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A calculation of the microscopic effects of the fluctuations of the superconducting order parameter in
the classical region above 7'; on the electron Green’s function in dirty materials is presented. The calculation
is formulated in the presence of a magnetic field. The results of this calculation in the zero-field limit are
used to obtain the change in the thermal conductivity K and in the electron density of states N (w). For a
one-dimensional sample, K appears to diverge as [(I'—7)/T.]7/* while for two and three dimensions,
K depends weakly on temperature. The behavior of N (w) is qualitatively similar to that of a gapless super-
conductor below its transition temperature, although the detailed frequency dependence is different. For
thin films, the depression at the Fermi surface increases as [(T'—7)/T.]2 The agreement with experi-

ment is satisfactory.

I. INTRODUCTION

ECENTLY, there has been great interest in the
effects of thermodynamic fluctuations of the order
parameter on various properties of a metal just above
its superconducting transition temperature.!~!* Thus
far, most of the attention has focused on properties that
directly involve the superfluid. For instance, in the
presence of an electric field regions with finite superfluid
density are freely accelerated, giving rise to anomalous
behavior of the electrical conductivity.!'?571° It is
natural to expect that fluctuations of the order param-
eter will also influence such properties of the single-
particle excitations as the density of states?®1! the
effective mass, and the lifetime. This, in turn, will also
alter the electrical conductivity.®* However, because
the superfluid has a much stronger effect, the anomalous
contribution from the normal fluid is not seen. In
thermal conductivity, the situation is quite different.
Since the superfluid does not contribute to the entropy
flow, the normal electrons are dominant. A study of the
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thermal conductivity thus allows us to see the way the
normal fluid is affected by fluctuations.

The influence of the fluctuations on the quasiparticles
may also be observed in tunneling measurements.!! We
expect that just above the transition temperature, the
quasiparticle spectrum will be altered by the presence
of fluctuations and that this will be reflected in a varia-
tion of the tunneling density of states. The latter
quantity is, in fact, a rather direct measure of the fre-
quency and temperature dependence of the quasi-
particle self-energy.

In this paper, we present a microscopic calculation of
the electron Green’s function in the presence of the
fluctuations of the order parameter above the critical
temperature 7', in the so-called classical region where
mean-field theory is valid. We restrict ourselves to dirty
materials where the fluctuation effects are usually most
prominent. We use this calculation to obtain the change
in thermal conductivity and electron density of states
due to fluctuations. For completeness, we formulate the
calculation in the presence of a magnetic field and we
take the zero-field limit when it is convenient. Some of
our results will therefore be applicable to thin films in
a perpendicular field or to type-II superconductors.

In Sec. II, we calculate the electron self-energy with
and without a magnetic field for various dimension-
alities. We apply the result to the thermal conductivity
in Sec. ITI. In Sec. IV, we calculate the electron density
of states and compare our result with experiments.

II. ELECTRON SELF-ENERGY

The single-particle thermal Green’s function will be
written as

G="liv—t—2(kw) I, (2.1)

where w=7T(2n+1), &x=k%/2m—ep, and Z(k,w) is the
self-energy for an excitation of wave number k and
discrete Matsubara frequency w. We use units in which
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1 FLUCTUATIONS ABOVE THE SUPERCONDUCTING TRANSITION
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F16. 1. Lowest-order diagram for the electron self-energy for
wave vector k and discrete frequency w. Solid line, electron
Green’s function; wavy line, fluctuation propagator.

Boltzmann’s constant and % are unity. The lowest-order
diagram for 2 is given in Fig. 1. The analytic expression
for 2 corresponding to Fig. 1 is

T

where Gy is the single-particle Green’s function without
2 and K(q,Q) is the propagator of the fluctuation field?:

1 T 12| +Dg?
=Ng[ln—— +¢<%+ W) —¢<%>], 2.3)
K(q79) c0 47I'T

where y(2) is the digamma function, T, is the transition
temperature in zero magnetic field, N, is the density of
states of unit spin at the Fermi surface of a free-electron
gas in a volume V, and D is a diffusion constant.

In the presence of impurity scattering, the above
expressions are modified as follows!3: First, the dis-
crete Matsubara frequency w is replaced by @=w+ T,
where T',= (vp/2l)sgnw, with vp=Fermi velocity and
I=mean free path. Second, the vertex of the inter-
action of a fluctuation line and two single-particle lines
as shown in Fig. 2 is renormalized by the vertex cor-
rection A:

Aw(q,ﬂ)‘—‘ (2“)_‘9_}‘ 2Pw>/(2w_Q+Dw92) )

if w(lw—2)>0
if wlw—2)<0, (2.4)

where D,=D sgnw. Finally, in the dirty metal the
diffusion constant has the value D=1vpl.

