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to the ninth fluorine shell (nineteenth shell counting
both F and Na nuclei). This corresponds to 236 F
nuclei. For both types of single sum the contribution
from the remainder of the spins in the lattice is esti-
mated by an isotropic integration. This is less than 1.0'/go

in each case. The integrated contribution to the single
sum of type I', ' is less than 0.005% Integrated con-
tributions to the double or triangular sums have not

been calculated. From the convergence of the lattice
sums, we estimate that the asymptotic value differs
from our truncated value by less than 10%

The lattice sums required to evaluate all the quanti-
ties appearing in this paper are presented in Table I.
Using these results, the numerical values of the quanti-
ties appearing in Secs. II A and II 8 have been calcu-
lated and are given in Table II.
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A comparison is made of three types of calculations of the axial "channeling dip": the large decrease in
yield of close-encounter processes for energetic ions incident on a single crystal parallel to a low-index
direction. The models, indicated as (1) the binary-collision model, (2) the halfway-plane model, and (3)
the continuum model, are used to calculate the dip for two standard cases corresponding to recent experi-
ments. The methods are compared as to treatment of potential and treatment of thermal vibrations. The
ease of calculation versus quantitative accuracy for the different methods is discussed, and finally the agree-
ment with experimental results is briefly reviewed.

INTRODUCTION

~~NE of the most striking and useful channeling
effects observed is the almost complete extinction

of close-encounter processes for energetic ions incident
on a single crystal parallel to a low-index direction. A
large amount of experimental information is becoming
available on this "string effect, " for a variety of com-
binations of Z1, Z2, E, and T, where Z1 and Z2 are the
atomic numbers of the incident particles and the cry-
stal atoms, respectively, E is the particle energy, and T
is the crystal temperature.

Several authors' ' have contributed to the under-
standing of this phenomenon in terms of the motion of
channeled particles in an average string, or row, poten-
tial. The most detailed and comprehensive treatment
has been given by Lindhard, ' and Linhard et al. ' The
important question of applicability of classical me-
chanics was discussed, and it was concluded that for
channeling of heavy particles (protons, n-particle, etc.)
classical orbital pictures may be used. From a discussion
of the validity of the continuum model, simple estimates

' R. S. Nelson and M. W. Thomson, Phil. Mag. 8, 1677 (1963).
2 C. Lehmann and G. Leibfried, J. Appl. Phys. 34, 2821 (1963).
3 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.

Medd. 34 (1965).
4 C. Erginsoy, Phys. Rev. Letters 15, 360 (1965).
'A. F. Tulinov, Dokl. Akad. Nauk SSSR 162, 546 (1965)

[English transl. : Soviet Phys. —Doklady 10, 463 (1965)].' P. Lervig, J. Lindhard, and V. Nielsen, Nucl. Phys. A96, 481
{1967).

of the critical angle resulted. An important modification
to the continuum model is the halfway-plane description
introduced in Appendix A of Ref. 3. On the basis of this
description and a simple model for the inQuence of
thermal vibrations, formulas for the angular distribu-
tion of particles emitted from a string atom were
obtained. These "blocking" formulas also apply to
channeling experiments, where the yield of a close-
encounter process is measured as a function of incidence
angle of the beam with respect to a string direction.
This is a consequence of the rule of reversibility as
discussed in Ref. 3. Recently, a systematic numerical
evaluation of these formulas has been made. ' '

Some of the early blocking results' ' were inter-
preted in terms of a simple two-body model, where the
emitted particle only interacts with the nearest neighbor
on the string. The use of high-speed computers has made
it possible to extend this two-body model and take into
account binary collisions with all string atoms. Thermal
vibrations may be taken into account by letting all

string atoms vibrate independently. Such calculations

' J. U. Andersen, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 36 (1967).

Because of the finite step size in the integration, an error of
5% was inherent in these calculations. En more accurate

calculations, the width is increased by 0.05$&, This explains
the small discrepancy between results in this paper and those in
Ref. 7.' D. S. Gemmel and R. E. Holland, Phys. Rev. Letters 14, 945
(1965).

