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A theoretical and experimental study is made of the response of a two-ingredient spin system when
repeatedly pulsed at resonance by a number of 90' rf pulses. With a long train of 90' pulses, a sustained
chain of solid echoes was produced for Na" in NaF. The peak echo amplitude was found to decay non-
exponentially for short times (i.e., the first few echoes), settling down for long times to an exponential decay
characterized by a time constant T2, , A theoretical expression for T2, derived in a similar manner to that for a
single-ingredient spin system, described previously by Waugh and Wang and by Mansfield and Ware, does
not fit the experimental data. A more general theoretical approach to the multiple-pulse experiments is
developed, based on the use of a logarithmic operator. Using this formalism together with a line-narrowing
model similar to Anderson s theory of spectral line narrowing in solids in the presence of an exchange interac-
tion, a new expression for T2, is derived. Some related long-pulse experiments have been performed in which
the Na" magnetization following an initial 90' pulse is spin-locked in a low rf field. These experiments
simulate the mean rf field in the multiple-pulse experiment. Oscillation of the spin-locked magnetization is
observed. Theoretical expressions are derived which describe these oscillations, and their relation to the
multiple-pulse experiments is discussed. Mentioned briefly are some multiple-pulse experiments on F in
CaF2 doped with paramagnetic impurities; also discussed brieAy are some earlier multiple-pulse double-
resonance experiments carried out on both nuclear species in NaF.

I. INTRODUCTION

'HE response of a solid with one nuclear species to
a train of in-phase 90' rf pulses has been studied

extensively by Waugh and Wang' and MansfieM. and
Ware' (hereafter referred to as I). In both of these
papers, it was demonstrated that the action of these
pulse trains was to produce a sustained chain of solid
echoes, thus effectively slowing down the transverse
decay. The echo peaks were found to decay exponen-
tially with time constant T2, . The magnitude of T&, and
its dependence on the 90' pulse spacing 7. was explained
satisfactorily by invoking the symmetry properties of
the dipolar Hamiltonian under 90' rotations and assum-

ing the density matrix describing the spin system at the
even echo maxima was in an attenuated diagonal state.

In the present paper, which is an extension of our
previous work I, we study the response of spin systems
with two nuclear species I and 5. In the multiple-pulse
experiments the rf field is assumed to interact with one
species only.

Multiple-pulse experiments performed on Xa23 in
NaF show the solid-echo chain to be nonexponential
for short times corresponding to the first few echo peaks.
For long times, the echo chain settles down to an ex-
ponential behavior. From the echo behavior it is evi-
dent that any theory for T2, based on a reiterative
procedure or an attenuated diagonal density matrix
at successive solid-echo peaks must fail. The echo be-
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havior is surprisingly quite different to that of a single
species system, and has necessitated further theoretical
work.

In Sec. II a theoretical approach to the calculation
of the multiple-pulse response is developed based on the
use of a logarithmic operator. % ith this, certain results
are proved to all orders in the perturbation expansion.
Using this formalism, a line narrowing theory is de-
veloped, analogous to Anderson's theory' of spectral
line narrowing in solids. From this a new expression for
T~, is obtained.

Quite recently, a variety of multiple-pulse experi-
ments have been proposed and performed' "in which
the rf phase of successive pulses is modulated in various
ways. The prime object of these experiments is to re-
move or partially reduce the effect of the dipolar inter-
action in materials where small chemical shifts between
two or more chemically inequivalent sites are normally
masked by a much larger dipolar interaction. These
experiments are of course special cases of multiple-
ingredient systems in which the rf pulses interact equally
with all spins. The theoretical formalism developed in
this paper is also applicable to these experiments, and
is discussed briefly. Our main discussion however, is
centered on the 90' pulse in-phase sequences.
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We also present a theoretical and experimental study
of some related experiments in which the magnetization
following an initial intense 90 rf pulse is rapidly spin-
locked in a long low-power rf pulse at resonance. The
magnetization is found to oscillate as a function of the
spin-locking time, damping out to a quasiequilibrium
value, which is close to the thermal-equilibrium value.
These experiments are intended to simulate the multi-
ple-pulse experiments by replacing the 90' pulse train
by its mean field. They explain physically the slight
ripple observed in the solid-echo chains in terms of
mutual exchange of magnetic energy between the di-
polar and Zeeman reservoirs.

An extension of the long-pulse theory given in I to
the case of two spin species shows that in addition to
the oscillatory term obtained in the single-ingredient
case, a term with roughly twice the period appears.
Phenomenologically, the oscillations in a single-ingre-
dient system may be ascribed to classical precession of
the spins about a distribution of effective fields made
time-dependent through the spin-Qip terms in the
dipolar Hamiltonian. For a well-resolved two-species
system, however, the spin-Rip term betv, een spin
species is quenched. Thus part of the precessional
motion of the resonant spins will be about a distribu-
tion of static effective fields at the usual Larmor angu-
lar frequency.

A brief discussion of some multiple-pulse double-
resonance results" is given in which both the Na" and
F"nuclei in a single crystal of NaF are simultaneously
irradiated. These experiments are analogous to the
double-resonance experiments of Hartmann and Hahn"
and of Lurie and Slichter. "Also discussed are some pre-
lirninary results of multiple-pulse experiments on para-
magnetically doped samples.

II. THEORY

A. Multiple-Pulse Analysis

We wish to calculate the transverse response of a
spin system consisting of two magnetic ingredients with
spin numbers I and S, initially in thermal equilibrium
in a large static magnetic field Hp, when irradiated at
the resonance frequency of the I spins by a number of
90' rf pulses. The basic formalism is similar to our pre-
vious Paper I.

We denote the rf pulse sequence as 90'-7-90'9p. —

(2r-90'ss )~ i, where cV is the number of phase coherent
pulses, r is the time interval, and the subscript 90'
means that the pulse is in rf phase quadrature with the
first 90' preparation pulse.

The essential features of the response are calculated
in the frame of reference rotating at the Larmor angular
frequency cop. In this frame the important spin Hamil-

"P.Mansfield and D. Ware, Phys. Letters 23, 421 {1966)."S. R. Hartmann and E.L. Hahn, Phys. Rev. 128, 2042 {1962)."F. M. Lurie and C. P. Slichter, Phys. Rev. 133, A1108 {1964).

tonian for the present calculation is the dipolar term

AXis== (8+7+/)A,
where

S=Q A, i,I, Ip+"Bp,Ia,I,i„
k)j

5' =Q C i pI, iS, p,
k, P

g= Q a ps Sp+b p5, S,,p.
p)a

The coefficients of the spin operators are given by

~jk 3~jk A+I hI jk )

+ap 3~ap 2+S ~+ap )

where
CkP = yr&S &I'kP,

Pi g= -I s. (c'osO&i)/rzg, etc.

In general, we may write the effect of m rotation opera-
tions as

m m

(gZ„)1X,,ops =X,,-.
p p

It is convenient, following Waugh ef a/. ,' when consider-
ing the long time behavior of the response function, to
call the minimum number of pulses m necessary to take
BC&P through full symmetry a cycle. The cycle period is
Po"' a r, where in the present case m runs from 0 to 4
and Cp= 84= 1; 8] = 82= 83= 2.

The transverse response of the spin system to n cycles
of ns pulses may be conveniently written in terms of a
logarithmic operator as

(I )„=Tr(e~'~@tI e~'~@I j,
where Qt is defined by the ordered product"

(3a)

Qt=g exp( —i3Ci a r)=8 exp P —iBCi a r. (3b)

The ordering operator 8 means that we must always
arrange the Hamiltonian operators BC~ in descending

"R.Kubo, J. Phys. Soc. Japan 1/, 1100 (1962).

We ignore such matters as spin-lattice relaxation
in this analysis. Exchange terms also ignored here would
simply add on to the coefficients Ajk) Ckp, and a p.