If a uniform, constant magnetic field is present in the
z direction, its effect is to modify!® the fluctuation
propagator, Eq. (2.3), and the vertex correction,
Eq. (2.4), by the replacement q— q—2eA/c, where
A=(0,Hx,0) is the vector potential.

With the above modifications, Eq. (2.2) becomes

T
2(kw)=— = T Go(—k, —o+ @+ Tut0)
q,

2eA 2eA
XAw2<q— - 9>K(q— - 9) (2.5)
¢ c

A similar expression has been written down by Maki.?
In Eq. (2.5), we have dropped the q dependence of G,
since we expect the long-wavelength fluctuations to be

12 C, Caroli and K. Maki, Phys. Rev. 159, 306 (1967); 159, 316

(1967).
13 K. Maki, Phys. 1, 21 (1964).
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most important. That is, we are neglecting vrq/I'~1/§,
where £ is the Ginzburg-Landau coherence length. In
the expression for =, q—2¢A/c¢ only appears in the form
L=D(q—2eA/c)?, which is the form of the Hamiltonian
of a particle of charge 2¢ and mass 1/2D in a uniform
magnetic field. It is therefore convenient to work in a
representation of the eigenfunctions of this operator
rather than in the plane-wave representation. The
eigenvalues of L are W,,=2mD[w.(n+3%)+q*/2m],
where w.= —2¢H /mc and q is the wave vector of the
motion along the z direction. When the sample is
extensive in both the x and y directions, each of these
eigenvalues is @mw,./2r-fold degenerate where @ is the
area of the sample perpendicular to H. We then find

T @mw,
E(k;(’-’)= - "2—'— > Go(-—'k, —w+ Q4T _i0)

TV  n.a.0

><Aw2(n,q; Q>an(9) )

where A,(n,g; Q) has the same form as Eq. (2.4) but
with D,q? replaced by W ,, sgnw and

1 T |Q+W g
e (o 2 )
an(Q) c0 47I'T

(2.6)

In subsequent applications, we shall be interested in
the self-energy when its argument, the imaginary
Matsubara frequency w, is continued to the real axis.
We wish to express the leading terms of Eq. (2.6) in a
form suitable for this purpose. Some care must be exer-
cised in achieving this. For example, the leading term
is not found by simply setting ©=0. The relevant
manipulations are described in Appendix A. From Eq.
(A4), we find

32T & G,

rVNyio+E 2m

X (Dot W) YT e 2W gt+2w)2, (2.7)
aqa,n

2(kyw)=

where we have expanded the digamma function to first
order in W,,/T and we use the notation

Ts=87/7) In(T/T )

for the relaxation rate of the fluctuations of the order
parameter. It is now possible to discuss various limiting
cases. We shall always write

2(kw)= (@%/i+£)S(w) .

S(w) is then essentially the expansion parameter of our

perturbation theory.
~k+q , -+
M

k,w

(2.8)

F1c. 2. Diagram for the pair-vertex func-
tion of wave vector ¢ and discrete fre-
quency £2.
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A. One Dimension, Zero Field

This case corresponds to samples in the shape of wires
or whiskers whose cross section s is less than £, where
£(T) is the Ginzburg-Landau coherence length. Tt is
convenient to take the long dimension parallel to z and
to let w, become zero. The degeneracy Qmw./2m is now
unity and the only allowed # is zero. We find, from
Eq. (2.8), that

VI(r1)1241

872 1 s2\°* 1
S(w)= <_> )
aNos DU,/ (v4-1)%2 [VI+ (4 1)1/2]2 -

9)

where we have written w=23vT;. The interesting be-
havior of this expression near 7', occurs because of the
critical slowing down of T';, which behaves as In(7/7.)
~(T—T,)/T.;=¢for T—TKLT.,.

B. Two Dimensions, Finite Field

In this case, we treat only the geometry of a thin film
in a perpendicular field. Then, the only value of ¢ which
enters is zero and W,,=2mDw.(n+3), @/V=1/d,
where d is the film thickness. We find that

1 / 2
w2dN oD (mDw,)? 2&)——7\2&)——7
XGE+iv+a) —¢G+v)]

T? 1

S(w)=

—y (L %74_5,)), (2.10)

where y=T,/2mDw,, o=w/2mDw,, and ¢ is the
trigamma function.

