement factor, Eq. (19),
these terms appear in the combination

MgMg
2.=

M6

The tunneling process in the presence of the atomic
potential well, as shown in Fig. 3, is taken to be de-
scribable as two KKB tunneling probabilities through
the reduced double barrier when an s state is the inter-
mediate atomic state. Then using Eq. (36)for the tunnel-
ing matrix elements, Eqs. (18a)—(18c) take the form
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Since (k,), „=(k,).=+ =(k,),=p and with L,&,„„2——w,
the simple result

The integrals, when evaluated within the same approxi-
rnations as those leading to Eqs. (36a)—(36d), are

T,= —,
' (Ii'/2m) (k/w) e"" (38) I7——F (9)/3k'pep, (41a)

obtains, where now k= [(2m/k')(EF+ &p.
—E)j"'. For

reasonable values of 0 and zv, this quantity indeed is a
slowly varying function of energy of order unity times
an exponential, as stated earlier in this paper and in the
preliminary account of this work. "

The tunneling matrix elements involving d states,
Eqs. (18d)—(18e) are obtained through the Oppenheirner
technique. The d element is given by the ratio of the d

to s matrix elements in the Oppenheimer approxima-
tion times the s probability within the %KB approxi-
mation. Thus

t'(fl v, l5d)
(f l Vr l 6s)was =Re,rM—i

&(fiV. I6s) ".
(5dl Vr lm)3f�——

(46sl�&lm)wK&=R&

—,M&,
(6slvplm) o„

where now Mi and M& are given by Eqs. (37b)—(37c).
As with the s probabilities, these terms always appear
in the combination

Td MpM4/Mp ——Rd, Rd, T——,=Ri„iT, . (39)

To proceed, the rather grim task of calculating the R
factors must be faced. If we go through a similar ex-
pansion procedure as that from Eqs. (28)—(34) in which
the potential

V r ——eFs(1+s/s) = eFs[1+(4, vr) "'(r/s) Vi, p(0, p) j,
the result for Rt, & identified in Eq. (39) is

ce L
—(2/s+15)I7+(+5)Ip (3/s+5)Ipj'—

~tot (4o)
c, l

Iip —(1/s) Iii]'

where the following integrals are to be determined:

I7 — fp, Q(r) ji(kr) r' dr,

Ip —— fp, z(r) j&(kr)r' dr,

Ip —— fp, z(r) jp(kr)r' dr,

f, ,(r)j,(kr)r' dr,

Iii = fp, p(r) ji(kr)r' dr

Ip F(9)——/15k'PgP,

Ip = F(11)/105k Pe" (41c)

I.=LF(7)/k'(~ '+1)'](7~ ' 35—~.'+»~ -1), (41d)

Iii = F(10)/3k'P, ". (41e)

With the results of Eqs. (38)—(40) and (41a)—(41e)
we are now in a position to perform numerical calcula-
tions of the s and d resonance transmission functions
and the subsequent current-enhancement factor, Eqs.
(13) and (19). The numerical aspects of the problem
together with a comparison with experimental data and
general discussion appears in Secs. IV and V.

~ E. W. Plummer, H. E. Clark, and R. D. Young, Fifteenth
Field Emission Symposium, Bonn, Germany, 1968 (unpublished).

IV. NUMERICAL RESULTS

A. Zr

The simplest case to consider first is the single-level
Zr resonance. Preliminary results of the Zr on tungsten
case have appeared. '4 Zr has a 5s' level at 6.84 eV below
the vacuum level when the atom is isolated. In accord
with Eq. (23), in the adsorbed state we would expect
this level to shift upwards by an amount DE=3.6/s eV
= 1.6 eV for a reasonable value of atom-metal separation
s=2.5 A. Furthermore, the detailed calculations of s-
level broadening due to the atom-metal configuration
interaction' " suggest that a broadening I' 1 eV
would be reasonable. The width of the atomic potential
well zv should be a bit less than some sort of atomic
radius =1.5 A. Thus to calculate the single s-level
enhancement given by Eqs. (13) and (38), all the neces-
sary parameters can be specified in an ab initio sense.
However, we shall be a bit more empirical and just use
various combinations of w and F to see what E. values
result. The curve for m = 1 A and I'= 1 eV is shown in
Fig. 7 together with the experimental points measured
by Plummer et al.""Because of the width and the
position of the Zr resonance, it was not possible to see
this structure in a single TED as depicted in Fig. 2(b),
but instead a roundabout technique of adsorbing the Zr
on different surface planes and then comparing the slopes
of the Fowler-Nordheim plots with the slopes of the
TED was required, as outlined selewhere. '4'7 Possible
complications due to different charge states and differ-
ent broadening and shift parameters on the different
crystal planes have thus been neglected in the analysis
of the Zr resonance. "However, the curve does seem to
contain the experimental points within the experimental
uncertainties. It is noteworthy that the values of I'
changed rather slowly as m was varied over a significant
range.
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FIG. 7. Theoretical and experimental values of the enhancement factor as a function of energy for Zr on tungsten. The energy