If the rf pulse field is made much greater than the
effective internal dipolar field, the initial 90 pulse may
be represented by a rotation operator Ep——- e'~ ~~', i.e.,
a rotation about the y axis in the rotating frame, the
subsequent pulses are all represented by R~=e'~1*"
i.e., rotations about the x axis.

The two species dipolar Hamiltonian has 360' rota-
ional symmetry, that is to say, a minimum of four 90'
rototations recovers the original Hamiltonian, i.e.,

E~4KgpR4= Xgp.
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rank from left to right. The logarithmic operator is
formally equivalent to the Magnus expansion as ap-
plied to multiple-pulse XMR problems by Evans, ' but,

taken to all orders in v-. Introducing the I.iouville
operator L„defined by the equation

I.„A = Pei",A ], (4)

we may write Eq. (3) using the convenient double-
square-bracket notation of Waugh and Wang' as

(I )„,„=Tr((P"I,)I,}=Trj(e"'"PI,)I,}=—{[e"' ~), (5)

where I' is defined by the ordered product

P =g exp(zI-~a~r) = 0 exp P zI ggaggr.
0 0

As above the ordering operator 8 means that we must
always arrange the I.iouville operators L in descending
rank from left to right.

It is clear from Eq. (5) that lnP plays the role of a
generalized Liouville operator Z. From Eqs. (3) and (5)
we put

m

(P a r)Z=lnP=lnQt+lnQ,
0

where the tilde denotes a transposition operation de-

fined by Q& = &Q
In performing calculations it is convenient to expand

the operator P in Eq. (6) as follows: We set

Generalizing our previous notation for the deviation
from unity of the solid-echo amplitude, we write the
coefficient of 7-' for the rth echo as Mz, ".In this notation
Eq. (9a) becomes

where
-'5'(~+1)

»2g —»9je — —Q Ql e
I I,P

(9b)

is the nonresonant spin contribution to the normal Van
Vleck second moment. In deriving Eq. (9) we note that
for a single-magnetic-ingredient spin system U& I
= U2'I, =O, whereas for two ingredients U2'I WO.

basis for calculations when 7 is finite for more compli-
cated pulse cycles4 "as well as those discussed here. "
%e emphasize, however, that we have assumed that
the rf pulses are effectively 5 functions. For finite pulse
widths, an analysis along the lines of I Sec. II 8 or the
generalization of Haeberlen and Waugh'" would be
required.

1. I'irst Echo at t=Zg

This result has been derived previously" to higher
order, but we rederive it for convenience in our present
notation to the lowest nonvanishing order. From Eqs.
(5) and (Sa)—(Sc) we have for the normalized echo
amplitude

where

and

P = 1+F(r), (Sa)

(Sb)

Z. Second Echo at t=4v.

As in the above case, the leading term is quadratic
in 7, and when evaluated gives

(I.(4r) )= (1+M„'r'+ ), (10)
tn

U "=E'-)(P a-L-)'.
0

(8,) where M~, '= 2»2re. —

LP(r)]"
lnP =+(—1)&+' (8d)

where p and 1 above are integers.
This particular formalism permits a simple derivation

of the mean Hamiltonian limit as used in the papers on

the resolution of the chemical shift in solid com-

pounds) 1.e.)

lim (t, lnP/ Q a„r)= (i& Ui"/Q a ),
7~0 i A~oo

where the real time
fg

t=n P a„r
0

is kept finite. Since Eq. (Sd) is exact it also forms the

From Fq (Sa) we may formally write the logarithmic

operator as

where
» ' ()/TzTo" a= G(T) I:G(T)]'/2+ . i— .

G (T) I
y y

m +jT y 2
m / 2 f + j/ P 0

m g

In the four-pulse cycle proposed by Waugh et a/. , Ref. 9, which in
their notation is (r,P~,2r,P „r,P„,2r,P „),where P represents
a 90 rf pulse applied along the n axis in the rotating frame, it is
a simple matter to verify that for the dipolar interaction
V14 = U24 =0. Thus the first two terms in the expansion of
lnQt jir +0 g as a power series in r vanish. This corresponds to
the vanishing of the 'first two Magnus coe%cients.

'8 P. Mansfield, Phys. Rev. 13'7, A961 (1965).

3. Third Echo at t=67.

From Eqs. (5) and (8) we obtain to fourth order in r

(I.(6r)) = (1+M2,'r'+M„'r'+. ), (11)

where 3EI2,'= —M2Iq. The leading term is thus identical
with the first-echo case Eq. (9b). From Eq. (Sb) we

"For example, if we work in the Hamiltonian representation
of Eqs. (3a) and (3b), analogous equations to (8a)—(8c) can be
generated for Q~, in which L is replaced by BCI and U&m is re-
placed by Vz . Expansion of 1nQ~/ir go a then gives
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evaluate the fourth-order coefficient M4, ' ——}tU4'j}/4! by
putting ap ——a&

——1 and ai ——a2 ——2. From Eqs. (1), (2),
and (4), we introduce sub-Liouville operators defined by

I.pI =EI,+FI„
L,iI,=E'I,+F'I„
I.gI =EI —FI„
L,I,= E'I,—F'I„

(12)

4. Fourth Echo at t=$7-

On expanding Eq. (5) for n= 1, using Eqs. (Sa)—(Sc)
only, we find that the leading nonzero term in the
fourth-echo expansion has a fourth-power dependence
on 7) i.e.,

(I,(87))= (1+M4,'r'+ .), (14)

where cV4,4= }}U4'}}/4!.Using Eq. (Sc) with up ——a4 ——1

and a~ = a2 = a3 = 2, noting that J p
=I.4 and making use

of the sub-Liouville operators defined in Eq. (12), we
find after some straightforward though tedious alge-
braic manipulation the, t

M4,4= ——', (24}tFE'Fj}+96}tFG'Fl}
+24(FE"F'j+48(FE'EF)) . (15)

The detailed trace evaluation and the lattice sums re-
quired to evaluate Eqs. (9a), (10), (11), and (14)
numerically have been performed and full details are
given in the Appendix.

5. VGzM EwlQGtzos of Tpq

As in the case of the single magnetic ingredient, we

may evaluate the decay time constant of the echo train
T&, by assuming that the semi-spin-locked density
matrix is in its most diagonal state when the dipolar
Hamiltonian has achieved full symmetry in one cycle,
i.e., after four pulses. Of course, the resonant-spin part
of the Hamiltonian achieves full symmetry after two
pulses, as in I, but our long pulse spin-locking experi-
ments discussed later in Sec. II 8 suggest that in our
particular case, the nonresonant spin contribution to the
lattice sums dominates matters. The four-pulse cycle
period, therefore, corresponds mainly to precession of
spins at the Larmor frequency in the mean pulse field

given by co
——y~H„. There are, of course, components

with angular frequency 2u.
Following the arguments in I, we may evaluate the

logarithmic decrement between the nth and (n+1)th
cycle assuming an exponential decay of the fourth echo

where E, P, and G introduced later, are the Liouville
operators corresponding to 8, F, g, and (E'+F')I,
=Rt(E+F)I,R. After a considerable amount of algebra
we obtain the result

M4, ' = —i', (33}tFE'F}}+44}tEFEF}}+11}tEF'Ej}
—15}tF4]—61}}F"F')+ 115}tFG'F}}

+52(FE"Fjt+ 124ttFE'EF) 28(EF—'EF']) . (13)

in successive cycles. This approach gives the result

Tp, = 8/M4, 4r'.