In the perpendicular field H, the second-order transi-
tion occurs at a temperature 77< 7, such that y= —3.

If we expand near this point for y+3% = small, we find

77 1 2 1
S(w) = -

- . (211
72dN oD (mDw.)? 2a-+1)2 n

The critical behavior of this expression is made evident
from the fact that

n=(H—H)/2H
for fixed ') H>H (5(T), and that
(2Tc/mDeH)(T—T")
= -

n

for fixed H, T>T,.. The relation between H, and T
(or T'; and H) is given by

In(T 4o/ T)=7DeH o»(T) /4¢T .

4 Tn the transition region, if p=DeH /2xcT is not small, Eq.
(2.2) is multiplied by w2[¢ M (14p)] L
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C. Two Dimensions, Zero Field
This case is simply found by passing to the limit
H=01n Eq. (2.10). The result is
27 1 w+il,  w—iT,
(1 e ) (2.12)
w2dN D (w——%I‘s)z\ T, w+3Ts

D. Three Dimensions, Finite Field

Here, we consider the case of a type-II supercon-
ductor in which a second-order transition occurs, as in
the case of a film, at y= —3. This has already been
treated by Maki.? Since in Eq. (2.7), we have treated
Wae/T as a small quantity, we are restricted to mag-
netic fields H such that T—7 KT c. On the other
hand, it is possible, as Maki® has done, to simplify Eq.
(A3) near the transition point by retaining only the
term with z=0. If we do this, we obtain Maki’s result
after correcting an error in his Eq. (16) et seq., where
€0 should be replaced by Feo.

E. Three Dimensions, Zero Field

In this case, it is most convenient to pass to the limit
H — 0O directly in Eq. (2.7) by treating # as a continuous
variable. In this way, we find that

T2 1 1
72N D32 (w—3T5)2 (w+3T) 2

X{ET+w—2[Ts(w+3T:) ]2}, (2.13)
Several of the results of this section will be used in

our subsequent discussion.
We conclude this section with some remarks on the
self-consistent calculation of the self-energy which pro-
ceeds from Eq. (2.2) with the modification that G, is

replaced by G. This results in the following modification
of Eq. (2.8):

2(k,w) =

S(w) =

2

= S(w),
o+ E+2(—k, —w)

from which we find that
XATIH468S (@) @+ £ T =1}
For small S(w), Eq. (2.14) reduces to Eq. (2.8).

(2.14)

III. THERMAL CONDUCTIVITY

The thermal conductivity in the normal state is
given by?®

14d
K=—— _{ Re[P(q’Vm) I iVm=V-i0+]} |q=0,1’=0 ) (31)
3T dv

where P(q,vn) is the Fourier transform of the time-
ordered heat-current-heat-current correlation function

15V, Ambegaokar and L. Tewordt, Phys. Rev. 134, A805
(1964).



1 FLUCTUATIONS ABOVE THE SUPERCONDUCTING TRANSITION

and v»=2xTm runs over all integers. We will evaluate
Eq. (3.1) in the Hartree-Fock approximation. Before
we do this, let us point out that the diagram which is
dominant in the electrical conductivity calculation, the
one considered by Aslamazov and Larkin,' does not
contribute to the thermal conductivity. The reason is
that this diagram corresponds to the contribution of the
superfluid flow to the current. Since the superfluid
carries no entropy, it does not contribute to the thermal
current.

The Hartree-Fock approximation corresponds to re-
taining only the scattering out terms in the Boltzmann
equation. The relevant diagram is shown in Fig. 3. It
can be shown that in this approximation, Eq. (3.1)
takes the form

w
K=(247m2T?)~1 >} /dw k2w? sech?Az(k,w) , (3.2)

where A(k,w) is the quasiparticle spectral function.
From Eq. (3.2), we see that the most important con-
tribution to K comes from the region w~7, The
contribution from smaller frequencies is depressed by
the w? factor and also by the decreased density of states
(cf. Sec. IV) which is reflected in A4(k,w). This means
that, in the evaluation of Eq. (3.2), we can cut off the
integral at small frequencies and the spectral function
can be approximated by the results of the first-order
perturbation theory that we have carried out in the
previous section.