' O. S. Oen, Phys. Letters 19, 358 (1965).
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atom is calculated as illustrated in Fig. 1. The particle
A with energy E is emitted from atom 8, the angle of
emission is p, and 6 is the azimuthal angle of emission.
At the moment of emission, the atom 8 is at a distance
r from an otherwise perfect string. Thus, the thermal
vibrations of all string atoms except the emitting atom
are neglected, whereas the thermal vibrations of atom
8 are represented by a probability distribution for r,
dP(r), which is taken as a Gaussian

dP(r) = e "«'[d(r)'/p']n (3)

FIG. 1. Emission of particle from string atom and geometry
for the halfway-plane calculation.

have now been performed by several authors. " " In
this paper, we estimate the relative merits of these
different types of calculations. The calculations are all
based on classical mechanics and consider only the
interaction of the emitted particle with one isolated
row of atoms.

A detailed comparison between Monte Carlo calcu-
lations and Lindhard's analytical theory, with a some-
what different scope, has recently been published. "

rp

=0
dP(r) d(Ey')

2m' dg—~(E.—U(r*) —Ev'), (4)
2'

where 0. 1 is a normalization constant and p2 is the
mean square displacement perpendicular to the string.

The emission is assumed to be isotropic. Conse-

quently, the probability distribution for p is propor-
tional to sin&p~y and for 8 is a constant. The transverse
energy of the particle is calculated at the halfway plane
according to (I).

From this, the following expression for the distribu-
tion in transverse energy" is derived:

NUMERICAL HALFWAY-PLANE CALCULATION

The calculations in Ref. 7 are based on the formulas
given by Lindhard. ' These formulas are derived from
conservation of transverse energy at the planes halfway
between string atoms. The transverse energy E& is the
energy associated with the motion of the particle pro-
jected on a plane, perpendicular to the string. As shown
in Ref. 3, E&, given by

E|=Eq'+ U(r),

is approximately conserved in a collision between the
particle and a string when measured at the halfway
planes, provided that the particle is approaching the
string at a small angle. Here, y is the angle between the
particle velocity and the string and U(r) is the con-
tinuum-string potential given as a function of the
distance r from the string by

1
U(.) = — d..V[(.2+.2) ii2]

d

where V(R) is the particle-atom potential and d is the
spacing of atoms in the string.

On the basis of this conservation, the angular dis-
tribution of particles emitted isotropically from a string

»L. C. Feldman, Ph.D. thesis, Rutgers University, 1966
(unpublished)."D, V. Morgan and D. Van Vliet, Can. J. Phys. 46, 503 (1968).

'3 J. H. Barrett, Phys. Rev. 166, 219 (1968).
'4 I. M. Torrens and L. T. Chadderton, Can. J. Phys. 46, 1303

l1968l.

where 8(Ei) is the usual 8 function. Here, ro is given by
7rr, '= (Xd) ', where X is the number of atoms per unit
volume.

Assuming conservation of EJ. during the passage of
the particle through the crystal and neglecting the
change of Ej. due to the transmission through the cry-
stal surface, "we get the angular distribution outside
the crystal from (4) through the relation Ei=EP,2

between the transverse energy and the emergence angle.
In Ref. 7, Eq. (4) was evaluated numerically by

simulating, according to Fig. 1, the emission of particles
from a string atom, and varying independently the
parameters r, p, and 6. Linhard's standard potential
was used:

U(r) = (Z&Z2e'/d) in[(Ca/r)'+ I].
Here, d is the spacing between atoms in the string, Zi
and Z2 are the atomic numbers of the particle and the
atoms, respectively, C is a potential constant taken to
be V3, and a is the Thomas-Fermi radius'

a= 0.8853ao(Z 'i'+ Z "') (6)

The average potential (5) corresponds to the following

atomic potential:

V(R) = ( &
ZZe' /)R[l —R/(R'+C'a') 'i'] (7)

"II(L'z) is normalized to unity in the random case, i.e., for
U(r) —=0.

"In Ref. 7, it is shown that the surface transmission does not
change the width of the dip appreciably.