scale of the bottom is taken with a zero at the vacuum potential whereas the scale at the top is taken with a zero at the bottom
of the conduction band.

The absolute value of the enhancement factor seemed
to have a, maximum falling somewhere between 20
&R, -& 100. By requiring the theoretical value of R to
assume this value at E=E„and by specifying a choice
of the potential well width m, the value of F is uniquely
determined through I'= LT,(F„;w)]/LR, (E„,) —1j'~'.
Consequently, we are really doing only a two-parameter
fit. We believe though that, owing to the relative in-
sensitivity of the 6nal result for F on our choice of m,
the assignment of the value of I' is credible. It seems
fair to conclude that the experimental current-enhance-
ment factors for resonance tunneling through Zr on
tungsten, when analyzed within the context of the
present theory yield values for the atomic level I'=1 eV
in good agreement with predicted values of the order
of 1 eV. ' '

It should also be mentioned that the peak in R does
not occur at the atomic-band center but is shifted down
from the vacuum potential by about 0.4 eV. This results
from the rather broad value of I' in the Lorentzian. The
Lorentzian does not completely dominate the energy
dependence of R and the energy-dependent tunneling
probabilities play a more important role than might be
expected.

The shapes of the R-versus-E curves are in rough
agreement with the shapes calculated by DA. ' However,

it must be remembered that in the DA theory, trans-
mission functions were evaluated by matching wave
functions at boundaries, a procedure which has strong
quantum-mechanical reflection effects built into it. His
reflection and transmission calculations were done on
model potentials with sharp barriers, a system whose
transmission effects are radically- different from systems
with slightly rounded potential barriers. Thus we should
not expect quantitative agreement between experiment
or the present theory when compared with the calcula-
tions of DA.

We should note also that the enhancement factor does
not go nicely to zero as the energy goes deeper into the
band. This also results from the fact that the decreasing
value of the Lorentzian does not dominate the enhance-
ment factor. In fact the energy-dependent tunneling
factor which increases exponentially as the square root
of energy as the energy goes down into the band could
cause the R factor to begin rising quite strongly below
the maximum value of R. Although the Zr data are not
sufficiently complete to confirm this prediction, Plum-
mer and Young did note this effect in some of the Ba
and Ca results. The experimental enhancement factors
displayed local maxima corresponding to the atomic
spectra, but as one went to the low-energy tails of the
TED, below the atomic energy- levels, the R values in
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some circumstances did seem to diverge exponentially.
This behavior is unexpected from the reported numer-
ical results of DA' but could be understood within the
context of the present theory.

The real lour de force in the present theory is the
application of these results to the interpretation of
Plummer and Voung's Ba on tungsten data in which
three resonances are observed. " Atomic spectroscopy
tables show that the Ba atom has a 6s' ground state at
5.2 eV, a triplet 'D 6s5d excited state between 4.03 and
4.10 eV and a singlet 'D 6sSd state at 3.8 eV. It was
hoped that under the perturbation of the surface on this
atom, some manifestation of these states as structure
in the TED from resonance-tunneling effects could be
observed and subsequently interpreted. As will be seen,
our expectations were satisfied.

