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Theory of the Elasto-Optic Effect in Nonmetallic Crystals
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General expressions are derived for the magnitude and dispersion of elasto-optic coefEcients in terms
of strain-induced modifications of both the electronic energy-band structure, and, if present, the excitonic
structure. This analysis uses the deformation potential concept in conjunction with oscillator models for
the important optical transitions to describe strain-induced energy shifts, and also emphasizes the im-

portance of strain-dependent oscillator strengths. Results are compared with existing elasto-optic dis-

persion data in materials having no excitonic contribution (e.g. , LiNb03 and Si) and in materials with
important excitonic contributions (e.g., alkali halides and CdS) ~ In the case of ferroelectric crystals, two
important ferroelectricity-related contributions to the elasto-optic eRect are identified. The first relates to
a strain-dependent Curie temperature, and the second to the enhancing eRect of polarization fluctuations
near the Curie point in the paraelectric phase.

I. INTRODUCTION

A SIMPLE oscillator model for the electro-optic
and nonlinear optic effects in solids has recently

been applied successfully to the class of oxygen-
octahedra ferroelectrics. ' This model approximates the
energy-band structure with physically meaningful oscil-
lators, and then describes refractive index variations in
terms of energy shifts and strength changes of these
oscillators. As shown in Ref. 1, the connection between
refractive-index variations and perturbations in oscil-
lator parameters is more generally useful than had been
thought previously, because one of the important pa-
rameters required to make this connection turns out
to have nearly the same numerical value in many, if not
most, crystalline solids. The purpose of this paper is to
extend the analysis of Ref. 1 to the elasto-optic (photo-
elastic) effect. As in the electro-optic and nonlinear
optic cases, we define useful phenomenological param-
eters which are closely related to fundamental micro-
scopic quantities, i.e., we introduce a deformation
potential S to describe energy shifts and a dispersion
parameter X to describe strength changes. In terms of
these two parameters, general expressions are derived
for the magnitude and dispersion of the elasto-optic

p coeKcients. Our analysis includes both interband
and exciton transitions and shows that crystals having
strong excitonic bands (e.g. , CdS, ZnO, and the alkali
halides) can be expected to exhibit anomalously strong
dispersion in the p coefficients. Finally, we consider the
special case of ferroelectric crystals and find that strain-
induced changes in the Curie point can give rise to a
large elasto-optic contribution in the ferroelectric phase.
This contribution, as we shall show, is equivalent to the
electro-optic contribution expected in piezoelectric
crystals. In ferroelectric crystals we also propose that
due to the presence of strain-dependent polarization
Quctuations, an unexpectedly large enhancement of the

elasto-optic coefficients occurs on cooling toward the
Curie point in the paraelectric phase.

In order to describe the elasto-optic effect we use the
usual definitions and relate the optical impermeability
(inverse dielectric constant) to the strain tensor x,;
through a fourth-rank elasto-optic p tensor. To be more
general, we also include a possible electro-optic con-
tribution and use the polarization I'I, as the driving
term rather than the electric field. The impermeability
change is then given in terms of the elasto-optic

p coefficients and electro-optic f coefficients by the
expression

where the superscripts x and I' denote that these
coefficients are measured at constant strain and con-
stant polarization, respectively. The conditions of
measurement are important in piezoelectric crystals
where the applied strain produces an induced polariza-
tion. For this reason, a distinction should be made
between coefficients measured at constant polarization
(p~) and those measured at constant field (p~). It can
be shown that these quantities are related by

/

Pijai Pijki =Pm fijm &mki (2)

where the piezoelectric e coeKcients are defined by'

~I,=~ er, &m ~im.
t„m

II. CALCULATION OF INTERBAND CONTRIBU-
TION TO ELASTO-OPTIC COEFFICIENTS

A. Energy-Band Formulation

A formal procedure for. calculation of the elasto-
optic coefficients is contained in the band theory of

' M. DiDomenico, Jr., and S. H. Wemple, J. Appl. Phys. 40,
720 (1969); S. H. Wemple and M. DiDomenico, Jr., ibid. 40, 735
(1969).

