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A calculation of the microscopic effects of the fluctuations of the superconducting order parameter in
the classical region above T, on the electron Green s function in dirty materials is presented. The calculation
is formulated in the presence of a magnetic field. The results of this calculation in the zero-field limit are
used to obtain the change in the thermal conductivity E and in the electron density of states N(~). For a
one-dimensional sample, X appears to diverge as DT T,)/T, —J 'i while for two and three dimensions,
X depends weakly on temperature. The behavior of N(co) is qualitatively similar to that of a gapless super-
conductor below its transition temperature, although the detailed frequency dependence is different. For
thin films, the depression at the Fermi surface increases as L(T—T,)/T, g s. The agreement with experi-
ment is satisfactory.

I. INTRODUCTION

ECENTLY, there has been great interest in the
eRects of thermodynamic fluctuations of the order

parameter on various properties of a metal just above
its superconducting transition temperature. ' " Thus
far, most of the attention has focused on properties that
directly involve the superfluid. For instance, in the
presence of an electric 6eld regions with finite superfluid
density are freely accelerated, giving rise to anomalous
behavior of the electrical conductivity. ' ' ' " It is
natural to expect that fluctuations of the order param-
eter will also influence such properties of the single-
particle excitations as the density of states, ' " the
eRective mass, and the lifetime. This, in turn, will also
alter the electrical conductivity. ' ' However, because
the superfluid has a much stronger eR'ect, the anomalous
contribution from the normal fluid is not seen. In
thermal conductivity, the situation is quite different.
Since the superfluid does not contribute to the entropy
flow, the normal. electrons are dominant. A study of the
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thermal conductivity thus allows us to see the way the
normal fluid is affected by fluctuations.

The influence of the Quctuations on the quasiparticles
may also be observed in tunneling measurements. "We
expect that just above the transition temperature, the
quasiparticle spectrum will be altered by the presence
of fluctuations and that this will be reflected in a varia-
tion of the tunneling density of states. The latter
quantity is, in fact, a rather direct measure of the fre-
quency and temperature dependence of the quasi-
particle self-energy.

In this paper, we present a microscopic calculation of
the electron Green's function in the presence of the
fluctuations of the order parameter above the critical
temperature T, in the so-called classical region where
mean-field theory is valid. We restrict ourselves to dirty
materials where the fluctuation effects are usually most
prominent. We use this calculation to obtain the change
in thermal conductivity and electron density of states
due to fluctuations. For completeness, we formulate the
calculation in the presence of a magnetic held and we
tak.e the zero-field limit when it is convenient. Some of
our results will therefore be applicable to thin films in
a perpendicular field or to type-II superconductors.

In Sec. II, we calculate the electron self-energy with
and without a magnetic field for various dimension-
alities. We apply the result to the thermal conductivity
in Sec. III. In Sec. IV, we calculate the electron density
of states and compare our result with experiments.

II. ELECTRON SELF-ENERGY

The single-particle thermal Green's function will be
written as

G= Lioi —Px
—Z(k, oi)$ ', (2.&)

where o&= irT(2n+1), g»= Ir'/2ns ei:, and Z(k,—oi) is the
self-energy for an excitation of wave number k and
discrete Matsubara frequency u. We use units in which
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I' IG. 1. Lowest-order diagram for the electron self-energy for
wave vector k and discrete frequency co. Solid line, electron
Green's function; wavy line, fluctuation propagator.

where Go is the single-particle Green's function without
Z and E(q,n) is the propagator of the fluctuation field":

1 — T r ln +Dq'~
=~'p» —+Pl s+

l

—4(s), (23)
T„E(q, n)

where/(s) is the digamrna function, T,p is the transition
temperature in zero magnetic field, Eo is the density of
states of unit spin at the Fermi surface of a free-electron
gas in a volume V, and D is a diffusion constant.

In the presence of impurity scattering, the above
expressions are modified as follows": First, the dis-
crete Matsubara frequency pI is replaced by cp= pi+ r„,
where r„=(vi:/2l)sgnIp, with @+=Fermi velocity and
/= mean free path. Second, the vertex of the inter-
action of a fluctuation line and two single-particle lines
as shown in Fig. 2 is renormalized by the vertex cor-
rection A:

A„(q,n) = (2 —n+2r„)/(2~ —n+D„q'),

if Ip(pI —Q))0

if pI(pI —Q) (0, (2.4)

where D„=Dsgnor. Finally, in the dirty metal the
diffusion constant has the value D= 38+/.