We mentioned earlier that the spatial contraction of
a Sd state relative to a 6s state Inight reduce the
broadening of the 6s5d levels relative to the broadening
of the 6s' level in analogy with the reduced widths of
tight-binding d bands compared to s bands in noble
and transition metals. " For example, in Cu, bands
resulting from 3d states are roughly one-tenth the width
of 4s bands. We might expect a similar situation to re-
sult in the case of Sd Ba levels compared to 6s levels.
In Sec. III, Eqs. (35) and (36a)—(36f) were derived.
Equation (34) is the expression Rr for the ratio of 6s5d

to 6s' level widths when the Ba atom is adsorbed on a
metal surface. These equations have been numerically
evaluated for reasonable choices of system parameters.
We have taken q, =4.4 eV, SF=7.5 eV, s=3 A, and
have used various values for a, and a~, the parameters
in the Slater function. These values of a can be crudely
related to atomic radius parameters and should be of
the same order as an inverse radius times the principal
quantum number minus one. '4 The numerical results of
Er as a function of the position of the energy level are
shown in Fig. 8 for some choices of a, and aq. In all cases
in which the Sd orbit is roughly the same size as the 6s
orbit, the ratio of 1.evel widths is of order 0.1—0.2, a
result which is both satisfying and expected. Physically
this results from the fact that when the electron tunnels
from the atom to the metal, the effective barrier for the
d electron is thicker than for the s electron. The d elec-
tron must tunnel not only through the Coulomb and
surface barriers but also through a centrifugal barrier
of the form +l(l+1)/r'. Consequently, its tunneling
probability and hence natural linewidth is signifi-
cantly reduced compared to lower-angular-momentum
states. Mathematically the result obtains from the fact
that the tunneling matrix elements involving d states
pick out only higher partial waves in the expansion of
the final state which have a smaller amplitude in the
region of the atomic core where the overlap must occur.
This can be seen in the asymptotic expansion of the
spherical Bessel function j&(kr) —+ (kr)'/(2l+1)!! for kr
reasonably small. This result is in accord with the

E (eV)
7

3

Fic. 8. Ratio of d to s level widths
as a function of energy. The scale is
the same as in Fig. 7.

~a, =a, =ZA

I

6

E (eV)

"L.Hodges, H. Ehrenreich, and N. D. Lang, Phys. Rev. 152, 505 (1966).
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FIG. 9. Ratio of resonance-tunneling
probabilities involving d or s inter-
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expected results from energy-band theory. As a final
comment on the broadening, we note that both theo-
retical calculations' ' and the experimental data on Zr
indicate s-level widths of the order of 1 eV. Conse-
quently, d-level widths would be roughly 0.1 eV.

The determination of the enhancement factor in-
volves two distinctly different modifications when treat-
ing resonant d states. First, knowledge of the d-level
position and width is required. The width has just been
discussed. Secondly, we must know the relative tunnel-
ing probability ratios of d to s resonant states. This has
been expressed in Eqs. (40) and (41a)—(41e). The
quantity ~Er,,t, t

' gives the relative tunneling prob-
abilities, which when used in conjunction with Fqs. (38)
and (39) give the absolute d-level tunneling prob-
abilities. In Fig. 9, ~T~,~~ is drawn as a function of
energy for the same choice of parameters as in Fig. 8.
Here we have taken a,= ad ——1.5 A ', a choice which is
both reasonable physically and also in accord with the
values used in the calculation of Rr. These results show
that the relative tunneling probability involving an
intermediate d state is reduced by a factor of about 10 -'

compared with the s tunneling channel. This again is
reasonable for the same physical and mathematical
reasons as was the reduced bandwidth. Also the total
tunneling from metal to atom and then from atom to
vacuum is a two-step process and thus involves a
product of two reduction factors. Since the atom-to-
metal factor which is similar to that in the F calculation
is about 10 ', the product of this times an atom-to-
vacuum factor which also should be of order 10 ', is of

order 10 ' as calculated here. This is in good agreement
with the ratio of d to s electron tunneling factors for
electrons in noble and transition metals calculated else-

where. " It is also interesting to note that Hagstrum
has observed d-band tunneling in ion-neutralization
experiments to be as much as 2)&10 ' less probable
than for s-band tunneling of electrons at the same

energy. ""Again the reasons for this are similar to our

ideas, the d electrons are more localized and thus do not
overlap electron states outside the metal as much, re-

sulting in reduced tunneling probabilities.
As a preliminary comment before obtaining the en-

hancement factors we note that the narrow-band d levels

would give a much greater peak. height than the s levels

if it were not for the fact that the Lorentzian for the
d levels is moderated by the Rt,& factor.