6. Projection to n Cycles

(16)

(I*(t))=2 ~.( )t"/ ' (21)

We may expand F" in Eq. (5) directly by a Taylor
series using Eqs. (8a) and (Sb). In this case we obtain
for the leading term in r for the 4nth echo

(I )4„=}}1+[nU4'/4!+ ipn(n —1)(U2') 'jr'+ j}. (17)

It is an easy matter to show that }}(U&')P}}=0,which
suggests that the leading term in Eq. (17) is linear in n.
This curious result for two spin species is quite different
in principle to the result obtained by Waugh and Wang
for a single-ingredient spin system. In their case, the
leading terms are, of course, sixth order in r. The anal-
ogous expression to Eq. (17) for the 2nth echo is

(I,)p~ = }t1+[n Up'/6!+ n(n —1)(Up2) '/72 j
X rP+ j}, (18a)

in which
}tU"I}/ =}t(U")'ll/ &&, (»b)

thus leaving in Eq. (18a) the quadratic term in n only.
An alternative procedure for n cycles is to expand

Eq. (3) directly in powers of n or expand the logarithmic
form of Eq. (5) using Eq. (7). For the 4nth echo we get

(I,)4 = }t1+n(lnQ"+ lnQ)+ n'( )}}. (19)

Since Q is a unitary operator and [Qt,Qj=0, we may
express the coefficient of n in Eq. (19) as

1nQt+lnQ= lnQtQ=O. (20)

This result is quite general for one or two magnetic
ingredients and is equally true for an arbitrary operator
A instead of I„provided Q is unitary. We note that
the vanishing of the first moment in the free-induction
decay is a special case of the above theorem.

It would seem that the vanishing of the linear term
in n shown by Waugh and Wang' to be true to sixth
order in z is, in fact, true to infinite order in the time-
perturbation expansion. Their result is in a sense fortui-
tous because of Eq. (18b).

In our case, we have apparently conAicting results.
Equation (17) indicates that we have a term linear in n,
whereas Eq. (19) and Eq. (20) indicate that we do not.
Equation (19), however, is true to infinite order in r,
Eq. (17) is true to fourth order only. This situation ex-
emplihes the dangers of taking the leading term in op-
erator expansions. Thus for two spin species, Eq. (14)
although seemingly correct, cannot be true because of
Eq. (20).

7. Monument Cmmmlant Expan-sion,
In principle, it is a straightforward matter to expand

Eq. (5) in powers of real time t, i.e.,



MAiNSI I ELD, RICHARDS, AND WARE

where

oTt„(r) =I}(l»P/p a„,r) "}}=- I}z'j}.
0

and
~ ( —1)""z"=P—
1 P

gyp UZ m

27 QmT)
Lp l„I

I}e"I}—=«p 2 &(z")t"/p, (22)

where E(zt') is the pth-order cumulant.
If n is an arbitrary c parameter, and if we denote the

differential operator D = 8/c!n, then the cumulants are
given by

(23)IC(Z") =lim D "1»I}e~ K1}}.
n —&0

The first few cumulants are therefore

The moments here are functions of v. which all vanish for
r) 0 and ~ ——0. It is well known, however, that straight-
forward moment expansions are generally slowly con-
verging and, of course, the higher-order moments be-
come extremely tedious to calculate. Provided there are
no zeros in the echo amplitude decay, we may, in gen-
eral, represent Eq. (5) by a cumulant expansion, ' "i.e.,

(I,(t) ) = T exp Z,"(t,')dt' (27)

where 2"(t)=e 'Z"e '. That is to say 2" is modu-
lated by 2'. G-eneralizing the cumulant expansion Eq.
(22), we introduce a c parameter X, later to be equated
to unity. Combining Eq. (27) and the cumulant expan-
sion definition Eq. (22) we obtain

where p and l~ are integers. (The sum over l„is restricted,
some of the l„=1 terms having been removed. ) Since
2'I, = 0, the operator 2', which is in effect the logarithm
of the mean field Liouville operator, plays a role similar
to the exchange interaction in the theory of exchange
narrowing in solids. YVe note that for zero v- the operator
2' is equal to the Liouville operator of the mean
Hamiltonian over the cycle.

As a consequence of Eq. (26) we may write Eq. (5)
as a time-ordered product (using the time-ordering
operator T)

(24)

Now from Eq. (20) it is evident that E(Z) = 0, thus the
lowest-order approximation to Eq. (5) is the Gaussian
decay

(25)(I (t) )— (1e/ ) K2Dtt

For short times, near the time origin, Eq. (25) is an
accurate description of the echo peak envelope. It is
precisely here where the diagonal assumption procedure
or the iteration procedure must fail, since these as-
sumptions give leading terms linear in t.

For long times, experiment indicates that the echo
amplitude decays are closely exponential. The situa-
tion here is in Inany respects similar to the problem of
spectral line narrowing in solids by an exchange inter-
action. ' The present problem is of course more difficult
and complicated by the fact that the odd moments in

Eq. (21) do not in general vanish.

8. Effective Iirte iYarrowirtg by the
Mean JIamiltonian

whei" e

We pursue the exchange narrowing similarity- in our
problem by writing lnP in Eq. (5) in two parts; an
unordered part 2' which commutes with I, and an
ordered part g" which does not commute, i.e.,

T exp' Z"(t')dt' —= exp p X(Z"(t)")X"/p!, (28)

where the time-dependent cumulants are defined by a
similar equation to Eq. (23). The first few cumulants
al e

(29a)

E[z"(t)'] = I}z"(t')2"(t")}}dt'dl"

t 2

I}z"(t')}}dl' . (29b)

Because of the property 2'l = 0, it is evident that

I~ [@"(t)]= 0
and that

&I z (t)'3=&[z(t)'j

(3Oa)

0 0

(z(t') z(t")}ttdt' dt". (3Ob)

The lowest-order cumulant approximation to Eq. (28)
is thus similar to Eq. (25). The difference is that now
we have time correlation between the two generalized
Liouville operators which is brought about by the time
dependence of 2" through 2'. If we assume that the
higher-order cumulants are negligible since they repre-
sent higher-order correlations which probably average
to zero faster, then we have a close analogy to the
Anderson theory of exchange narrowing. ' The analogy
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is exact if Z" represents the pure dipole interaction and
2' the exchange term. In Anderson's case, he assumed
the dipolar line shape without exchange was Gaussian.
We make a similar Gaussian assumption though in our
case it is far from certain that if 2' were not present
the whole of the echo-train decay would be Gaussian.
It is clear from Eq. (25) that initially it is Gaussian.

To get some idea of the r dependence of T~„we must
expand the quotient in Eq. (37) using Eq. (21) and
Eqs. (8a)—(8c). Since ((U&') /=0, the lowest-order non-
zero averages for a two-species system give

OE3= (—(U24)'r3/8+ U34U/4U34r5/72+ jj/8' (38a)

t/. Stochastic Assumption

From the form of the time dependence of 2(t) in the
double integral Eq. (30b) we may write the double-
time correlation in terms of the diHerence of the two
times. We then assume that we may write

m = I!—(U 4)'r4/36+(U 4)'r'/4!4!+ jj/8' (38b)

We assume these averages are all nonzero since they
do not disappear by symmetry arguments or obvious
commutations. Substituting these moments into Eq.
(37) we obtain

(31)

Substituting T= 3' —t" and from a consideration of the
domain of integration we may write Eq. (30b) as

T2e
144(U34Ug4U34!I 36'((Ug4)'II——+ . (39)

I'(U' 4) 2II2

t

&I &(t)'3=(&'ll (t-T)a(T)~T (32)

Extension to higher-order cumulants and hence higher-
order correlation functions is in principle straightfor-
ward. In the present work we restrict our discussion to
double-time correlations only. The choice of the cor-
relation function g(T) is to some extent arbitrary. In
Anderson's theory of exchange narrowing in solids, g(T)
was chosen to be a Gaussian function. This choice
satisfies the condition in normal line-shape theory that
the odd Van Vleck moments vanish. In our case, as
discussed in Sec. II A 7, apart from the erst moment,
the odd moments 5R„do not in general vanish. A con-
venient analytical form of g(T) which embraces this
circumstance is the exponential correlation function

g(T) =. c
—

I &I/ra (33)