If a uniform, constant magnetic field is present in the
s direction, its effect is to modify" the fluctuation
propagator, Kq. (2.3), and the vertex correction,
Eq. (2.4), by the replacement q~q —2eA/c, where
A= (O,Hx, 0) is the vector potential.

With the above modifications, Eq. (2.2) becomes

T
z(k, pi) = ——Q Gp( —k, —pp+Q+r „~II)

Vq, &

2eA
, 0 K q—

2eA
, n l. (2.5)c' )

A similar expression has been written down by Maki. '
In Kq. (2.5), we have dropped the q dependence of Gp

since we expect the long-wavelength fluctuations to be
"C. Caroli and K. Maki, Phys, Rev. 159, 306 (I967); 159, 316

(&967).
'3 K. Maki, Phys. 1, 21 (1964).

Boltzmann's constant and A are unity. The lowest-order
diagram for Z is given in Fig. 1. The analytic expression
for Z corresponding to Fig. 1 is

T
Z(k, ip) = ——Q Gp( —k+q, —pi+ Q)E(q, n), (2.2)

V q, n

where A„(n,q; Q) has the same form as Eq. (2.4) but
with D„q' replaced by 8'„q sgnor and

T lnl+w. ,i—=Ãp ln—+P —,'+
l

—4(s) .
E„,(n) T,p 4pr T )

In subsequent applications, we shall be interested in
the self-energy when its argument, the imaginary
Matsubara frequency ior, is continued to the real axis.
We wish to express the leading terms of Eq. (2.6) in a
form suitable for this purpose. Some care must be exer-
cised in achieving this. For example, the leading term
is noI, found by simply setting 0=0. The relevant
manipulations are described in Appendix A. From Eq.
(A4), we find

32T' or' 0',mes
Z(k, p)) =

pr VÃp iip+$ 2pr

XQ (r.+W,) I(r,+2W, +21p) ', (2.7)
q, n

where we have expanded the digamma function to first
order in IV„p/T and we use the notation

I',= (8T/pr) In(T/T, p)

for the relaxation rate of the Quctuations of the order
parameter. It is now possible to discuss various limiting
cases. We shall always write

Z(k, id) = (Ip'/iIp+ $)S(pI) . (2.8)

5(pI) is then essentially the expansion parameter of our
perturbation theory.

FIG. 2. Diagram for the pair-vertex func-
tion of wave vector q and discrete fre-
quency Q.

Most IMpoi. taIlt. Tllat Is) wc alc Ileglectlllg 'vpq/r I/$y
where $ is the Ginzburg-Landau coherence length. In
the expression for Z, q —2eA/c only appears in the form
I.= D(q 2e—A/c)', which is the form of the Hamiltonian
of a particle of charge 2e and. mass 1/2D in a uniform
magnetic field. It is therefore convenient to work in a
representation of the eigenfunctions of this operator
rather than in the plane-wave representation. The
eigenvalues of I. are IW p= 2nsD[cd, (n+s)+ q'/2 n)i,
where Id.= —2eH/nic and q is the wave vector of the
motion along the s direction. When the sample is
extensive in both the x and y directions, each of these
eigenvalues is 0',nips, /2m. -fold degenerate where 2 is the
area of the sample perpendicular to H. We then find

Tremor,

z(k, ~)= — —p G,(—k, —~+n+r „,.)
n, q, a

XIII '(n, q; Q)E p(n), (2 6)
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S(co) =
8T' 1 ( 2 "" 1 V2(p/1)'i'+1

Vos D'i'kl', ( +1)'"Lv2+( +1)'"]'
(2.9)

where we have written or=-', vI', . The interesting be-
havior of this expression near T, occurs because of the
critical slowing down of I'„which behaves as ln(T/T, )
=(T—T,)/T, = e for T T,&(T,.—

B. Two Dimensions, Finite Field

In this case, we treat only the geometry of a thin film
in a perpendicular field. Then, the only value of q which
enters is zero and IV„o= 2mDcd, (n+ rs), 6/V= I/cf,
where d is the film thickness. We find that

S(co) =
1 2

m'dJVoD (mDoe, )' 2&a —y 2ce —y

T2

&&1:4(s+ sr+~) —lt (s+V)]

—4'"(i+le+ )), (& &o)

where y=l', /2mDce„co=cd/2mDcd„and itc'& is the
trigamma function.