' J. Lindhard, V. Nielsen, and M. Scharff, Kgl. Danske
Videnskab. Selskab, Mat. -Fys. Medd. 36 (1968).
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which leads to the following expression for the average
potential:

U(r) = (2ZiZ2e'/d) [0 1K0.(6r/a)
+0.55KD(1.2r/a)+0. 35K0(0.3r/a) j, (9)

h th- der modified Bessel functionwhere Ep is the zerot -or er m
of the second kind.

ion the transverseIn the continuum approximation, e r
energy is assume o ed t be conserved along the who e tra-

l at the halfway planes. In this ap-jectory, not on y a
roximation, the formula corresponding to q. ,*= . Equation (4) then reduces toobtained by setting r = r. qua

pC
r l

I
I

TO

II(Ei) = dP(r)
U(r))Eg

r*——r in (4) amounts to neglecting terms in
r* of relative magnitude pe p. ~ reasona
for the validity of the continuum approximation is then

/pP di) 1, (11)

since p&Pi. LSee Eqs. (15) and (16).g
When dP(r) is given by (3), (10) reduces to

evaluated at ~ri =U~ i=A. The last term may usually be
the(&r . This formula then leads to eneglected since p

following expression for the half-width at a — ip:

ability distribution (3) (n= 1), we get

Z,Z2e' d(r")
Ur(r) =

d p
2

FIG. 2. Emission o par ic e of t' l from string atom and geometry
for the binary-collision calcUlation.

When the standard potential (5) is inserted, we get
simple analytical expressions' for II(E,) and Pi/2.'

Ej (Ey12II(Ei)—expL —(C'a'/p') (e'Ei/e&' —1, ~, 14

i/~= 6(2 logic'a'/p') (1/log2)+13) "' (15)
~ ~

The last term in (12) has been neglected. Pi is given by

fi (2ZiZ2e'/d &(E)"——'. (16)

E o " has suggested taking into account therglnsoy
ittin atom,vlbl atlons 0 a'b '

of all string atoms except t e emi
'

g
th continuum potential U(r) over

probability distribution (3) of the string atoms:

U&(r) = dP(r')U(~r —r'I).

Introducing the standard potential (5) and the prob-

ibson Phys. Rev.' B. R. Appleton, C. Erginsoy, and W. M. ibso, y .
161, 330 (1967).

Xe """ —ln — —+1 . (18)r'+r" 2rr' cos8-p 7i

BINARY-COLLISION CALCULATION

In the binary--collision model, t e in
~ ~ ~

e interaction between
atoms is calculated by treating

eac sh scattering individually as a binary collision. e

gcacua ion o1 1 t follows particles emitte g
a strin . The stringfrom a lattice site at small angles to a string.

or row consists o scaf ttering centers (atoms vi rating
about their equilibrium positions accor-

in to a aussian posposition distribution. T e origing
l llowed to vibrate and is furtheremitting atom is a so a owe

ed to emit the particles isotropically. The partic es
are allowed to scatter from eac p
the string or until certain cu ecutoffs are reac e in e

an le. The final resu t oi act parameter or emerging anglm a
many diff erent particle traj ectories conc nsists o an
angular distribution around the symmetry axis.
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Themet o oh h d f the calculation is shown schematically
in Fi . 2. The string of atoms is along the s axis an e
particle is emitted in some initia p

in ig. . e s
l lane. In the static

case (no vibrations), the emerging particle remains in
this lane and the problem is two-dimensional; however,

of the particle-atom force which scatters the particle
from its initial plane.

e in theFor a particular scattering, we are interested in t e
quantity AP= (AP AI' ) the momentum transfer in
the x-y plane. This quantity is given by

Fdt, (19)

AP = — decl, V[(s'+ r') "'j (2o)

or
dB 1'

AP = ——U(r) —,

vier

r
(21)

where F is the projection on the x-y plane of the force
on the particle and the integral is over the complete time
of the trafec ory.n

' t The momentum transfer for a sing e
small-angle scattering may also be expressed in terms
of the average potential

ed
I

100~ di s in W at O'K for 400-keVc " p
protons in the binary-collision model wit
and (II) single atom vibrating.

where

U(r) = — ds V[(s'+r') "'j
QQ

(22)

48= (Zqzse'/aE) (r/r) [0.6E't(6r/a)
+0.66E't(1.2r/a)+0. 105ICt(0.3r/a) j (24)

for the Moliere potential and

IL8= (ZtZse'/E) (r/r') [1+(r/Ca) q ' (25)

for the Lindhard potential. Ei is the first-order modified
Bessel function of the second in .