For t))r„ i.e., for long times, this gives

(I (t) )= R2csct —7c 1/1'2, —

For tt((r„ i.e., for short times, we get

(I,(t)) = c(//2)sR2&'

(35a)

(35b)

in agreement with Eq. (25).
Expanding Eq. (34) in powers of t and equating with

the moment expansion Eq. (21), we get for the coeK-
cient of t'

O!c,(r) = mg(r)(r. . — (36)

From Eq. (36) and Eq. (35a) we obtain a new expression
for the decay time constant of the solid-echo chain,

(37)

where 7, is the characteristic correlation time.
Substitution of Eq. (33) into Eq. (32) and of Eq. (32)

into Eq. (28) gives for the echo-train decay

(I.(t))=-exp(~ L .'(& ""—1)+t .]} (34)

Explicit evaluation of Eq. (39) has not been under-
taken since it involves detailed calculation of sixth-
moment-like and eighth-moment-like averages for a two-
magnetic-ingredient spin system.

dp
~f co;e//Ig+Q Grill)p] )

IV
(40)

where /d, ff Q(AM +M '). In this frame of reference,
the dipolar Hamiltonian is rotated through angle 8

by a time-independent unitary transformation S(0)
= exp(i8I„) to give

S"K$S=P Gsr =G.
lM, ~

B. Long-Pulse Spin-Locking Experiments

As discussed in detail previously in I, the in-phase
multiple-pulse sequence rf field envelope may be Fourier
analyzed into a zero-frequency component plus side-
bands at the harmonic frequencies given by the inverse
pulse spacing 2r. In this section we consider the effect
of spin-locking the magnetization by the zero-frequency
component only, i.e., we treat the case when the spin
system is initially irradiated with an intense 90 rf
pulse followed by a long low-power pulse in rf phase
quadrature. The detailed formalism is of course similar
to that in I. The differences arise since we treat here the
case of a spin system with two magnetic ingredients,
the resonant species having spin I, the nonresonant
having spin 5.

In the following calculation, spin-lattice relaxation
effects are neglected. This is valid if the total time of the
experiment is less than the spin-lattice relaxation time
in the rotating frame T~,.

We wish to calculate the evolution of the spin-locked
magnetization following the initial pulse. We perform
the calculation in the tilted rotating reference frame,
in which the Von Neumann equation of motion of the
density matrix p is
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The primed coefficients of the spin operators are given

B)74' ——', B;ft(3 cos'8 —1-),

Ckp'= —2Ckp sine= —Ckp" tang,

D,k'= 4'B,.k sin'0,

E,.k'= ——,'B,k sine coso.

In order to integrate Eq. (40) we transform p and G
to a reference frame rotating about I„i.e.,

{p,G}= ezp(ifp„of fIgt) {p)G}eXp( ifp)offI, t) )—
which then gives the new equation of motion

dp—= —i[G,p].
dt

(41)

This is integrated by a reiterative procedure to give a
solution

P(t r) =Et.(t r).
n

Here v allows for the evolution of the density matrix

(42)

The subscript M refers to the differences of magnetic
quantum number of the I spins. The superscript +=1,
2 and is the number of S spin operators in the Hamil-
tonian. The case &=0 is understood, in order to make
the notation consistent with our previous Paper I. The
explicit forms for G~ are as follows:

Gp= Q A, k'I; If,+B;„'I„I,)„.
k& j'

G+2 = 2 &)7'(1.)1'g,+I.,IP(),
k&j

Gyp=+ D,f'Ig;Iyf )
k&j

Gp2= p a~f)S~. Sff+b~f)S.~S)p)
P&e

G~, '= Q C(4'Ig),S,ff,
k, P

Gp' ——Q Cf,e"I,f S.ff.
k, P

after the initial 90' rf pulse, just before the spin-locking
pulse is applied. The nth term in the expansion Eq. (42)
is given by

p.(t,r) = (—i)"

[G(tf) L,[G(t ),p(r)) )) dt. . (43)

The subscript n and the dots denote an n-fold time-
ordered commutation of G(t) with p(r).

1. Transient ResPonse

The transient response during spin-locking is given by

(44)

As with the single-species case, it is necessary to carry
the expansion of Eq. (44) to fourth order so as to intro-
duce damping. For simplicity we take 7-=0. We note
that the terms for odd n vanish in Eq. (44). The even
terms are as follows:

Zeroth-order term. This is just the free-induction decay
amplitude at t=0, i.e.,

(I,) = Tr{po(0)I,}, (45)

where pp(0) =aI, . As in I, we exclude the dipolar part of
the density niatrix, thus assuming that the Zeeman
temperature equilibration time is fast compared with
the Zeeman-dipolar cross-relaxation time.

Second order term. Int-egrating Eq. (43) for n=2 and
substituting into Eq. (44) we obtain

(I,)2 ——f){[8(cos26p„t—1)/(2(p„) ')A
+[2(cos(p„t—1)/fp, ')A'}, (46)

where if= a Tr{I,'}.In evaluating Eq. (46) and also the
terms below we have used the fact that Tr{Q„,MG))& }
is zero unless P~ M=-O.

Fourth-order term. Ke now turn to the evaluation of
the fourth-order term. Again from Eqs. (43) and (44)
we obtain after much algebra

6(cos2 t —1) t' cos2 „1„41sin2 „t 4(cos2l 1) 21 sin2, —
=b —4B —— — + —+4C

(26p,)' (2(p ) ' (2(p,) ' (26p„)' (2(p„)'

3Gor3o),4

4(cos2 t —1) 16(cost —1) 6(cos,t —,1) t)(cos2t 1) ill sin „l 4t, s—in2
„t)D—

r

2(cool —1) (cos2 t 1) ,3t sin „l 2„(c—ost 1) (cos2 t —1) ,31—si

(d Cdr
4

M r M r CV„4r

6(cosfp, t —1) t' cosfp, t 4t sinfp„t 4(cos(d, t 1) 2t sin(p„t—
3r

~4
G7 Mr GOr GO
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where

8 $—Fi +Fi 1+ cosidrt
I y Gas.

r2' .
4o„t sin4o„—t+"r,' (48)

F,= 8A/(2o&„) ' —(68+4C—4D/3 —9B—~—G)/
g 4+. . .

F,'= 2A'/ „' (68'+4C—'+ 16D/3+6& 2P 2G)—/—
g 4+. . .

Fg
——(168+8C+4E) /(2o&, )'+

Fg'= ( 11E+5I'+48—' 3G+2C')/io„'—+

Z. Gaussian Damping Approximation

Just as in the single-ingredient spin system, we may
contract the trigonometric expression in Eq. (48) to
give

(I,) b{1—F +F (cos2oo„t(1+F,/F, )
+ [48tg/(24o„)'F i] cos2oo, t+ )
—F,'+ F,'(cos~„t(1+F,'/F ')

+ [8'tg/oo, gF i'] cos4o,t+ )}. (49)

This is valid if

The constants appearing in Eqs. (46) and (47) are
defined as follows:

A =Tr{GgG g}/Tr(I, '},
A'= Tr{Gi'G ii}/Tr(I g}

8=Tr([Go,Gg][Go,G g]}/Tr{I,},
8'= Tr{[(Go+Go'), Gi'][(Go+Go'), G-i']}/Tr(I*'}
C=Tr([GgIG s]g}/Tr(I,g},
C'= Tr([Gi' G i']'}/Tr{I,'}
D= Tr([Gi', G i'][Go,G s]}/Tr{I,'},
E=Tr([Gi', G g][G tI,Gg]}Tr(I.'},
F=Tr([Gi', (Go+Go')][Gi', G s)}/Tr(II'},
G= Tr{[G i', (Go+Go')][G i',Gg]}/Tr(I, '}.