'The superscript Ii on e~ serves to distinguish this quantity
from its value measured at constant displacement e~. We point
out also that p~=pD in ferroelectric materials.
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solids. In principle, the imaginary part of the dielectric
response function p, ,= pi, „+ipp, ;; can be computed
from a knowledge of the band structure and the one-
electron wave functions. The real part in the region of
transparency is then given by the Kramers-Kronig
(KK) integral

2
pi, ;,((a) —1=-

7r

"Gi'pp„;(M')
dM

~g Q) —
GO

(4)

2
Dpi, jj(pp) =

pi App, i~'(pp )
dQ) )

CO
—

GD

(5)

where ~,'= pi, +Dpi„and her, is the strain-induced shift
in the absorption threshold. The quantity Ap& in Eq. (5)
is related to the impermeability A(1/e&) =6(1/e') by
the expression'

Aei, |ij= p &l, ik+(1/&i)kiril, lj ~

Substituting Kq. (1) into this relation in the limit where
I'=0 and making use of Eq. (5), we obtain a formal
relationship between the elasto-optic p~ coefFicients and
the strain-induced changes in the interband absorption
spectrum, i.e.,

&lik&1, ljP,klmn &mn
P

k, l, m, n 7r

pi 6pp, i&' (co )
(7)

M —
CO

A similar expression holds for Pe. In the following pre-
sentation we omit the superscripts for clarity.

To proceed further, we can either attempt the
difficult task of calculating Ae~, ;; for each strain com-
ponent x „, or we can resort to models which contain
physically useful experimental parameters. In this
paper, we adopt the latter point of view and use phe-
nomenological parameters in simple oscillator approxi-
mations' to Eqs. (4) and (5). There is a third alternative
which is to make use of the classical Clausius-Mossotti
model of a solid with polarizable point ions as has been
done in detail by Mueller4 for cubic crystals. In this
model, local-field corrections and ionic polarizabilities
are introduced to circumvent the more complex energy-
band problem. Because no allowance is made for co-
valency and because ionic polarizabilities appear to be
meaningful parameters only in the alkali halides, 5 we
feel that such a description is of limited usefulness.

' More complicated and consequently less useful oscillator de-
scriptions have been used previously in the analysis of elasto-
optic data. See, S. Ramaseshan and V. Swaramakrishnan, Current
Sci. (India) 25, 246 (1956).

4 H. Mueller, Phys. Rev. 47, 947 (1935).' A. H. Kahn, J.A. Tessman, and W. Shockley, Phys. Rev. 92,
890 (1953).

Here co, refers to the absorption threshold frequency.
In the presence of strain, the wave functions and energy
bands will be modified slightly. From Eq. (4), changes
in e& and e2 are related by

Here X is the light wavelength and $0 and Xp are
oscillator strength and position parameters, respec-
tively. As discussed in Ref. 6, Eq. (8) is not only valid
experimentally but the interband energy (Bp=bc/eXp)
and interband strength LB= (hc/e)'Sp) parameters are
physically meaningful (h is Planck's constant, c is the
speed of light, and e is the electronic charge). Using
these parameters we can define a "dispersion energy"
8& given by hd—=P/bp= (hc/e)Sphp. The dispersion
energy determines the dispersion of the electronic di-
electric constant in nonmetallic nonmagnetic solids, and
has been shown' to obey an extraordinarily simple
empirical relation involving crystal structure, chemical
valency, and ground-state electronic configuration.

We can view Eq. (8) as a long-wavelength approxima-
tion to the KK integral given by Eq. (4). It is easy to
show using the KK expression that the average inter-
band oscillator strength 5' and the average interband
oscillator position $0 are given by the following moment
ietegrals of the fundamental e~ spectrum:

2

d(d
~

3M
(9)

Sa =—— —des
2—dM.
3

~g GO

(10)

It is clear from Kqs. (9) and (10) that the p& spectrum
is weighted most heavily towards the band edge. In the
immediate vicinity of the band edge, however, the
value of e& drops rapidly to zero, so that the band
edge itself should not be considered a contributor to
either the refractive index or its dispersion. We can
show further, using a known relationship between ab-
sorption and the refractive index [see Eq. (22)j, that
optical absorptions above the band edge contribute
very little to the refractive index until the absorption
coeScient approaches 10' cm '. Thus direct transitions
near the band edge have a very small inhuence on re-

6 S. H. Wemple and M. DiDomenico, Jr. , Phys. Rev. Letters
23, 1156 (1969).

B. Simplified Oscillator Formulation

It has been shown experimentally' that the inter-
band contributions to e& can be accurately fitted to a
single-oscillator Sellmeier expression in the over 50
widely different ionic and coMleet crystals for which
reliable refractive-index dispersion data are available.
This remarkable result is found' to apply with high
accuracy in compounds having the diamond, zinc-
blende, wurtzite, rocksalt, CsCl, and CaF2 structures
as well as in a variety of complex oxides. Thus, for an
arbitrary light-polarization direction (denoted by the
superscript 0) the wavelength dependence of pi' is given
closely by the relation
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fractive-index behavior below the band edge, and in-
direct transitions can be entirely neglected. It is for
this reason that Eq. (8) continues to be a good approxi-
mation for optical wavelengths quite close to the band
edge. It should also be noted that the Sellmeier param-
eters expressed by Eq. (9) and (10) are related to
moment integrals over all interband absorptions and
are entirely independent of the optical wavelength. An
exception to the above arguments occurs if one or more
strong exciton bands (peak absorption coefficient of
approximately 10' cm ') are present just below the
interband edge. In this case Eq. (8) will continue to be
valid at long wavelengths, but for wavelengths ap-
proaching the exciton absorption deviations will occur
as discussed in S'ec. IV. Even when excitons are present,
however, the exciton contribution to the long-wave-
length refractive index is quite small.