Finally we can. combine Eqs. (19), (38)—(40), and

4(1a)—(41e) to obtain the expression for the Ba enhance-
ment factor. The pa.rameters used are a, = aa ——1.5 A ',
s=3 A, vv=1.5 A, EF——7.5 eV, y, =-4.4eV, 1,=0.75 eV,
and I'&= 0.1 eV. A number of points are worthy of note
here. First, since both Ba and Zr have an ns' ground-
state conhguration, we might expect the atomic param-
eters and effective well widths to be larger for Ba, the
larger atom. Coincidentally, in doing the numerical
calculations, the only way that the theoretical Ba curves
could be made to fit the data was by choosing a value

"H. D. Hagstrum and G. E. Becker, Phys. Rev. 159, 572
(&967)."W. E. Spicer, in Optica/ Properties and Electronic Structure of
Metals aed Alloys, edited by F. Abeles (North-Holland Publishing
Co., Amsterdam, I966), p. 312.
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some extent been determined by the arbitrary choice of
E„'D, but that is all that can be regarded as curve fitting.
The absolute widths have been calculated from first
principles. The relative heights of the peaks have also
come out of the first-principles calculations, a fact which
is felt to be a rather significant point in justifying the
validity of the present approach to the resonance-
tunneling phenomenon. In any event, the agreement
between experiment and theory seems quite adequate
to allow us to conjecture that in fact we do have a tool
for doing atomic spectroscopy of atoms adsorbed on
metal surfaces.

In Fig. 10, two different energy scales have been used.
On the bottom, the energy scale of the experiment is
used. This is the scale in which all atomic energies have
been shifted down an amount eFs owing to the applied
field. Plummer and Young estimate that the extrap-
olation to the zero-field situation will shift the scale
upwards about 0.75 eV. The zero-field results are the
ones to compare with the atomic spectrum. This scale
and the atomic energy levels appear on the upper
ordinate. The triplet states are too close together to
resolve with the present energy analyzer. "

In performing the calculations, the relative peak
heights were extremely sensitive to the choice of r, and
Fq. Thus with a change in I'~ of 10%%u~, the relative s to
d heights changed significantly. However, the same
situation was noted experimentally. The position of the
peaks was extremely reproducible but their relative
height varied greatly as can be seen by comparing the
two experimental curves in Fig. 10. This could result
from local microscopic differences in adsorption sites
which would give rise to different level widths and thus
the same sensitivity to these changes experimentally as
theoretically. Also, in some cases, both experimentally
and theoretically, the exponential divergence of the
enhancement factor for energies below the d levels was
observed as discussed brieRy in Sec. IV A.

Although it might appear that there is a good deal of
arbitrariness in the choices of the physical constants in
the theory, we feel this is not the case. It cannot be
proved that we have arrived at a unique solution to the
problem, but after exhaustive numerical studies with
various choices of constants, it is felt that the results
forced us to zero in on the present set which are all

physically reasonable.
In conclusion, for the specific case of Ba on tungsten

we can say that in the zero-field limit a virtual 6s'
ground state at E„"=4.25 with AE"=0.95 eV and
I'6, ——0.75 eV, a virtual 'D 6s5d excited state at E„'
=4.10 with AE'~=0 and I'33=0.1 eV, and a virtual
'D 6s5d excited state at E&„'~=3.80 with AA"'a=0 and
I'ID=0. 1 eV have been seen in a resonance-tunneling
experiment, "the results of which are mostly predictable
in terms of the theory presented here. The theory is

R. D. Young and C. E. Kuyatt, Rev. Sci. Instr. 39, 1477
(&968).

suKciently simple and transparent that it should be
accessible to future workers in the field, and the less
than 0.5 sec of computer time or one-half hour of slide-
rule time needed to generate structured curves such as
in Fig. 10 makes it an economically as well as aestheti-
cally pleasing exercise.

C. Ca

Although specific calculations have not been carried
out for Ca on tungsten, some qualitative discussion
should be put forth with regards to the compatibility
of Plummer and Young's experimeneal results and the
present theory. In the free-atom state, calcium has a
4s' ground state at 6.1 eV and a 4s4p excited state at
4.25 eV. If the energy-level shifts of Ca, upon adsorp-
tion, are similar to those of Ba then the ground state
shouM lie too low in energy to be meaningfully observed
with the present integral energy analyzers used in
experiments. However, the 4s4p state should shift up-
wards relative to the 6s5d Ba states and should be
observable.