Adding all contributions and further simplifying our
notation we obtain for Eq. (44) correct to I=4

48k'
(I,) =b 1—Fi+Fi 1+ cos2oo„t

Fi(24o„)'

F2
24o„t sin24o„t+ ' ' '

I ~

lllL I~ II I. I I I I I I I

iiVljg,

FIG. 1. Photograph of positively detected solid-echo chain from
Na" in a single crystal of Nap with its L110] axis along Hg.
Notice the sharp initial decrease in signal and the rather poorly
formed first echo. (See Ref. 18 for a discussion of this. ) 7 =50 @sec
and the time-base sweep is 0.2 msec/large div.

tion which we assume to be Gaussian in both cases. We
are thus able to write Eq. (49) in approximate but
closed form giving finally

(I,). b{1—Fi+Fi exp[48t'/(24o„)'F ]cos2oo„t(1+F,/F, )
—F,'+ F,'exp[8't'/co„'Fi'] cos~„t(1+F,'/F ')}. (51)

When expanded in powers of time this agrees with the
exact expansion up to t'. Both the inequalities, Kqs.
(50a) and (50b) are satisfied over the range of interest
for the experiments presented, i.e., for spin-locking
fields greater than the local held and times of the order
of a few T2. Truncation of I'&, etc. is justified for high
6elds.

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Multiple-Pulse Experiments

Multiple-pulse sequences of the type 90 -7--90 gp-
(2r-90 go')io i have been applied at 9.0 MHz to the Na, g

nuclei and to the F"nuclei in a single crystal of NaF,
as well as the F" nuclei in doped single crystals of
CaF2. The external static magnetic 6eld Hp was adjusted
in each case for exact resonance. The apparatus details
are the same as in I. The sodium Ruoride crystal was
obtained from Harshaw Chemicals Inc. The doped
caclium fluoride samples were machined cylinders with
their cylindrical axes along the [1107 direction. These
were obtained from Optovac Inc. '

Alignment of the crystal axes was attained by attach-
ing the crystals to a simple goniometer and observing
the complete rotation pattern of the free-induction
decay. By this method, alignment was judged to be
correct to better than I'.

and
2~„F,t/F, &&1

~„F,'t/F, '«1.
(50a)

(50b)

&. &xperiments on .QaF

These experiments were performed at 298'K. At this
temperature Ti(Nagg) = 11.5 sec and Ti(F")=19.0 sec.

Following the procedure in I, we take the 8 and 8'
terms in Eq. (49) as being the first of a damped func-

"These samples were kindly loaned to us by pi'ofessoi S
Day of the Physics Department, University of Arkansas
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FgQ. 2. Log-log graph of T2, versus ~ for Na" and F' in a crystal of NaF. The circles, etc., are experimental data for
Ho along the crystal axes shown. The solid lines are the theoretical expression Eq. (j.6).

No anisotropy in the spin-lattice relaxation time was
observed for either nucleus.

As in the case of a single magnetic ingredient, the
effect of applying multiple-pulse trains to either Na" or
F" spins is to prolong the free induction decay by
orders of magnitude for 7 (T2. An important difference
between the decay train in a single-ingredient sample
and that of two equally abundant species, is that in the
former the decay-train envelope approximates quite
well to an exponential function, whereas for Na23 spins
in NaF, the decay-train envelope is clearly nonexponen-
tial, Fig. i. The rather sharp drop in signal amplitude
that occurs during the first two echoes, persists to
varying extent for all ~. It is thus clear experimentally
why reiteration of the loss in echo intensity of the fourth
echo in each cycle, or the attenuated diagonal density
matrix assumption must fail when projecting the decay
train for long times. After the second echo, the echo
chain settles down to a reasonably good exponential
decay, the time constant (T~,) of which has been
measured as a function of 7. and crystal orientation. We
have also measured T~, for F" in NaF with Hp

along the [100] axis. These experimental results to-
gether with the naive theoretical expression, Eq. (16)
are plotted in Fig. 2. The predicted amplitudes of T~,
are all about two orders of magnitude too small. A
further disconcerting feature is that the experimental
data are fitted by a 7. dependence with x=3.5—4.0.
The theoretical value of w which makes the fourth echo
amplitude greater than the first three echoes is obtained
from the intersection of the theoretical curve in Fig.
4(a) with the theoretical curves in Fig. 4(b) and Figs.
3(a) and 3(b). This gives a value of r= 10 psec. How-

ever, the intersection of the curve T2, 8/cV4, 'r' ——with
the corresponding experimental data in Fig. 2 occurs
for z))10 @sec. Thus the limiting behavior of T2, for
v ~ 0 does not converge to the naive theoretical
expression.

The 90' pulse width for the sodium spins in these
experiments was 4.0 p,sec. To test the effect of finite
pulse width, the Na"[110]data in Fig. 2 was repeated
using a 9.0-psec pulse. The effect was to decrease the
values of T2, by about 25% and also to increase the
gradient slightly. We therefore eliminate the finiteness
of the pulse width as a possible explanation of the
deviation of our results from the elementary theory.

In order to try to understand the large discrepancy in
magnitude between theory and experiment, the ampli-
tudes of the first four echoes in Na" have been measured
as a function of r for Ho along L110].The normalized
results together with the theoretical expressions Eqs.
(9)—(15) are plotted in Figs. 3 and 4. Good agreement
with theory is obtained for the first- and second-echo
amplitude for r&50 psec. Good agreement with theory
for 7.&40 @sec is also obtained for the third echo if a
fourth-order term is added in Eq. (11).Though we have
theoretical expressions for M4, ', these are more for-
midable to evaluate than M4, ', so we have chosen to fit
Fig. 4(b) empirically. This requires that M, '= —0.664
X10" rad4 sec '

In contrast to the first three echoes, the variation of
the fourth echo amplitude with 7 is not described very
well by Eq. (12). The best empirical fit of a sixth-order
term with M6, =-5.0X1.0' rad' sec ' causes the theo-
retical curve to diverge at y= 15 @sec. It is clear that
only by going to very high order in z can one hope to
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describe the variation of fourth-echo amplitude with
r for up to 50 p,sec.

An interesting semiempirical fact is that iteration of
the loss in amplitude between the first and third echoes
gives a much better fit to T~,. However, since this pro-
cedure is not based on the realization of the full sym-
metry properties of the complete dipolar Hamiltonian,
we do not pursue the matter here.

1,0

0.8—
0

(a)

Z. Experiments on Doped CoFs

Experiments have been performed on the F" spins in
doped CaFs with Hp along the [111]direction. In the
first case, the dopant was 0.1% Sm'+'+. Ts, was mea-
sured as a function of ~ at 296 and 78'K and in both
cases, over the range studied, there is little difference
between these values and T2, in pure CaF2, Fig. 5. The
measured spin-lattice relaxation times of F" for this
sample were Ti 397 msec ——(298'K); Ti=75.5 msec

0.6—

1.0=
0

1.0— 0.8—

0.8— 0.6—

0.6-

I

10

I I

20 30
C in iltsec

40 50

1.P

0.8

0 l0
I I

20 30
in psec

40 50

Fzo. 3. Experimental solid-echo amplitudes (circles) for Na"
in NaF with Hp along the L110] axis. (a) Normalized Grat-echo
amplitude at t=2T versus ~. The solid line is the theoretical ex-
pression, Eq. (9b). (b) Normalized second-echo amplitude at
t =4m versus w. The solid line is the theoretical curve Eq. (10).

FIG. 4. Experimental solid-echo amplitudes (circles) for Na'
in NaF with Hp along the $110]axis. (a) Normalized fourth-echo
amplitude at t=8v versus 7.. The solid line is the theoretical ex-
pression, Eq. (14). (b) Normalized third-echo amplitudes at t =6w
versus 7.. The broken line corresponds to the first two terms in
Eq. (11), the solid line includes all three terms. The value of
3f4,8 was chosen for best empirical fit.

(78'K). Thus over the range of r used, Ti does not seem
to be affecting T2, .

