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Influence of the Electron Charge Distribution on Surface-Plasmon Dispersion
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The effects of the spatial variation of the electron density on the surface-plasmon dispersion relation are
investigated. We show that measurements of that relation are a useful probe of the electron density in the
surface region. Previous calculations on homogeneous materials have predicted a linear or quadratic de-
pendence of the frequency on momentum parallel to the surface. We And that the usual surface-plasmon
resonance frequency at first decreases with increasing momentum and then increases with further increases
in momentum. This behavior agrees with the experimentally observed dispersion. Additional higher-
frequency surface modes, similar to those observed in laboratory plasmas, are identi6ed.

I. INTRODUCTION

~ 'HE self-consistent charge density and potential
at a metal-vacuum interface have been calculated

by various workers. ' ' The potential is probed by
many experiments, e.g. , field emission, thermionic
emission, and photoemission. A practical means of
measuring the charge density has, however, not as yet
been suggested. We calculate, in this paper, the depen-
dence of the surface-plasrnon energy on its momentum
parallel to the surface' ' and show that measurements"
of that function are a useful probe of the equilibrium
electron density.

The important effects of a nonuniform charge density
on the plasma oscillations in a laboratory discharge
tube are well known. Microwave experiments"" show
that a series of surface-plasma resonance modes are
observed rather than the single-surface mode of
frequency

zo, t ——co,/K2

calculated by assuming a uniform equilibrium electron
density. "Here the bulk-plasma frequency zo„' =4zrztee'/

m, where —e and m are the electron charge and mass,
respectively. eo is the constant value of electron density
deep in the sample.

The physical origin of the additional resonances has
been extensively discussed. ' It was first assumed that
the various resonances were due to the momentum
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dependence of the plasma frequency. "If the additional
plasma waves are ones which propagate through the
entire sample, the boundary conditions demand that,
in the direction of finite sample extent, the allowed
values of the momentum be proportional to 1/L, where
I. is the sample dimension. The spacing between the
resonances predicted by this approach is, in fact,
10—100 times smaller" than observed for modes of
frequency less than zov '=4zre'rt /zzt, where zz is the
maximum value of the density in the sample. This has
been attributed to the nonuniform equilibrium electron
density. "" In a typical cylindrical plasma column,
the density zz(r) varies over much of the radius, its
maximum value being in the center, i.e., at r=0.
Plasma waves of frequency co, less than ~„can
propagate in the regions of low density near the
boundaries but are unable to penetrate the higher-
density region. The effective length that determines
the allowed values of the momentum in the radial
direction is thus much less than the radius and is, in
fact, given by the distance between the wall at r=R
and the point r=r„determined by the condition
co,s =4zrzt (r,)e'/zzz.

The hydrodynamic theory of the electron gas has
been used to investigate the above effects. Hoh"
qualitatively studied the modes of frequency greater
than co,~ in a slab geometry. He ignored the dependence
of those modes on their momentum parallel to the
interface. Parker, Nickel, and GoulcV' ' have performed
quantitative calculations of or, ~ and some higher modes
in a cylindrical geometry. The momentum dependence
of the resonant frequencies was investigated by includ-
ing both dipole and quadrupole plasma oscillations.

We wish to consider, in this paper, similar e6ects
present in the longitudinal surface-plasma (plasmon)
oscillation of the electron gas in a metal. The existence
of the surface-plasmon mode of frequency co,&(k=0)
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FIG. 1. Schematic drawing of the positive and negative charge
densities near a metal-vacuum interface. The solid lines show the
boundary of the positive, i.e., ion charge density. The dashed
lines represent equidensity curves for the negative, i.e., electron
charge density. n0 is the bulk value of the electron density in the
metal.