Indeed, the experimental results show what is
expected. The 4s4p level is shifted upwards more than
the Ba 6s5d's owing to the increased delocalization of
the p states. From the theoretical calculations of line-
widths we would expect the p level to be less broad
than s levels but broader than d levels due to the angular
momentum selection rules and the resulting nonvanish-
ing matrix elements between the p state and only
higher-order partial waves. This in fact is observed.
The width of the 4s4p level appears to be roughly
0.3—0.5 eV falling in between the previously observed
1 eV s level and 0.1 eV d levels. The reader should go to
Plummer and Young's paper for the display of these
results. " Although not treated quantitatively, the
experimental results of Ca on tungsten indicate that a
4s4p level exists at E„=3.85 eV and I'4„=0.3 eV, in
accord with the expectations of the theory.

V. CONCLUSIONS AND DISCUSSION

The theory of resonance tunneling first elucidated by
DA has been revisited. ' In the new formulation of the
problem, presented here, direct contact with previous
concepts of virtual-surface-impurity states of atoms
adsorbed on metal surfaces has been made. It.has been
shown how field-induced resonance tunneling through
adsorbed atoms can be turned into a spectroscopy of the
virtual atomic energy levels associated with the com-
bined atom-metal system. The experimentally deter-
mined resonance curves obtained by Plummer and
Young and presented in the preceding paper have been
analyzed in terms of the theory presented here. We
have quantitatively treated the cases of resonance tun-
neling involving both s- and d-like atomic virtual levels.
For the most part, the calculations could be considered
to be first-principles calculations. The agreement be-
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tween theory and experiment appears very satisfactory.
On the basis of the theory and experiment we have been
able to make assignments of position and width of the
atomic levels in Zr, Ba, and Ca adsorbed on tungsten
surfaces which are experimentally accessible in the
present 6eld-emission experiments.

As pointed out by DA, the tremendous current en-

hancements resulting from resonance tunneling through
adsorbed atoms can explain many anomalies in past
field-emission studies. "In addition to the spectroscopic
tool which we have used resonance tunneling for, the
analysis of field-emission data in which atoms have been
adsorbed on the surface will have to contain some as-

pects of resonance-tunneling effects in order to depict
correctly what is physically occurring. It is felt that the
particularly simple functional forms of the enhancement
factor obtained in this paper will enable such a pro-
cedure to be carried out in a relatively easy manner.

It is also interesting to speculate on the possible role
of resonance-tunneling spectroscopy in the theory of

magnetic impurities. Xewns has attempted to modify
the Anderson theory of magnetic impurities such that it
is applicable to surface impurities. ' ""A spin-polari-
zation analysis of 6eld-emitted electrons" through a
virtual-magnetic-impurity state on the surface might
be possible in a resonance-tunneling experiment and
could shed significant light on the validity of the theo-
retical ideas. This remains an interesting problem of the
future.

As mentioned in Sec. I of this paper, present thinking
on the microscopic level with regards to atom-metal
interactions requires knowledge of the position E~ and
width I' of the atomic energy levels in order that effec-
tive adsorbate charge, dipole moments, work. -function
changes, and binding energies can be calculated theo-
retically. ' " Resonance-tunneling spectroscopy pro-
vides just the tool needed for cataloging the virtual
atomic levels. Not until significant headway is made in
this rather involved task can we hope to come to a
satisfactory quantitative understanding of the micro-
scopic electronic properties of adsorption phenomena
and thus be able to reliably predict macroscopic effects
from microscopic considerations.
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APPENDIX

In considering the zero-6eld impurity theory in Sec.
II, it was suggested that writing the virtual-impurity-
state wave function as a simple brst-order perturbation-

theory admixture with the metal states was equivalent
to the Anderson impurity theory within a single-elec-
tron approximation. The major result of the approxi-
mation represented by Eq. (6) and outlined in greater
detail in Refs. 5, 6, and 11 is that the original impurity
level 8 ' becomes broadened and shifted such that the
final virtual state has an energy 8,'=E„+it' with
1"=2irg 8(E—E ) ~(nz~ V '~ae)~'. The electron oc-
cupation of the impurity state depends upon the posi-
tion of this band relative to the occupied portion of the
metal conduction band. In fact we can identify an
impurity-state Green's function

G..~(8)= 1/(8 —8„—iI')

from which the impurity density of states

(A1)

r
p..~(8) = —ImG.. (8)=- (A2)