In the second case, the dopant was 0.1%%uo
U'+. Here

the data at 78'K seem to have values of T2, consistently
shorter than those measured at 295'K. The measured
spin-lattice relaxation times of F" in this sample were
Ti=1.12 msec (295'K); Ti=0.59 msec (78'K). From
Fig. 5, we see that there is no significant difference be-
tween the slope of the experimental data and the theo-
retical curve for the pure material. Note that although
it might be more to the point to measure the spin-lattice
relaxation time in the rotating reference frame (Ti,),
in the present examples, we would not expect much
difference between T~ and T~„.

We were hoping that at the lower temperature (78'K)
the relaxation rate of the paramagnetic ion would be
slowed down sufficiently so that the electron dipolar
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Fzp. 5. Log-log graph of T2, versus r for F" in a single crystal of doped CaI'2. The solid lines correspond to the
theoretical expression in the case of a pure sample [see Eq. (20) of Ref. 2].

field around an impurity would have a nonzero time
average at the near-neighbor F" sites. Equipment
limitations prevented our going .to lower temperatures.
Since any deviation in solid-echo amplitude from that
of the pure material is effectively amplified in long
multiple-pulse trains, we feel that this technique could
yield useful results thus complementing other indirect
methods of studying paramagnetic impurities in solids.

B. Multiple-Pulse Double-Resonance Exyeriments

Double-resonance experiments have been performed
between the sodium and fluorine spins in NaF with Ho
along the [100]axis. These experiments were reported

briefly in our earlier paper. "The Na" spins were pulsed
at 9.0 MHz by a 90'-r-90 gp'-(27-90 gp') r, t sequence at
resonance and with 7.= 25 psec. The 90' rf pulse width

was 4.5 psec, corresponding to a peak rf pulse field

H~N, ——50 G. A sustained echo chain lasting for 4.5
msec was thus produced, Fig. 6(a). The same experiment
was repeated, but with the F" nuclei simultaneously
irradiated at their Larmor frequency (approximately
32.0 MHz) by an rf fteld with rotating component

H„g 8.8 G for a duration t——„F=2.0 msec, Fig. 6(b).
This caused almost complete destruction of the Na"
echo signal.

The coil producing the F"rf field was a short circular
solenoid, its axis coinciding with that of the receiver
coil. The Na" rf field. coil geometry was as used in all

the other experiments, i.e., a cylindrical Helmholtz
configuration following the design of Lurie and Slichter"
but allowing easy removal of the sample. The particular
coil geometry chosen, while minimizing the coupling

between the two transmitter coils, offers maximum
coupling between the F" transmitter coil and the re-
ceiver coil. Although the receiver coil was tuned to 9.0
MHz, there was still sufficient rf power absorbed by it
at 32.0 MHz to completely blank out the echo signal
and noise while the fluorine spins were being irradiated.

Higher values of H„l: produced less destruction of the
echo train amplitude for constant t„~.This is due to the
slower cross-relaxation time. For H„~——25.6 G an in-

crease in amplitude of the echo train was observed fol-
lowing the fluorine irradiation pulse. We attribute this
effect to the partial removal of the dipolar cross-cou-

pling term by the action of high fluorine stirring field.
This is similar to the work of Sarles and Cotts" and
has been discussed brieQy in our earlier paper. "Here
we restrict ourselves to discussing the destructive
double-resonance effects.

ln the pulsed double-resonance experiments of Hahn
alld Hartmann' and of Lurie and Slichter, "the destruc-
tion of spin-locked 3 magnetization is brought about
by an energy conserving cross relaxation between the
two simultaneously irradiated spin species, both of
which are regarded as independent thermal reservoirs,
3 and B.When the two reservoirs have reached a com-
mon spin temperature no further net changes in mag-
netization occur. The approach to equilibrium will be
fastest when the spin energy level differences of both
species in their respective rf fields, are made equal, i.e.,
when the Hahn condition y~II„~=y~II„~ is satisfied.
The ratio of the initial to final spin-locked magnetiza-

L. R. Sarles and R. M. Cotts, Phys. Rev. 111,853 (1958).
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tion is then given by

Mr/M, = 1/(1+e),
1.0

Na in NaF —H along [100]
23.

, =15.0gauss

where e = CsH, rr'/C~(H„~'+HL'). The nuclear Curie
constant is given by Cr ——IVryr2OII(I+1)/3k, where 1Vi
is the number of nuclei. Hl. is the local field" which for
Na" in NaF with Hp along L100j is HL ——4.1 G.

In our experiments, we do not have a normal spin-
locked 3 system. The destruction of signal which occurs
in these experiments is, therefore, open to at least two
interpretations: (a) cross relaxation under the action of

H„N, in the finite duration of the 90' pulses; (b) cross
relaxation under the action of a mean pulse field II„N,.
In case (a) with H~N, ——50 G and H„F 8.8 G, th——e maxi-
mum fractional destruction of magnetization is Mr/M,
= 1/1.08. In case (b) with H„N, ——4.5 G and H„F——8.8 G,
the maximum fractional destruction of magnetization
is Mr/M;= 1/6. 26, which is in much better agreement
with the experimental results shown in Fig. 6.

C. Long-Pulse Experiments

Long-pulse spin-locking experiments following at
time 7. an initial 90 rf pulse, have been performed on
the sodium spins in NaF at exact resonance. The experi-
mental details are similar to the single-species experi-
ments described in I. All data are taken with H0 along
the $100] direction.

For Axed spin-locking field H„, the magnetization is
found to oscillate as a function of the spin-locking time
t„„, damping out to a quasiequilibrium value in about
200 psec. Experimental data for H„=6.5, 4.0, and 2.0 6
are shown in Fig. 7(b) together with the theoretical
expression, Eq. (51), plotted for H„=6.5 G only. (rom-

parison with theory for 4.0 and 2.0 G is impossible,
since (I,)= 1—I'I —I'I goes negative in this region due
to the truncation. Figure 7(a) shows Eq. (51) plotted

I I I I I I I I I I
I I I I I I I I I I

FIG. 6. Doubly exposed photograph of the positively detected
solid-echo trains of the Na" resonance in a single crystal of NaF.
The static Geld Hp is along the L100]direction, r =25 IIsec for both
traces and the time-base sweep is 0.5 msec/large div. (a) Solid-
echo train with no irradiation of the F' spins. (b) Echo train
following F' irradiation for 2.0 msec and rotating field component
H,y =8.8 G. This shows an initial blanking of the receiver with
consequent loss of both signal and noise. This is followed by in-
spection of the remaining signal, which is almost completely de-
stroyed in this sequence.
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for various values of H, and with Hp along the L100j
direction.

The agreement with theory for the 6.5-6 data is not
too good since I'i and I'»' are beginning to diverge quite
severely at this field. In Eq. (51) the cos2oi„ t(1+1'I/I'2)
term is damped out rapidly, the period of the oscilla-
tions being dominated by the fundamental angular
frequency ol„(1+I'2'/I'I'). Experiments confirm that
there is no apparent second harmonic content in the
oscillation s.

The theory presented becomes more valid for high
H„, but unfortunately high-field oscillation data are not
available. However, the intermediate field case, FI„=6.5
G, is sufficient to substantiate the gross features of the
theory.

D. Equilibrium Magnetization

The rapid spin-locking procedure is a constant energy
process (AA'=0) in which the magnetic energy of the
spin system is conserved. This is discussed in more
detail in I and predicts a final spin-locked thermal-
equilibrium magnetization M~, when all transients due
to dipolar-Zeeman mutual exchange and cross-relaxation
processes have decayed away, given by

M p(H, '+H„Hr. '/Ho) MoH„'H„'+HL''H„'+IIL'

where 3f0 is the initial thermal-equilibrium magnetiza-
tion. For a two-ingredient spin system, the local field
Hl, is given by"

HL = 2M2rr+M2rs+ sM2ssps A 8+(S+1)/
yr WrI(I+1),

TIME (~sec)
0 I I I I I I I I I I

0 20 40 60 80 100 120 140 160 180 200

FIG. 7. Spin-locked magnetization versus t„„for Na" in 5aF
with Hp along the $100j direction. (a) Theoretical expression
Eq. (51) plotted for various values of H, . (b) Experimental data
for H, =6.5, 4.0, and 2.0 G. The solidlineisEq. (51) forII„=6.5 G.
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Fio. 8. Spin-locked Xa23 magnetization versus magnetic field
H, for t„„fixed at 10 msec. The solid curve (a) is the theoretical
final thermal-equilibrium value. Curve (b) is the theoretical quasi-
equilibrium time-independent part of Eq. (51).

where M2, q is the contribution (in G ) of the b spins to
the second moment of the a-spin absorption line.