=a&„/v2 was first emphasized by Ritchie" and observed

by Powell and Swan ""The use'4 of the ideal plasma
dielectric constant and classical electrostatics is suffi-

cient to obtain the above long-wavelength result for
the surface-plasmon frequency in a semi-infinite
homogeneous medium. Microscopic derivations of this
result have been presented by Fedders" and Feibelman"
who formally included the case of an inhomogeneous
medium. The surface plasmon can, of course, propagate
parallel to the surface with momentum k. Ritchie, '
using a hydrodynamic approach, found that the
resonant frequency depended linearly on k for the case of
a semi-in6nite homogeneous medium. A quantum-
mechanical calculation by Kanazawa7 indicated a
quadratic dependence of the surface-plasmon frequency
on wave vector.

Neither of these calculations agrees with the recent
high-energy electron transmission measurements of
Kunz' which indicate an initial decrease in frequency
with increasing k followed by an increase when k is
increased further.

It is important to differentiate between the k depen-
dence considered here (0.01 kp(k (0.5 kp, where
k~ 1 A ' is the Fermi wave vector), and that observed'
for k =k~=cu~/c=0. 01 A ' due to the transverse
character acquired by the surface-plasmon field."—"

We show that the experimental results of Kunz are a
consequence of the inhomogeneous equilibrium electron
density. We use a jellium model of a metal in which the
positive ions are represented by a smeared out positive
background charge. First-principles calculations' '
of the electron charge density at the surface of that
model system indicate that the electron density falloff
is monotonic and can be roughly represented by a linear
relationship.

The simple jellium:model used in those calcula, tions
fails to represent the actual differences in the self-
consistent charge densities and potentials at different
single-crystal surfaces of the same material. Different
single-crystal surfaces are distinguished by character-
istic protrusions of the surface atoms into the vacuum.
As first noted by Smoluchowski, '0 the kinetic energy
of the system is reduced if the electron density is
relatively smooth, i.e., it does not follow the contours of
the actual positive charge surface. This behavior is
schematically shown in Fig. 1. Smoluchowski's Inodel
calculations show, in fact, that the electron density has
about the same characteristic falloff length on the
different faces of a bcc lattice, and, while not completely
smooth, does not closely follow the surface contours.
The positive-charge contours differ from surface to
surface. This causes different electric fields to exist and
accounts for the different measured work functions.
This situation may, in fact, affect the surface-plasmon
frequencies observed on different single-crystal surfaces
of the same material. We, therefore, generalize our
jellium model to investigate that possibility.

Our use of the hydrodynamic equations for the
modified jellium model of a semi-infinite metal is
really valid only for wavelengths greater than the
interatomic spacing. Large inhomogeneity effects are,
in fact, found for such wavelengths and, in addition,
the method gives some indication of the proper results
even when not strictly valid.

We ignore the damping of the plasma oscillations by
their excitation of single electron-hole pairs. In the
case of bulk plasmons, this process can occur only for
k)k„where k, (k&u„/2Ep)kp. ' In the case of surface
plasmons, although the surface serves as a momentum
sink, and thus such decay is permitted even for k(k„
the surface-plasmon lifetime is rather long for such
wave vectors. "

For a Axed bulk density, we calculate numerically the
effect of different equilibrium electron distributions on
the surface-plasmon dispersion relation. Comparison
of the calculated characteristics with actual experi-
mental data provides a measure of the equilibrium
charge distribution at the surface. Our analysis when
used with Kunz's Mg data indicates a characteristic
decay length of about 3 A and suggests the desirability
of an experimental search for a single higher-energy
surface-plasmon mode predicted in that case.