In the perpendicular field II, the second-order transi-
tion occurs at a temperature T& T,o such that y= —2.
If we expand near this point for y+-,'= ii small, we find"

A. One Dimension, Zero Field

This case corresponds to samples in the shape of wires
or whiskers whose cross section s is less than P, where

$(T) is the Ginzburg-Landau coherence length. It is
convenient to take the long dimension parallel to s and
to let ce, become zero. The degeneracy Qmco, /2ir is now
unity and the only allowed n is zero. We find, from
Eq. (2.8), that

2T' 1 / co+-,'I'.
S(co) = — —

i
ln-

~ ver, D( ——;r,) E r.
cd sI—i. (2.12)
co+ ,'r, i-

D. Three Dimensions, Finite Field

Here, we consider the case of a type-II supercon-
ductor in which a second-order transition occurs, as in
the case of a film, at p= —~. This has already been
treated by Maki. ' Since in Eq. (2.7), we have treated
5',/T as a small quantity, we are restricted to mag-
netic fields II such that T,o

—T((T 0. On the other
hand, it is possible, as Maki has done, to simplify Eq,
(A3) near the transition point by reta, ining only the
term with n= 0. If we do this, we obtain Maki's result
after correcting an error in his Eq. (16) et seq. , where
60 should be replaced by 2E-O.

E. Three Dimensions, Zero Field

In this case, it is most convenient to pass to the limit
H —+ 0 directly in Eq. (2.7) by treating n as a continuous
variable. In this way, we find that

T2
S(ce)=-

7r' VoD"' (co ——',I',) ' (co+-', I',)"'
&&{sr, + —2LI'.( +-', I',)]'~'}. (2.13)

Several of the results of this section will be used in
our subsequent discussion.

We conclude this section with some remarks on the
self-consistent calculation of the self-energy which pro-
ceeds from Eq. (2.2) with the modification that Go is
replaced by G. This results in the following modification
of Eq. (2.8):

C. Two Dimensions, Zero Field

This case is simply found by passing to the limit
H=O in Eq. (2.10). The result is

S(~)=
T2 2

7r'dXoD (mDoo, )' (2ce+-')' ii

Z(k, cd) = S(co),
ice+(+Z( k, —co)—

(2.11)
from which we find that

/ ~

The critical behavior of this expression is made evident ~(k~~)= (~~ 5)

from the fact that X{LI+4~'S(~) (~'+ j')—']' '—I) . (2.14)

if = (H —H,s)//2H

for f'ixed T, H)H, s(T), and that

(2Tc/7rDeH) (T T,)—
for fixed II, T& T,. The relation between H, ~ and T
(or T, and H) is given by

ln(T, o/T) = 7rDeH, s(T)/4cT.
'4 In the transition region, if p=DeH/2seT is not small, Eq. .

(2.2) is multiplied by —,'s'Lg &'&(1+pl) '.

For small S(co), Eq. (2.14) reduces to Eq. (2.8).

III. THERMAL CONDUCTIUITY

The thermal conductivity in the normal state is
given by"

1 —{«9'(q,& ) I
'. =.—o'] )lo-o,.=o, (3 1)

3T dv

where P(q, p ) is the Fourier transform of the time-
ordered heat-current —heat-current correlation function

"V. Ambegaokar and L. Tewordt, Phys. Rev. 134, A805
(1964)'.
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and v =2m-Tm runs over all integers. Ke will evaluate
Eq. (3.1) in the Hartree-Fock approximation. Before
we do this, let us point out that the diagram which is
dominant in the electrical conductivity calculation, the
one considered by Aslamazov and Larkin, ' does not
contribute to the thermal conductivity. The reason is
that this diagram corresponds to the contribution of the
superQuid Row to the current. Since the superQuid
carries no entropy, it does not contribute to the thermal
current.

The Hartree-Fock approximation corresponds to re-
taining only the scattering out terms in the Boltzmann
equation. The relevant diagram is shown in Fig. 3. It
can be shown that in this approximation, Eq. (3.1)
takes the form

X= (24prm'T') ' Pi d~ k'aP sech' A'(k &) (3.2)
2T

Fra. 3. Diagram for the Har tree-Pock
approximation to the heat-current —heat-
current correlation function of wave-vector
zero and discrete frequency v,~. Heavy lines,
electron Green's function including self-
energy due to fluctuations.

The thermal conductivity in two dimensions has only
a weak logarithmic singularity as T approaches T, and
it has no anomalous behavior in three dimensions.
Therefore, we treat one-dimensional geometry and we
shallfindthatX'appears to diverge as I (T—T.)/T. 7 ' '.