Long-pulse spin-locking experiments were performed
with t„„held at 10 msec and H„varied from 1.0 up to
9.5 G. The experimental data are plotted in Fig. 8.
These are compared with the theoretical expression for
the thermal-equilibrium magnetization. We see that
good agreement is obtained between theory Lsolid
curve (a), Fig. 8] and the data over the range studied.
For higher H„one might expect a long dipolar-Zeeman
cross-relaxation time, thus preventing temperature
equilibration of the Zeernan and dipolar energy reser-
voirs in 10 msec. In this case, the quasiequilibrium
Zeeman magnetization following establishment of the
Zeeman spin temperature would be predicted by the
time-independent part of Eq. (51), i.e., (j,)=1—I'r
—I'r'. This expression is also plotted Lcurve (b), Fig. 8j,
and unlike the single-ingredient case, begins to diverge
for H„&3HL,. Above 3H&, where the quasiequilibrium
theory is valid, the difference between curves (a) and

(b) in Fig. 8 is negligible, thus making observa, tion of
cross relaxation impossible.

used to predict the over-all time constant T~, of the
echo train decay envelope. Experiments on F"and Na"
in a single crystal of NaF confirm this.

A new theoretical treatment of the multiple-pulse
experiments based on a logarithmic operator formalism
shows that for the fourth echo the leading error term in
the usual time expansion, which is correct to fourth
order in time, in fact, vanishes identically when taken
to all orders in the perturbation expansion. A diferent
method of projecting to long times, the short time be-
havior of the echo train, is discussed, and the analogy
made between the effective line narrowing produced
by multiple-pulse sequences and spectral line narrowing
in solids due to the presence of an exchange interaction.
L sing this model, which describes the short-time be-
havior as well as the long-time characteristics of the
echo train, an expression for T2, is derived which has the
right 7. dependence.

As with the single-ingredient spin system, there is a
small oscillation of the echo amplitudes. Theoretical
examination of the first four echoes shows that for short
times, the amplitude of the second echo should be
lowest and the fourth echo highest. Simulation of this
situation by spin locking in a long-pulse rf field cor-
responding to the mean field of the short 90' pulses,
shows the spin-locked magnetization to oscillate. For
high fields, calculation shows that the period of the
oscillations is 27r/yrH„. The terms in the theory giving
a second harmonic contribution to the oscillations are
rapidly damped in time. If H„ is replaced by the mean
pulse field H„=~,/4yzv- then the period 8~ corresponds
precisely with that expected on symmetry grounds in
the mutliple-pulse experiments.

Some multiple-pulse experiments have been per-
formed. on the F" nuclei in paramagnetically doped
CaF2 in the temperature range 295—78'K. Since the
dependence of T2, on 7 does not change significantly
from that of the undoped material over this range, the
time average of the electron-nuclear dipolar interaction
is effectively zero.

Pulsed double-resonance experiments performed on
the Na" and F" nuclei in NaF show that cross-relaxa-
tion can take place with spins partially spin-locked by
an in-phase multiple-pulse sequence.
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IV. CONCLUSIONS

For a spin system comprising two abundant species
only one of which is irradiated at resonance, we have
shown that iteration of the loss in amplitude of the fourth
echo in a coherent multiple-pulse experiment cannot be

APPENDIX: EVALUATION OF TRACE PRODUCTS
AND LATTICE SUMS

In this Appendix we wish to evaluate the various
traces occurring in Sec. II.
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Multiple pu-lse experimezzts As noted in the text,

lt Vz') =M., ' = ——,'Mz, ' —— Sfz—,'

=L35(5+1)/'~'rj 2 C~p'

TABLE I. Lattice sums in inverse 3 units for Nap with the
static field along the principal crystal axes. The values computed
are the spatial and angular sums, i.e., P, I, =2P2(cos8, I,)/r, I,'. The
first two sums include an integrated contribution taken from the
twenty-first shell.

In order to evaluate both M4, ' and .M4, ' the following
comrnutators are required:

[1003

7.087X10 3

[110)
1.012X10 ' 1.113X10 '

I.m. = —FZ'I.
= —i' P P B,&(c,pI„I,g+CI,pI, I,I„)S,p,

P k&j

F'EI, = —I"E'I

= z' Z Z B,'(C~pI"I"+C~pI.~I*~)5 p
P k&j

jvF
I.=i'p p A, g(C, 4

—CA, 4)g'F' s k&j I„j

PP. 2

P P,k'P, 1Pk1

QP. 4

a

P P.k2P. 2

k, a

8.084X10 2 2.322 X10 ' 4.014X10

3.439X10 ' 2.309X10 ' 8.174X10 '

1.063 X10 ' 8.475X10 ' 1.700X10 '

1.560X10 ' 9.805X10 ' 2 006X10 '

5.645X10 4 2.317X10 4 4 304X10 '

3.945X10 ' 1.994X10 ' 1.249X10 5

I„ I,k

XI.a5.4 B,4'I 4
— + I.5.4,

Iyj Iyk

F'I, = —F"I,
= —i'(Q Cgp'I, gS,p'

k, P

+Q Q Cs.cj,pI.I,S, S,p),
k P&n

FE~'I.=F'FI.=0,

Q Pj„'Pk '
ha

4.954X10 ' 4.349X10 ' 1.269X10 '

P')=2 kp'5P'( + )'—'I(I+1)j
+2 2 2ca 'CI p'-'5'(5+1)'

lfFG'F) =Z 2 2a-p'(C'- C-p)'95—'(5+1)',

Q P I,'(P —Pk )' 1.047X10 ' 4.222X10 ' 6 030X10 '

= —i'P P a.p(C„.—C p)
m p&a

I„
x(5"-S*p 5*-svp)—

Multiplying the various comrnutators together and
summing over all subscripts we obtain the following
traces:

(EFEFj=g P LA, gB,g(c,z
—C4,.4)'

+B~"( C+44C ')349I(I+1)5(5+1)

PE Flj=E Z t 2A (Cz C 4)

+2BJ~'(CJ4'+C»') j9I(I+1)5(5+1),
ÃF'EII =2 Z»~'(c p'+c~ p') 9I(I+1)5(5+1),

("E'E&')=2 2 (C, 4
—Cw)'(2A, ~'+A, aB,~)

&& 9I(I+1)5(5+1),
(FE"F]=p Q 2A, k'(C, z

—Cl, z) '-,'I(I+1)5(5+1),

(F'zFzjI= —Q Cl, p 5LI (I+1) —zpI(I+1)]

+Z 2 2C~-'C~p'95'(5+1)'

(ZF'Er''j= PP A, ,B,,(C,,——C„)z

k&j

&&
—'I(I+1)S(5+1).

Carrying through the substitution in Eq. (15), we
obtain

—8
3I4' —— fP Q 8a p'(C —C;p)'-'5'(S+1)'

~&z

+Q Q (SA, '(C, C.)'+2A, B, (C—; C)'—
n k&j

+B; '(C; '+C ')$ ',I(I+1)S(5+1)). —

A similar expression may be obtained for M4, ' using the
above evaluated averages.

Long pulse experimen-ts The evaluation .of terms A,
8, and C have been discussed previously in I. We quote
the results for convenience only:

A= Q A I,'I(I+1),
SlYz j»
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TABLE II. Computed values of quantities defined in Sec. II.