In Sec. II, we exhibit the general hydrodynamic
equations and introduce our model of the metal.
Section III consists of a presentation of our numerical
results and a comparison with experiment."R.
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II. GENERAL EQUATIONS AND MODEL

Our treatment of the surface-plasma Inodes at a
metal-vacuum interface parallels previous work on the
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collective modes in laboratory plasmas, in particular
that of Parker, Nickel, and Gould. "' The continuity
equation is give by en, eN

I

Bn/Bt+V (nv) =0, (2 1)

and the force equation by

Bv/Bt+ (v V) v= (1/mn) [—neE —VPf. (2.2)

GO

LLI -a
I

Here —e, m, and v are the electron's charge, mass,
and velocity, respectively, e is the electron density,
E is the electric field, and p is the pressure. In an actual
metal, the fixed positive ion and electron gas mixture
constitutes a self-bound system. The binding energy
consists' ' of a bulk contribution due to the quantum-
mechanical exchange and correlation potentials and a
surface contribution due to the Hartree (direct)
potential. As a somewhat crude but adequate approx-
imation for the present problem, we have assumed that
the first two contributions confine the electron gas to
the region x&0. The electric field in that region is
given by the Poisson equation

V E=42r(e/pp)(N, n), — (2.3)

-en,

FIG. 2. Positive and negative charge distributions at the one-
dimensional model metal-vacuum interface. e is the electron
density, E; is the effective ion density, and no is the bulk density.

As discussed below, we will consider only an essen-
tially one-dimensional model of the metal-surface
system. The quantities in Eqs. (2.4) are, therefore,
assumed to be of the form

g() =g ()+r () ""**"""'
where E; is the positive ion density and eo is the
dielectric constant of free space.

We assume that the quantities which enter the above
equations are given by the sum of steady state, i.e.,
v =0, and nonequilibrium parts

a,nd C is taken as

g) (r) —~ (s)e~(kgz+fcoy)

where k and k„are components of the wave vector
parallel to the junction. Substituting Eq. (2.7) in Eq.
(2.6), and letting p: eEp/m&a~2, —we obtainn =nof(r)+ni(r) e '"',

E= Eo(r)+Ei(r)e—'"'

p= p, (r)+p, (r)e
—'"',

v =vi(r)e '"'

oP dp)d (p

+f
oi 2 der ds2

(24) d P co& d P /2kP
+I

ds4 p2

df) dip

+/ pk2+ —
/

der ds
where no is the constant bulk electron density and

f(x, y, s —+ —~)=1,
f(x, y, s) 0) =0. (2.5)

/ ~2 k4p' do
+ k'i f ——+k'——q, (2.12)

kM& co& dsThese definitions when used in Kqs. (2.1)—(2.3) yield
the following equations, first order in the perturbation:

io~ni ——npV. (fvi),
where k'=k, '+k„'. Equation (2.12) is valid in the

(2.6) region s(0. For z) 0, C satisfies

ioomnp fvi +eniEo+e——nofEi+V pi,

V Ei ———(42re/oo)ni,

where Ko is given by the zeroth-order equation

(2.7)

(2 g)

V Ep ——+(42re/op) (N, npf) . (2.9—)

We consider only longitudinal plasma oscillation and
introduce a scalar potential such that

Eg ———vc.
The pressure deviation pi is taken as adiabatic

pi =mp2ni,

where p will be specified in Sec. III.

(d'/ds' —k') o =0 (2.13)

At the x=0 surface, electrostatics demands that q
and dq/dz be continuous. In addition, the electron
current across the boundary must also be zero, and
hence pi(0 ) =0. Using Eq. (2.7), we find that this
implies

d'q /ds' k'd o /de i,=o- ——0, —(2.14)

since Ep(0) =0 by cha, rge neutrality a,nd f(0) =0 by
definition.

We must now specify p and dp/ds in the junction
region. In order to define a one-dimensional model which
preserves the physical information essential to our
problem, we recall, from the discussion of Sec. I, that
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of that system which varies" for all values of r and found
Ep by assuming a Maxwellian velocity distribution for
the electron gas.