Using Egs. (2.1) and (2.8), we can express the
electron Green’s function as

G(k,w)= _(7'6’n+ 5)/{a’ﬂ2[1+‘$(‘°n)]+ 52} )

where iw, is the imaginary Matsubara frequency. The
spectral function is related to the Green’s function by

A (k,w) =2 ImG(k, iw, — w+i0%), (3.4)

(3.3)

where in Eq. (3.4), w is now a real frequency. Using
Eqgs. (3.3) and (3.4) in Eq. (3.2) and carrying out the
integral over the kinetic energy, we obtain

22Ny [ - 13)
= / dw w? sech>—
2472 2T
1 2w(w—+il)+F
Xl: 2 Re( >
2wI'+ImF €

+Im(£—3):l, 3.5)

where I'=»r/2] and we have written F(w) for
(w41I) %S (iwn — w+407)
and where

€= (w+iD)[1+F(w)/(w+2I)2]2, Ime,>0.
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F1c. 3. Diagram for the Hartree-Fock K Cn
approximation to the heat-current-heat-
current correlation function of wave-vector
zero and discrete frequency ».,. Heavy lines,
electron Green’s function including self-
energy due to fluctuations.

The thermal conductivity in two dimensions has only
a weak logarithmic singularity as 7" approaches 7°; and
it has no anomalous behavior in three dimensions.
Therefore, we treat one-dimensional geometry and we
shall find that K appears to diverge as [(T—7T.)/T.] /2.

The size of the term in square brackets in Eq. (3.5)
may be estimated by noticing that for our problem I';/w
and /T are both small if we are sufficiently close to 7',.
The ratio T's/7T, is of order e=(T"—T,)/T., while T,/T
is of order 1073. It is convenient to introduce the
quantity «(w), which is the approximation to S(w) when
w/T:>>1. From Eq. (2.9), we find

1672 er 8 /T 2
RN
mNow?s(T:D)V2 T 311526\w

where # is the electron density and ¢ is the Ginzburg-
Landau coherence length. Then a(w) is essentially the
expansion parameter in the perturbation series. For
s=~1071° cm?, £'/2~107° cm, er/T.~10% and n~ 102
cm~3, we find that a=1073(T,/w)2% /2, For w=~T,, we
see that « is small provided we are not too close to the
transition. To first order in these parameters, we find
that the expression in the curly brackets is 2(1432«)/T.
Since our use of Eq. (2.8) instead of Eq. (2.14) is correct
only for small @, we should cut off the frequency integral
in Eq. (3.4) so as to exclude the region where a>1. For
the ratio (K—K,)/Ko, we find a value 0.009 when
e= 1072 and 0.07 when e= 10~%, where K, is the normal-
state conductivity in the absence of fluctuations. If we
decrease the size of the sample, the ratio increases.

It is interesting to note that K increases in the
presence of fluctuations. This suggests that the lifetime
might increase. If we examine the imaginary part of the
electron self-energy, we find that this is indeed the case.
For w~T,, we obtain ImZ(w+10*)~ —T'(1—ea). This,
together with the increase in the density of states
(=1/2a for w~T,.) accounts for the change in K. We
remark that this affect on the lifetime occurs only in
the dirty limit.

Thus far, we have considered just the Hartree-Fock
approximation. To do a self-consistent calculation of
the correlation function, we must take into account the
change in the fluctuation propagator as well as the
change in the electron Green’s function.!® Even if we
assume the fluctuations to be unaffected by the thermal
gradient, we still have to sum the ladder diagrams for
the heat-current vertex function. However, because we
have used Eq. (3.3) for the Green’s function, the ladder
series reduces to the term shown in Fig. 4. Instead of

16 G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
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kyoop+v,

G-k, Q-tw,-v,

F1c. 4. Diagram for the scattering-in contribution to the heat-
current-heat-current correlation function of wave-vector zero and
discrete frequency »,. Heavy lines, electron Green’s function
including self-energy due to fluctuations; light lines, bare-electron
Green’s function.

calculating this diagram, we approximate all Green’s
functions by the bare ones (i.e., those without fluctua-
tions but with impurity scattering). This corresponds
to calculating the scattering-in terms by the first Born
approximation. We hope that this will give the correct
temperature dependence. In Appendix B, we show that
in this approximation the scattering-in terms make no
anomalous contribution to the thermal conductivity.