2~ (~-& )'+P'

is obtainable. The extra factor of 2 in the denominator
enters as a result of what we call the single-electron
approximation in which

p (8) dh=1, (A3)

where p„=P,p, '. If one was doing a full unrestricted
Hartree-Fock treatment in which magnetic states were
being sought, then the problem would be much more
complicated. The effective occupation of the impurity
level is

(n.) = p„(h) d8

=(1/ )[-,' +tan —'(8„—(p)/I']. (A4)

In the 6nal answer above, the zero of energy has been
shifted to the vacuum potential outside the metal so
that the upper limit at the Fermi level then becomes p,
the metal work function below the zero. For instance,
in alkali atom adsorption E„—y is a negative number
of the same order as P such that tan '(E„—&p)/I' = —~i ~.
Thus (m,)&0.25 and many of the ideas in the low-

density approximation of Schrieffer and Mattis are
relevant. 4 Although the alkaline earths have two-elec-
tron neutral states, many of the low-density single-
electron-approximation ideas can be carried over.

The Anderson Hamiltonian is written as

where 0. denotes spin, n, and n are impurity and metal
state occupation numbers, c,(c,t) and c (c t) are atom

H=P h~ e,.+P 8„e„.+P (V.„c.,tc„.+H.c.)
m, o

+Urr rr ., (A5)

"H. E. Clark and R. D. Young, Surface Sci. 12, 385 (1968)."G. Obermair, Z. Physik 21/, 91 (1968).
"J.R. Schrieffer and D. C. Mattis, Phys. Rev. 140, A1412

(1965).
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Following the standard analysis of this type of Hamil-
tonian, " the virtual-impurity--state Green's function is

with
=$8—8,+id(8)j ',

D(B)=~ g B($—8 ) ~
V.

p
+"2 (8') d 8'

h, =B„+—

Proceeding as we did to obtain Eq. (A2), the impurity
density of states is

Paa =
~ (8—8„)'+6'

This expression, together with the neutrality condition,
Eq. (A3), is the result of using the Anderson Hamil-

and metal annihilation and creation operators, and U
is the Coulomb repulsion integral between up- and down-

spin electrons at the impurity site. The hopping integral
V, can be shown to be identical with the matrix ele-
ment (nz~ V '~ao)= V used in Sec. II. Our approxi-
rnation consists of neglecting magnetic effects. We thus
set U = 0, regard as superAous the impurity spin index,
and introduce the subsidiary condition given by Eqs.
(A2) and (A3) which guarantees a maximum electron
charge of unity on the impurity. Thus Eq. (AS), in the
single-electron approximation, becomes

H„=B„m.+Q B„rs +Q(U.„c.&c +H.c.).

tonian in the single-electron approximation and is seen
to be almost equivalent to the straightforward perturba-
tion theory used in the text. The weakness of the single-
electron approximation is, of course, that we have no
way of dealing with magnetic effects. In this approxi-
mation there is no way of differentiating between an
impurity state with one up- or down-spin electron and
an impurity state with half an up spin and half a down
spin. For present purposes this does not matter, al-
though in future work we hope to clear up this approxi-
mation. We also note that this approximation is mean-
ingful only when the impurity has no electron affinity
level near the Fermi level of the metal, or, in other words,
when there is a vanishingly small probability of form-
ing a negative-ion impurity. This certainly is a valid
approximation for the alkali and alkaline-earth atoms
which are close to being a singly charged positive ion.

One possibly confusing detail is concerned with the
fact that the lifetime factor I' used in the text is different
by a factor of 2 from 6, the lifetime factor used in Ander-
son theory; that is, 6= 21'. This factor-of-2 difference
arises from historical reasons in which the adsorbate F
was defined simply through a straightforward applica-
tion of time-dependent perturbation theory. '»~ Al-
though this definition should not affect any of the
physics, care must be taken in going from numerical
results in adsorption theory to numerical results in
Anderson-type theory.

Finally, we note that this whole problem could be
formulated within the transfer-Hamiltonian picture.
Then the theory would closely resemble the Kondo-like
exchange-tunneling theory of Appelbaum. "However,
the physical content of the theory, as relevant to
resonance-tunneling spectroscopy, would probably be
changed very little.

5 J. Appelbaum, Phys. Rev. Letters 1'7, 9j. (1966).