Resonant species
[100] I 110]

352 '(rad' sec ')
3I4,4(rad4 sec 4)

Hs(G)
A(radssec ')
A'(rad' sec ')
B(rad4 sec 4)

8'(rad4 sec 4)

C(rad' sec 4)

C'(rad4 sec 4)

D(rad4 sec 4)

E(rad4 sec ')
J (rad4 sec 4)

G(rad4 SeC 4)

M4,4(rad4 sec 4)

38X1P18

—5.89x10"
4.1
7.oo 2x1o5
3.56vr2X 107

1 73~4X10»
—1.337'-4 X10"

1.977I-4 X10"
1.24.4X10"
3.0871-4X10»

4X1P»
4.70 'x10»
4 70~4X1p»

9.50X10'
—3.35X10» —4.90X10"

B= —(9/32rVz) Q A,s'L(12I(I+1)+1)/15—-', j,
kQ j'

—(9/24~Vr) Q (AwsArss+2ArssAr(As&)Is(I+1)',

uated in the spherical basis"

A'=$5(5+1)/6rVr jZ Csp',
k, P

C=(27/641Vz)g A;k {4(2I+2I+1)/5 —1jI(I+1) B'=(1/9Vr)Z 2 L (11/4—)Ar''Crp'+5Ar''CrpC. p'j-
+(9/24&Vr) Q A,s'As/I'(I+1)'.

Zgkg j'

where

t.Gs G+r'3=2 & {i@)++{kiP)+,
P k&j

To evaluate the remaining terms we require the follow-

ing comrnutators:

XS(5+1)I(I+1)

—(1/36-'Vr)g P a~p'(Cs —Cr)p' 5( 5+1)'

C' = (1/60)Vz) Q Ckp'(35'+35 —1)5(5+1)

y(1/18' z)P P CI, sCspsSs(5/1)s

{jkP)~=+(A, s'+B;k')Csp'I. ;I~&5,p
D = (1/161Vr)Q Z Cs p'A, k'I(I+1)5(S+1),

P k&j

WArs'Csp'Ip, I.sSgp, g (1/8rVr)Q Q A s(Cs s+C s)I(I+1)5(5+1)

LGo' G+r'j =Z Z {~Pk)++{oak)+,

where

{nPk)g ,'a pCsp'(S~ 5 p S———S~p)I~s, —

(G+r', G r'j=+ 2Csp"I,sS,p'
k, P

+Q Q 2Cs 'Csp'I. sS* S,p,
k p&0.

and
LG+r G+sj=Z 2 {i')r+'+{ki&)+

P k&j

where

{jkP) ~' a2D;k'Cs p'I~, I,sS,p. ——

=(1/9~r.)Z Z {-:A,"(C;p+C., )+-,A,"C„C„&
P k&j.

XI(I+1)5(Sy1) .

The lattice sums required to obtain numerical evalua-
tion have been calculated on an electronic computer for
the static magnetic field along the three principal axes
in a single crystal of NaF. The lattice constant used in
these sums is a=4.620 A. The sums involving P;s'
include all interactions out to 248 nearest-neighbor Na
nuclei. This corresponds to the 12 nearest-neighbor Na
shells or 21 shells including both F and Na nuclei.
The sums involving Pj include all interactions out

Multiplying the appropriate commutators and sum- » E. Ambler, J. C. Eisenstein, and J. I. Schooley, J. Math.
ming over all subscripts we obtain for the traces eval- Phys. 3, 760 (1962).
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to the ninth fluorine shell (nineteenth shell counting
both F and Na nuclei). This corresponds to 236 F
nuclei. For both types of single sum the contribution
from the remainder of the spins in the lattice is esti-
mated by an isotropic integration. This is less than 1.0%
in each case. The integrated contribution to the single
sum of type I', ' is less than 0.005%. Integrated con-
tributions to the double or triangular sums have not

been calculated. From the convergence of the lattice
sums, we estimate that the asymptotic value differs
from our truncated value by less than 10%.

The lattice sums required to evaluate all the quanti-
ties appearing in this paper are presented in Table I.
Using these results, the numerical values of the quanti-
ties appearing in Secs. II A and II 8 have been calcu-
lated and are given in Table II.
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Comparison of Average-Potential Models and Binary-Collision Models
of Axial Channeling and Blocking

J. U. ANDKRSKN AND L. C. FKLDMAN

Bell Telephone Laboratories, Murray Hil/, Nm Jersey 07974
(Received 26 June 1969)

A comparison is made of three types of calculations of the axial "channeling dip": the large decrease in
yield of close-encounter processes for energetic ions incident on a single crystal parallel to a low-index
direction. The models, indicated as (1) the binary-collision model, (2) the halfway-plane model, and (3)
the continuum model, are used to calculate the dip for two standard cases corresponding to recent experi-
ments. The methods are compared as to treatment of potential and treatment of thermal vibrations. The
ease of calculation versus quantitative accuracy for the different methods is discussed, and finally the agree-
ment with experimental results is briefly reviewed.

INTRODUCTION

~~NE of the most striking and useful channeling
effects observed is the almost complete extinction

of close-encounter processes for energetic ions incident
on a single crystal parallel to a low-index direction. A
large amount of experimental information is becoming
available on this "string effect, " for a variety of com-
binations of Z1, Z2, E, and T, where Z1 and Z2 are the
atomic numbers of the incident particles and the cry-
stal atoms, respectively, E is the particle energy, and T
is the crystal temperature.

Several authors' ' have contributed to the under-
standing of this phenomenon in terms of the motion of
channeled particles in an average string, or row, poten-
tial. The most detailed and comprehensive treatment
has been given by Lindhard, ' and Linhard et al. ' The
important question of applicability of classical me-
chanics was discussed, and it was concluded that for
channeling of heavy particles (protons, n-particle, etc.)
classical orbital pictures may be used. From a discussion
of the validity of the continuum model, simple estimates

' R. S. Nelson and M. W. Thomson, Phil. Mag. 8, 1677 (1963).
2 C. Lehmann and G. Leibfried, J. Appl. Phys. 34, 2821 (1963).
3 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.

Medd. 34 (1965).
4 C. Erginsoy, Phys. Rev. Letters 15, 360 (1965).
'A. F. Tulinov, Dokl. Akad. Nauk SSSR 162, 546 (1965)

[English transl. : Soviet Phys. —Doklady 10, 463 (1965)].' P. Lervig, J. Lindhard, and V. Nielsen, Nucl. Phys. A96, 481
{1967).

of the critical angle resulted. An important modification
to the continuum model is the halfway-plane description
introduced in Appendix A of Ref. 3. On the basis of this
description and a simple model for the inQuence of
thermal vibrations, formulas for the angular distribu-
tion of particles emitted from a string atom were
obtained. These "blocking" formulas also apply to
channeling experiments, where the yield of a close-
encounter process is measured as a function of incidence
angle of the beam with respect to a string direction.
This is a consequence of the rule of reversibility as
discussed in Ref. 3. Recently, a systematic numerical
evaluation of these formulas has been made. ' '

Some of the early blocking results' ' were inter-
preted in terms of a simple two-body model, where the
emitted particle only interacts with the nearest neighbor
on the string. The use of high-speed computers has made
it possible to extend this two-body model and take into
account binary collisions with all string atoms. Thermal
vibrations may be taken into account by letting all

string atoms vibrate independently. Such calculations

' J. U. Andersen, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 36 (1967).

Because of the finite step size in the integration, an error of
5% was inherent in these calculations. En more accurate

calculations, the width is increased by 0.05$&, This explains
the small discrepancy between results in this paper and those in
Ref. 7.' D. S. Gemmel and R. E. Holland, Phys. Rev. Letters 14, 945
(1965).

' O. S. Oen, Phys. Letters 19, 358 (1965).