E l t' each subsequent scattering in this way,va ua ing
the computer then calculates the partic e pa
Monte Carlo routine is used to synt es'~ ~

esize the thermal
vibration of the string atoms according to Eq. (3).

is the average potential defined in the previous section,
v is the magnitude of the particle velocity, and r is the
impac par amct parameter for the scattering r = (x,y). The
deflection 48= (68„68„)is given by

a8= aI'/I', (23)

w ere is emh I' '
th agnitude of the particle momentum.

In this calculation, the atomic potentials ( ) an (
are used. The corresponding single scattering ang es
are"
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the bottom of Fig. 7 for the three different temperatures.
It is qualitatively evident from this figure that the
introduction of the temperature-dependent potential
decreases iti~s by 5%. Figure 8 compares the [110j
Si dip as calculated in the binary-collision model with
all atoms vibrating, and in the continuum model with a
temperature-dependent potential, respectively. The two
curves are indistinguishable (compare with Figs. 4 and
6). Thus, when the condition (II) is fulfilled, the vibra-
tions of the string atoms may adequately be described
by a combination of the vibration of the emitting atom
and a temperature-dependent potential.

~ 2 Potential

J

IO

I

2a
I

3a 4a
I

5a

FIG. 9. Comparison of the standard (Lindhard) and Thomas-
Fermi (Moliere approximation) average potentials.

Temperature Vibrations

In the binary-collision calculation, all string atoms
may be allowed to vibrate. In Figs. 5 and 6, this type
of calculation is compared to the single-atom vibration
calculation in the two standard cases. The widths differ
slightly, by 3 and 6%, respectively. The static
width is also indicated in the figures, and it is seen that
the inQuence of thermal vibrations on the angular width
is mainly due to the vibration of the emitting atom.

A systematic comparison of widths at different tem-
peratures in the two standard cases is given in Tables I
and II. The difference between all atoms vibrating and
the emitting atom only vibrating is 5%, whereas the
difference between the emitting atom only vibrating
and the static case is a factor of 2.

Although the vibrations of all atoms except the
emitting atom have a small effect on the angular width,
it may be interesting to see the influence of a more
realistic temperature-dependent average potential on
the continuum-model calculation. Figure 7 shows the
$100j string potential in W, calculated on the basis of
(18) for three different temperatures. The static-average
potential is shown for comparison. According to (13),
the width of the dip is, in the continuum description,
determined by the value of the average potential at a
distance r= p (ln2)'~'. This distance is indicated at the

Two different approximations to the Thomas-Fermi
potential have been extensively used in channeling
calculations, the Moliere approximation (8) and the
standard potential (7). The Moliere approximation is a
very accurate approximation to the Thomas-Fermi
potential, whereas the standard potential, in many
applications, is much more convenient, leading, e.g., to
a simple analytical expression (14) in the continuum
approximation. For a discussion of the accuracy of the
standard potential, we refer to Ref. 17. The correspond-
ing average string potentials are compared in Fig. 9. In
Tables III and IV, half-widths of the calculated string
dips for T= 300 K are given for both potentials. Again,
the differences are only 5%.

CONCLUSIONS

TABLE IV. Calculated angular widths for 7-MeV protons
in [110]Si (T=300 K).