IV. DENSITY OF STATES

The electronic density of states in the transition
region is easily obtained from the self-energy calcula-
tions of Sec. II. In the following, we shall only be
interested in cases for which the expansion parameter
S(w) is small so that we may use Eq. (2.8) for the
self-energy.

The density of states is found from the Green’s
function by the following expression:

J\T
N(w)= — Tm / dE G(K, iwn— wti0).  (4.1)

™
Using Eqgs. (2.1) and (2.8), we find

]\7(60) =N, Re[l—}-S(iwn — w‘!‘iO"')]“l/?

~N1—1ReS(w)], 4.2)

where the second line is valid for small S(w).

We apply our result to the case of two-dimensional
films in zero magnetic field for which experiments!! are
available. From Eq. (2.12) we find, after continuing

1w, — w, that
87 1/ vki v—i
[ (ot )] 3)
PNADT L (r—i)?\ 28 i

where »=2w/T,. The term in square brackets is largest
for »<1 and is of order unity so that the size of S(w)
is determined by the prefactor which may be written
— (3w2/4m* p2lde?). Here, we have used the approximate
expression I's=(87,/w)e which is valid for 7" close to
T.. For a film of thickness d= 550 A and mean free path
1=22A (sample II of Ref. 11), we find that S(w) is
small as long as e> 1072 Closer to the transition point
it would be necessary to use the self-consistent result of
Eq. (2.14) in the integral of Eq. (4.1). For temperatures
such that Egs. (4.2) and (4.3) are valid, we have the

S(w)=—

A'BIRAHAMS, REDI, AND WO0O 1

following behavior of N(w): At the Fermi surface, there
is a depression of N(w) below N, by an amount which
increases as €% as I'— T'.. As w increases, N(w) in-
creases (quadratically, for small w) until it reaches Ny
at a frequency wo=1.14T';. For w> wo, N(w) continues to
increase, there is a maximum at a frequency several
times T, and then N (w) approaches NV, as w2 Inw. Thus,
the behavior is qualitatively similar to that of a gapless
superconductor below its transition point,'” although
the detailed frequency dependence is different.

To compare our results with experiment, we focus our
attention on the depression in N(w) at zero frequency
and on the frequency wp at which N (w)=N,. It is con-
venient for the former to consider sN=[N(0)—N,]/N,.
From Egs. (4.1) and (4.3), we find

SN=—3.0X10"5/¢2,

where we have used the parameters of sample II of Ref.
11. The €2 dependence agrees well with the data. The
prefactor depends on the parameters of the granular
aluminum film which are rather uncertain. The value
wp, at which N (w)= Ny, is given by 1.14T',= 3.8 X 10117 ;e
rad/sec and is otherwise sample-independent. The ex-
perimental results do not show enough regularity for
comparison.

For a three-dimensional sample in zero field, we give
only the result for §N. From Egs. (2.13) and (4.2), we
find that

8N = —T2(3V2—4)/x2No(DT,)*'2,

which varies as €7%/2. The experimental results'' appear
to exhibit a slower variation.

For completeness, we give the result for N(w) for a
thin film in a perpendicular field. The bulk case has
already been treated by Maki® (of Sec. II D). Near the
transition point, we may use Eq. (2.11) for S(w). From
Eq. (4.2), we find that

Nw—=No T°® w*—(eDH/0)? 1
No  w%dNoD [w*+(eDH/c)* 7’

where 7 is defined below Eq. (2.11) and gives the critical
temperature and field behavior. It is seen that, in this
case, the density of states has the same form as that of
a gapless superconductor (since only the z=0 fluctua-
tion mode contributes for small 7).

APPENDIX A: EVALUATION OF SELF-ENERGY

We wish to evaluate Eq. (2.6) for the electron self-
energy in the presence of fluctuations. To achieve a form
suitable for the analytic continuation of the positive
imaginary frequency iw to the real axis, we divide the
sum on Q into the ranges 2>w, w>0>0, and 2<0. In
the first range, the vertex correction A is unity since we
are taking w>0. It is convenient to express the sum in

17 P, G. de Gennes, Superconductivity of Metals and Alloys (W.
A. Benjamin, Inc., New York, 1966), p. 266.
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each of the ranges over a positive summation variable.
We find that

T @mw,
. 2 [X Go@)K(oto)

g an  w’'>0

2kw)=—

+ Y Go(—d)AXw—o)K(w—w')

w>w!>0

+ Z GO( ~w+Q+P_w+g)Aw2( _Q)K(Q)] ’

Q>0

(A1)

where we have not written the explicit dependence of
the summands on k, ¢, #.