The size of the term in square brackets in Eq. (3.5)
may be estimated by noticing that for our problem I',/~
and pp/I' are both small if we are sufliciently close to T,.
The ratio I',/T, is of order e= (T—T,)/T„while T,/I'
is of order 10 '. It is convenient to introduce the
quantity n(&u), which is the approximation to S(pp) when
a&/I', )&1. From Eq. (2.9), we find

where A(k, a&) is the quasiparticle spectral function.
From Eq. (3.2), we see that the most important con-
tribution to E comes from the region co=T,. The
contribution from smaller frequencies is depressed by
the co' factor and also by the decreased density of states
(cf. Sec. IV) which is reflected in A(k, cv). This means
that, in the evaluation of Eq. (3.2), we can cut off the
integral at small frequencies and the spectral function
can be approximated by the results of the 6rst-order
perturbation theory that we have carried out in the
previous section.

Using Kqs. (2.1) and (2.8), we can express the
electron Green's function as

A (k, (o) = 2 Imo(k, uu„—+ p~+i0+), (3.4)

where in Eq. (3.4), pp is now a real frequency. Using
Kqs. (3.3) and (3.4) in Eq. (3.2) and carrying out the
integral over the kinetic energy, we obtain

v p'Sp
dc' co2 sech2

24T' 2T

1 (2(o(p&+i I')+F)
2 Rel

2s)1'+ImF

p F+Iml, (3.S)
e+~

where I' =u~/2l and we have written F(~) for

((o+il')'S(ipp ~ co+i0+)
and where

e~= ((o+zI')I 1+F(a))/(co+zl')'7"', Imp~) 0.

G(" pp)= (z'p +k)/(pp 'I I+~(a )7+k') (33)

where ice is the imaginary Matsubara frequency. The
spectral function is related to the Green's function by

16T' ep 8 /T '

zr.q'pcozs(i', D) i~z T 3ns(e 4 a

where n is the electron density and ( is the Ginzburg-
Landau coherence length. Then n(pp) is essentially the
expansion parameter in the perturbation series. For
s=10 "cm' $e'"=10 ' cm, es/T, =10', and n=10"
cm ', we find that n=10 '(T /&u)'e "' For cv= T„we
see that o. is small provided we are not too close to the
transition. To 6rst order in these parameters, we 6nd
that the expression in the curly brackets is 2(1+san)/I'.
Since our use of Eq. (2.8) instead of Eq. (2.14) is correct
only for sn1all n, we should cut off the frequency integral
in Eq. (3.4) so as to exclude the region where n) 1. For
the ratio (X—Xp)/Xp we find a value 0.009 when
e = 10 ' and 0.07 when e.= 10 ', where Ep is the normal-
state conductivity in the absence of fluctuations. If we
decrease the size of the sample, the ratio increases.

It is interesting to note that E increases in the
presence of Quctuations. This suggests that the lifetime
might increase. If we examine the imaginary part of the
electron self-energy, we find that this is indeed the case.
For a&=T„we obtain ImZ(pp+i0+)= —I'(1—n). This,
together with the increase in the density of states
(=I/2n for cu=T, ) accounts for the change in X.We'
remark that this affect on the lifetime occurs only in
the dirty limit.

Thus far, we have considered just the Hartree-Pock
approximation. To do a self-consistent calculation of
the correlation function, we must take into account the
change in the Quctuation propagator as well as the
change in the electron Green's function. "Even if we
assume the fluctuations to be unaffected by the thermal
gradient, we still have to sum the ladder diagrams for
the heat-current vertex function. However, because we
have used Eq. (3.3) for the Green's function, the ladder
series reduces to the term shown in Fig. 4. Instead of

"G. Baym and L. P. Kadano8, Phys. Rev. 124, 287 (1961).
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F&G 4. Diagram for the scattering-in contribution to the heat-
c«rent-heat-current correlation function of wave-vector zero and
discrete frequency v,„. Heavy lines, electron Green's function
i~eluding self-energy due to fluctuations; light lines, bare-electron
Green's function.

calculating this diagram we approximate all Green's
functions by the bare ones (i.e., those without fluctua-
tions but with impurity scattering). This corresponds
to calculating the scattering-in terms by the 6rst Born
approximation. We hope that this will give the correct
temperature dependence. In Appendix 8, we show that
in this approximation the scattering-in terms make no
anomalous contribution to the thermal conductivity.