Potential

Standard
Moliere

Binary-
collision
model

(all atoms
vibrating)

0.235
0.22p

Binary-
collision
model

(single atom
vibrating)

0.250
0.236

Halfway-
plane
model

0.25p
0.23'

Continuum
model

0.25p
0.235

In general, the three different models are in good
agreement. The continuum model, the halfway-plane
description, and the binary-collision model may be
thought of as steps towards a more realistic picture at
the expense of ease of calculation and, perhaps, physical
insight. The binary-collision model appears to represent
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the most complete model in which all the string atoms
are allowed to vibrate and the use of an average
potential need not be enforced. It does contain as
possible sources of error the assumptions in choice of
potential and the model of thermal vibrations. These
assumptions are intrinsic to all the models discussed in
this paper. In addition, the validity of a classical binary-
collision treatment of correlated scattering by string
atoms can only be inferred from the results of I,indhard
et al. ,

" who showed that at high particle velocities
classical mechanics is applicable in the continuum
model or halfway-plane description.

As we have shown, the vibration of the emitting atom
is the most important thermal effect. Choosing to hold
all atoms but the first fixed does not greatly simplify
the binary-collision model but does permit the use of
the halfway-plane description, a large simplification
under these circumstances. The half-width of the dip
f&~2 is in this model close to f& given by (16), and the
ratio |'&~~/P& is a function of two parameters only, p/a
and a/d&(P&. The agreement between the binary-colli-
sion model and the halfway-plane description with the
same representation of thermal vibrations gives further
justification for the use of an average potential. The
all-atom vibration case may be treated in this descrip-
tion by the use of a temperature-dependent average
potential but, again, at the expense of complexity of
calculation.

The binary-collision model may give more detailed
information about the scattering. Information about
the number of string atoms effectively contributing to
the steering may be of importance, especially in surface
studies. "Also, complicated compound crystals may be
studied by this method. Finally, different models of
temperature vibrations may be incorporated in order to
include correlations, etc.

For p/d&&P') 1, the continuum model is in good
agreement with the other two calculations. In this case,
it represents the simplest prediction of the channeling
angular distribu tion. The width of the dip in this
picture is exactly proportional to P&, and the factor of
proportionality is a function of one parameter only, p/a.
The half-width at half-dip, t'»~, is determined by the
average potential at the distance r =: p (ln2)"' from the
string, as expressed in Eq. (13). When Lindhard's
standard potential is inserted, a simple analytical ex-
pression for the distribution (14) as well as the width

(15) is obtained.

'0 K. Bogh, Phys. Rev. Letters 19, 61 (1967).

Comparison with Experiments

YVe do not here intend to make any exhaustive com-
parison with experiments A large amount of data has
been accumulated by several groups, and some of this
data has been compared to calculations. In Refs. 7 and
21—23, experimental half-widths were compared to the
results of a halfway-plane treatment, or the results of
the continuum approximation LEq. (15)g. In Ref. 11,
the experimental data was compared to results of a
binary-collision —model calculation. A few results of this
type of calculation were also given in Ref. 21. In general,
the agreement is rather good, i.e., the differences are
&20%. The experimental values for the half-width,
however, are consistently somewhat smaller than those
calculated. This may partly be due to errors in the
treatment of the interaction potential and thermal
vibrations. Most likely also, the influence of planar
effects on the measured axial dip contributes signifi-
cantly to this discrepancy (see, e.g. , Fig. 5, Ref. 24).
Of special interest in this connection are calculations
including the complete lattice structure. "Such calcula-
tions, however, are very time consuming, and no com-
parison with calculations of the type discussed in this
paper has been made. A comparison to experimental
data" showed a similar agreement as mentioned above.

A few comparisons between experimental result and
the result of a simple two-body calculation have been
made. Oen' succeeded in fitting the data by Domeij'
rather well, but the fit was obtained for a rather small
value of the vibrational amplitude. The two-body model
should only be applicable at rather low energies (see
Ref. 11). This is con6rmed by the data on low-energy
proton scattering from copper in Ref. 24.

A final point may be made. In Ref. 23, the simplest
treatment of thermal vibrations (one atom vibrating)
was shown to give a good account of the measured
variations in the ratio f'~2/P~ due to differences in
vibrational amplitude between various diamond-struc-
ture materials. The measured half-widths of the axial
dip in these different crystals, however, were all too
small by 25% compared to Eq. (15).
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