In Eq. (A1), o’ is an odd discrete frequency while @
is even. An examination of the summands reveals that
the leading term of the first sum has a fluctuation
propagator whose smallest frequency is of order 7. On
the other hand, the last sum contains a fluctuation
propagator of zero frequency and its leading term will
be larger by order [In(7/7 ) ]~". Therefore, we neglect
the sum and take @=0 in the third. The second sum
contains terms which can give a large contribution when
iw is continued to a real frequency less than 7". To
handle this, we rewrite the sum in such a way as to
separate each factor into a partial fraction. The result is

8T (Z+42r—W)?
wN g w>o'>0 (L4+Q)(L+2Z)
1 1
LIS
L(L+Z2) 7Z* Z(L+Z2)

where

8T T 1 w—o'4+W
L= ——|:ln~— +xl/<~ + ﬁ~>-¢(%)]
T <0 2 47T

and Q=16'+£, Z=(v+w'+W). We have dropped all
terms having more than one power of Q (order I') in the
denominator as is consistent in the dirty limit.

We may neglect the first term in the square bracket
of Eq. (A2) for the same reason we neglected the first
sum of Eq. (A1). The other two terms are rewritten as
the difference of two sums, ©>w'>0 and «© >w'>w.
The largest contribution comes from the lower limit of
the second sum which we add to the @=0 part of the
third sum of Eq. (Al). This yields the result

T@mw, 4@ 1 1
2(k,w) = ——3 , (A3)
12VNg i+ ‘o L0) [LO)+20+W ]

where we have neglected L(0) in comparison with I

APPENDIX B: SCATTERING-IN
CONTRIBUTION TO K

Here, we calculate the contribution of the diagram of
Fig. 4 to the thermal conductivity K. The correlation
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function P(1,2) is given, in configuration space, by!®

1 /90 9 J 0
P(1,2)= ——(—VH- -V1>(——V2'-I— Vz)
4m2 6t1 3t1/ atz 6/2'

XYY QW H2WHL)) |11t =2,

where ¢, ' are the electron field operators and T is the
time-ordering operator. The two lowest-order terms in
the decomposition of the two-particle Green’s func-
tion are

(T (Y20 (21 (1))=G(12)G(21)
+iGA1DGRK(1,2)G(21)G(22),

(B1)

(B2)

where K(1,2) is the fluctuation propagator in con-
figuration space. The first term on the right-hand side
of Eq. (B2) is the Hartree-Fock approximation whose
diagram is shown in Fig. 3. The second term is the first
term in the ladder series. The relevant diagram is shown
in Fig. 4, which depicts the quantity GoGoKGG, which
is the correct self-consistent form for the scattering-in
term when Eq. (3.3) is used for the Green’s function.
The contribution of Fig. 4 to the Fourier transform of
the correlation function at zero wave number is

PoOpm)=—i(T/2m)? Y, Golkywn)Golg—k, —wn)

k,q,n

XG()(k, wn+”m)G0(q_ky _wﬂ_ym)
X K(9,0)2wntrm)k*(@atTn)/ (@nt3Dag?)
X (wn+Vm+Fn+m)/(wn+ym+%Dn+mg2) )

where I',(D.,,) denotes T' sgnw,(D sgnw,). In writing Eq.
(B3), we have followed Maki!® and assumed that the
dominant contribution is given by the zero-frequency-
fluctuation propagator and, as discussed in the text, we
have used bare Green’s functions throughout. After
performing the frequency sum and the sum on k,
analytically continuing 4, to »470%, and neglecting
vrq/T', we obtain

(B3)

TN wp? x  (2x+v)?
Py(0p) =1 > /dx tanh—
24 9 2T (x+v—iDg?)

X[(v=2iT)(x+iDg?) I
+[(2+v—2il') (x—iDg*) I 1K (q,0)¢”
We now neglect » compared to I' and find that

d
'd—" RCP2(O,V) = —j%TIV()'UF?D Zq K(q,O) Re/dx

4
x 4a3Dq?x?
X tanh—<
2T\ (224D T'*-+x%]

(x+iDq2)3(x+iI‘)>
T2 4-D2g? /)
We see that this expression does not diverge as 7' — 7',.

18 K. Maki, Progr. Theoret. Phys. (Kyoto) 40, 193 (1968).