III. RESULTS

A. Numerical Results

We now obtain the surface-plasmon resonance
frequencies of our metal-vacuum system. Equation
(2.12) has four linearly independent solutions. For
k( —a, where e and de/dk are zero, and f(k) =1, those
solutions can be taken as

Frc. 3. Square of the surface-plasmon frequency versus k, the
momentum parallel to the surface, for a Mg-vacuum interface.
E0, the steady-state electric field, is set equal to zero. The various
curves are labeled by their values of a (A), the characteristic
electron decay length at the surface. The points and error bars
are the experimental data of Kunz (Ref. 10). The dashed curve
shows the bulk-plasmon dispersion relation.

the electron distribution at an undisturbed surface has
been found to vary strongly only in the s' direction. The
positive charge distribution at the surface is, however,
a function of both the perpendicular and parallel
coordinates.

Our approximation, sufficient to estimate roughly
the difference in work function at different single-

crystal surfaces, consists of using a positive charge
distribution which is averaged over x and y and is, thus,
a function only of the distance from the surface. As
shown in Fig. 2, the equilibrium electron charge density
distribution is assumed to be equal to a constant —esp

for s( —a and to decrease linearly to zero in the
region —a(s &0.The fixed positive ions are represented

by a jellium model of smeared out positive charge. That
positive charge density is equal and opposite in sign to
the bulk electron density for s( —b and decreases
linearly to zero in the region —b (s(—c. The quantity
c is given by Eq. (2.9) as

&=0,

=+(k+~)'/2~,
e = ( cz'/a ck —c'/2)/—(u —2c), —
e =z'/2a,

s( —u,
—u(s( —b,

(2.15)—b(s( —c,
—c(s(0.

The condition a—c=b is required to ensure charge
neutrality.

We conclude this section by comparing the above
formulation with previous work. Hoh used the WEB
method to study qualitatively the cu, )~„/V2 surface
modes in a slab plasma whose equilibrium electron
density decreased linearly to zero at the boundary.
He set Ep ——0 and ignored the k dependence of the
resonances and terms of order (df/dz)/f. Parker,
Nickel, and Gould calculated the dipole and quadrupole
surface modes of a cylindrical plasma column. They
used the equilibrium electron distribution characteristic

where

~+kZ ~ ~ kZ

y g+PZ p g PZ
)

p —(~ 2+g2$2 ~2)1/2/P

(3.1)

(3.2)

The condition p =0 yields the bulk plasma frequency. A
comparison with a quantum-mechanical calculation"
of that quantity indicates that for consistency we must
take

P2 sir 2 (3.3)

oi,i =te„/&2L1+ (P/V2oi, )k$. (3 6)

For a fixed electron density, we vary the character-
istic decay lengths (a and c) and observe the change in
the surface-plasmon dependence on momentum. Cal-
culations were performed for electron densities corre-
sponding to both Al and Mg. The general character of
the results is very similar in the two cases. We present
the Mg (ms

——8.6&(10"e/crn') curves, since experimental
data exist for that material. Figures 3 and 4 show the

32 J. V. Parker, Phys. Fluids 6, 1657 (1963)."D.Pines, Phys. Rev. 92, 626 (1953).

where t/~ is the Fermi velocity. We discard the two
solutions which are unbounded as s ~ —ao.

The continuations of p~ and q3 into the region
—a&s&0 are obtained by numerically solving Eq.
(2.12) using a Runge-Kutta method. The potential in
that region is then given by the linear combination

~ (=~ I i(z)+~~s(k), (3.4)

where 2 and 8 are constants to be determined. When
k)0, the potential satisfies Eq. (2.13) whose solution,
bounded as s —+ ~, is given by

(3.5)

Equation (2.14) is used to solve for A in terms of B.
Continuity of p and dy/dz at k =0 then determines the
plasma-resonance frequencies.

The surface-plasmon dispersion relation has been
obtained analytically' for a homogeneous system
(a —+0), i.e., one in which (a) e=0 and de/Ch=0 for
all k and (b) f= 1 for z(0 and f=0 for k) 0. In that
limit, our numerical results must agree with the
expression
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square of the reduced surface-plasrnon frequency, i.e.,
(~,/co~)' versus k for values of k(0.5k'. In general, the
lower-equilibrium density in the surface region results in
a lower value for the resonant frequencies. As k —+ 0,
details of the density distribution near the surface
become relatively unimportant and or, ~ the usual
surface mode, approaches co~/v2.