IV. DENSITY OF STATES

The electronic density of states in the transition
region is easily obtained from the self-energy calcula-
tions of Sec. II. In the following, we shall only be
interested in cases for which the expansion parameter
S(M) is small so tha, t we may use Eq. (2.8) for the
self-energy.

The density of states is found from the Green's
function by the following expression:

following behavior of N(pr): At the Fermi surface, there
is a depression of 1V(pr) below Np by an amount which
increases as p ' as T —+ T,. As pr increases, N(pr) in-
creases (quadratically, for small pr) until it reaches Np
at a frequency pip= 1.14r.. For pr) pip, 1V(pr) continues to
increase, there is a maximum at a frequency several
times r, and then N(pr) approaches Np as pr ' lnpr. Thus,
the behavior is qualitatively similar to that of a gapless
superconductor below its transition point, ' although
the detailed frequency dependence is different.

To compare our results with experiment, we focus our
attention on the depression in N(pr) at zero frequency
and on the frequency prp at which N(pr) = 1Vp. It is con-
venient for the former to consider 5N= L1V(0) Npf/N—p.

From Eqs. (4.1) and (4.3), we find

8N= —3.0X10 '/p',

where we have used the parameters of sample II of Ref.
11.The e ' dependence agrees well with the data. The
prefactor depends on the parameters of the granular
aluminum film which are rather uncertain. The value
&up, at which N (pr) = N p, is given by 1.14I',= 3.8X 10"T,p
rad/sec and is otherwise sample-independent. The ex-
perimental results do not show enough regularity for
comparison.

For a three-dimensional sample in zero field, we give
only the result for 6N. From Eqs. (2.13) and (4.2), we
6nd that

A)V = T'(3&2 —4)/m'N p—(Dr, ) '",
cVp

N(pr) = Im d$ G(k, i pr„&pr+i0+) . —

Using Eqs. (2.1) and (2.8), we find

N(pr) = Np Re[1+S(ipp„-+pr+iO+)$ '"
=NpL1 —', ReS(or) 7,

(4 1)

(4.2)

which varies as ~ '~'. The experimental results" appear
to exhibit a slower variation.

For completeness, we give the result for N(pr) for a
thin 61m in a perpendicular 6eld. The bulk case has
already been treated by Maki' {of Sec. II D). Near the
transition point, we may use Eq. (2.11) for S(pr). From
Eq. (4.2), we find that

where the second line is valid for small S(pr).
We apply our result to the case of two-dimensional

films in zero magnetic field for which experiments" are
available. From Eq. (2.12) we find, after continuing
i~„~~, that

S(pp) =—

where r = 2pr/r, . The term in square brackets is largest
for r (1 and is of order unity so that the size of S(pr)
is determined by the prefactor which may be written

(37r'/4m'rrr Pld p'). H—ere, we have used the approximate
expression r, = (8T,/7r) p which is valid for T close to
T,. For a film of thickness d= 550 A and mean free path
l=22A (sample II of Ref. 11), we find that S(pr) is
small as long as e&10 '. Closer to the transition point
it would be necessary to use the self-consistent result of
Eq. (2.14) in the integral of Eq. (4.1).For temperatures
such that Eqs. (4.2) and (4.3) are valid, we have the

N(pr) —1Vp

iVp

T' pr' (eDH/c) ' 1—
7r'dN pD $M'+ (eDH/c)' j' q

where g is defined below Eq. (2.11) and gives the critical
temperature and field behavior. It is seen that, in this
case, the density of states has the same form as that of
a gapless superconductor (since only the n=0 fluctua-
tion mode contributes for small g).

APPENDIX A: EVALUATION OF SELF-ENERGY

We wish to evaluate Eq. (2.6) for the electron self-

energy in the presence of fluctuations. To achieve a form
suitable for the analytic continuation of the positive
imaginary frequency i~ to the real axis, we divide the
sum on 0 into the ranges Q&cv, ~&Q) 0, and O(0. In
the first range, the vertex correction A is unity since we
are taking co&0. It is convenient to express the sum i.n

"P.G. de Gennes, Sgpercondlct&ity of Metals and Alloys (W.
A. Benjamin, Inc. , New York, 1966), p. 266.
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each of the ranges over a positive summation variable. function P(1,2) is given, in configuration space, by
We find that

To~a)c
~(k ~) = — —2 L 2 Gp(~')&(~+~')

2x V e~

1 (r) r) ) r) r)

P(1,2) = — ! V'i, + Vi! V + i7
4nz E r)1i W p J r)ts c11zi

X(T4(1)4(2)4'(2'8'(1'))! i =i', z =z') (81)
+ Q Gp( —rp')A '(rp —rp')&(rp —rp')

where 1t, pt are the electron 6eld operators and T is the
time-ordering operator. The two lowest-order terms in

+2 Go( rp+fl+r —+o)A„'( fl)&(fi)j, (Ai) the decomposition of the two-particle Green's func-
Q)p tion are

where we have not written the explicit dependence of
the summands on k, q, n.

In Eq. (A1), rp' is an odd discrete frequency while Q

is even. An examination of the summands reveals that
the leading term of the first sum has a Quctuation
propagator whose smallest frequency is of order T. On
the other hand, the last sum contains a fluctuation
propagator of zero frequency and its leading term will

be larger by order Dn(T /T, )p7 '. Therefore, we neglect
the sum and take 0= 0 in the third. The second sum
contains ternis which can give a large contribution when
ice is continued to a real frequency less than T. To
handle this, we rewrite the sum in such a way as to
separate each factor into a partial fraction. The result is

sT (z+2r —8')'

zrÃp ~&~ &p (L+Q)(L+Z)

where

1
x — + —+ (A2)

L(L+Z) Z' Z(L, +Z)

ST T /1 rp —rp'+W)
»—+41 —+ —

!
—0(-')

T p (2 4zrT )

and Q=irp'+$, Z= (rp+rp'+IV). We have dropped all
terms having more than one power of Q (order r) in the
denominator as is consistent in the dirty limit.

We may neglect the first term in the square bracket
of Eq. (A2) for the same reason we neglected the first
sum of Eq. (Ai). The other two terms are rewritten as
the difference of two sums, ~ )co') 0 and ~ )co') co.

The largest contribution comes from the lower limit of
the second sum which we add to the Q = 0 part of the
third sum of Eq. (A1). This yields the result

Pz(0, v ) = —i(T/2nz)' Q Gp(k, rd )Gp(q —k, —rp. )
k,g, n

XGp(k, rp„+v„)Gp(ii —k, —rp. —v )

XK(q,o) (2pp„+v„)'k'(rp„+r„)/(pp„+-', D.q')

X (rp +v-+r-+-)/(rp. +v-+ pD-+-q'), (83)

where r„(D„)denotes r sgnrp (D sgnrp„). In writing Eq.
(83), we have followed Maki" and assumed that the
dominant contribution is given by the zero-frequency-
Quctuation propagator and, as discussed in the text, we
have used bare Green's functions throughout. After
perf orrning the frequency sum and the sum on k,
analytically continuing iv to v+i0, and neglecting
vvq/r, we obtain

TlV pv p'
Pz(0,v) =i

(2x+v) '
dx tanh

q 2T (x+v iDq')—
XL(v —2ir)(x+zDq')]

+$(2x+v —2ir)(x —iDq')g '7K(q, 0)q'.

(Tf(1)P(2)ft(2')f"(1'))= G(12')G(21')

+iG(11)G(21)E(1,2)G(21')G(22'), (82)

where X(1,2) is the fluctuation propagator in con-
figuration space. The first term on the right-hand side
of Eq. (82) is the Hartree-Fock approximation whose
diagram is shown in Fig. 3. The second term is the first
term in the ladder series. The relevant diagram is shown
in Fig. 4, which depicts the quantity GpGpEGG wllich
is the correct self-consistent form for the scattering-in
term when Eq. (3.3) is used for the Green's function.
The contribution of Fig. 4 to the Fourier transform of
the correlation function at zero wave number is

T~~c 1 We now neglect v compared to F and find that
Z(k, rp) = (A3)

zr'V1Vp zcp+$ p" L(0) EL(0)+2rp+8 j' —ReEs(0,v) = ,', TcVgv'D Pp E—(—iLO) Re dx
where we have neglected L(0) in comparison with r. dv

APPENDIX B: SCATTERING-IN
CONTRIBUTION TO EC

x 4x'Dq'x' (x+iDq')'(x+iI') )
Xtanh

2T (x'+D'q')'(r'yx'g ir(x'yD'q')'

Here, we calculate the contribution of the diagram of We see that this exPression does not diverge as T~ T,.
Fig. 4 to the thermal conductivity E. The correlation "K. M'ski, Progr. Theoret. Phys. (Kyoto) 40, 193 (1968).