We 6rst consider the case in which the steady-state
electric field Ep(e) is set equal to zero. This corresponds
to choosing c=0 and represents one limiting case of the
type of Geld behavior possible at a single-crystal
surface. The results are shown in Fig. 3. The dispersion
curve for a=o.j A exhibits the homogeneous material
behavior of Eq. (3.6). The curve is monotonically
increasing and is 6tted very well by Ritchie's result. For
somewhat larger values of a, the frequency increases
less rapidly with k as illustrated by the a=2 A result.
For larger values of a (a=3 A and a=4 A), the disper-
sion curves are no longer monotonic. They first decrease
and then increase as k increases. This behavior is
accompanied by the appearance of an additional
higher-energy surface mode of frequency co,~, where
co,~&or,2&co„. As a is increased still further, the initial
decrease in m, ~ with increasing k becomes steeper and an
additional surface mode appears. The results for @=8
(a&,i, ",2, s&.3), when a total of three surface modes are
present, are also given in Fig. 3. The frequencies of the
higher-energy modes are in rough agreement with
Hoh's qualitative calculation.

In order to obtain some measure of the variation in
surface-resonant frequencies obtained using different
single-crystal surfaces of the same material, we now
consider a second limiting case in which Eo(e) is as
large as may be expected. We choose c=-,'a and repeat
the above calculations. The results for various values of a
are shown in Fig. 4. The frequency of the lowest mode
co,~ is somewhat increased compared with that obtained
in the 6rst case. As expected, the effect becomes large
as u increases. For a=3 A and a=4 A, the frequencies
&,2 of the higher modes are in general affected very
little by the presence of the field. However, when
a=8 A, the frequency of the highest-energy surface
mode &o,3 is strongly increased by the field. For c=4 A,
in fact, the mode is eliminated.

B. Comparison with Experiment

Kunz" has obtained the cv, ~-versus-k relationship at
an oxide-free polycrystalline Mg surface using a high-

energy (34-keU) electron transmission experiment.
The solid circles in Figs. 3 and 4 represent a set of his
data (the solid circles in Fig. 11 of Ref. 10). The ~,i
curve corresponding to a =3 A best fits the experimental
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FIG. 4. Square of the surface-plasmon frequency versus k,
the momentum parallel to the surface, for a Mg-vacuum interface.
Eo, the steady-state electric field, is that due to a step discontinuity
in the positive charge density at the interface. The various curves
are labeled by their values of a (A), the characteristic electron
decay length at the surface. The points and error bars are the
experimental data of Kunz (Ref. 10).The dashed curve shows the
bulk plasmon dispersion relation.

points. The scatter and relatively large error bars on
the experimental points make a more exact fit somewhat
difficult. This value for a is in general accord with the
Thomas-Fermi screening length of 0.5 A for Mg and
a "first-principles" calculation. 4 Figures 3 and 4 show
that, for a=3 A, a second surface-plasmon mode exists
at about (a&/"„)'=0.85 for k=0, and merges with the
bulk plasmon frequency at k 0.4A. A successful experi-
mental search for this higher-plasmon branch would
help con6rm our analysis.

Ke suggest that measurements of the surface-plasmon
dispersion in other polycrystalline materials would
provide considerable insight into the variation of the
characteristic electron decay length at a surface with
density. Since single-crystal sample preparation is
difficult, and our calculation of the electric 6eld effects
indicates that they are not very large, such experiments
on metals are of lower priority. Experimental determina-
tion of co, versus k for semiconductors in which the
characteristic electron decay length a could be very
large would be of great interest. The electric field
effects may well be important in such cases. The effect
of absorbed atoms on the surface-plasmon dispersion
should also be measured. '4
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