In terms of our single-oscillator model, crystal strain
induces changes in oscillator position 680 and strength
~P . These quantities, which are related to integrals
over the p, ~(pi) and Ap, (~) spectra, can be computed
using Eqs. (9) and (10). From Eq. (8) we find that the
strain-induced change in ~~ is given by

Api /(pi —1)'
= —2(d, Bp /8d ){1+KL1—(Xp~/X)'j) (11)

where

(12)

and Sd'=5'/hp' ——(hc/e)Sp Xp is the dispersion energy
de6ned above. We now introduce a deformation po-
tential parameter D;,' which relates the oscillator shift
680 to the strain components x;;, i.e.,

Incorporating the above approximations into Eqs.
(1), (6), and (11) we find that

In Eq. (14), p, t' is the elasto-optic coefficient for light
polarized along the cr axis when strain component x;;
is applied. It is thus not one of the tensor elements.
The subscripts merely indicate the associated strain
component. Since only two direction-dependent param-
eters D;, and E are required to describe the complete
direction dependence of the ela, sto-optic effect, we now
generaHze Eq. (14) to apply to each fourth-rank tensor
component p, ,&& by redefining the deformation potential
D;, and the constant E' in terms of new phenomeno-
logical fourth-rank tensor parameters 50;;I,~ and X;,I, ~.

In standard reduced index notation, the tensor result is

where X);, and X;; can be measured experimentally in
crystals obeying the isotropy conditions given above.
We emphasize that each of the S;, and X;; tensor com-
ponents can be expressed in terms of e~, ;, and A&2, ;, and
thus can be related directly to the energy-band
structure.

Our final result $Eq. (15)g can be viewed as a two-
parameter 6t to elasto-optic dispersion data. The pa-
rameters hp (or Xp) and hd can be obtained separately
from refractive-index dispersion measurements. ' It is
clear from the form of Eq. (15) that the dispersion of
the p coefficients, or more precisely

Ahp ——Q D;, x;,. (13)

The deformation potential does not apply to any specific
interband transition but involves all transitions inte-
grated throughout the Brillouin zone that contribute
to pp'(pi). We anticipate, however, that its order of
magnitude can be estimated from shifts in the band gap
with strain, typically several eV. Equation (11) pro-
vides a useful framework on which to build a full tensor
description of the elasto-optic effect in optically aniso-
tropic crystals provided that the quantities 6y 8&,
and Bp' (or Xp ) are approximately isotropic. We thus
define an "average" impermeability 1/pi and an
"average" oscil]ator position ho where the average is
taken, for example, over the values appropriate to the
principal dielectric a,xes of an anisotropic crysta, l. We
also make use of the experimental result" that in many
anisotropic crystals the quantity bd is not only very
nearly isotropic but also has a unique value which
depends in a simple way on the a.nion valency and
crystal structure (see below).

is determined by the parameter X. In the simplest case
where only a single band shifts in energy but not in
strength we have X=0, and this quantity is dispersion-
less. More generally X&0 either because several bands
shift in energy (but not necessarily strength) by differ-
ent amounts, or because the strengths of the transitions
are strain-dependent. Both alternatives lead to dis-
persion in

(1—1/n')'

The dispersion of a, particular p coefficient may be
either positive or negative depending on the sign and
magnitude of X. For —1(X(0, the dispersion is
positive, i.e. , p increases on approaching the absorption
edge, whereas for X&0 or X(—1 the dispersion is
negative. Whether a positive or negative dispersion
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FIG. 1. Dispersion of elasto-optic coeKcients in Liwb03,
SrTi03, and TiO~ at room temperature.

occurs depends on the precise nature of strain-induced
energy-band changes and is not necessarily indicative of
diBerences in the physical mechanism.

As pointed out above, the dispersion energy h& has
been found empirically to have nearly the same value
in many crystalline solids' ' when proper account is
taken of the valency of the anion element and crystal
structure. We now make use of this observation to
simplify Eq. (15). Detailed discussions of the quantity
8& are given elsewhere'; here we merely quote the final
result, viz. ,

solids. Taking, for example, Z, =2, E,=6, E,=8,
P;=0.26 eV, I=2, and X=O, we find for )»Xo that
p 0.05K. Since deformation potentials are expected to
be a few eV, we conclude that p 0.1 which is the
correct order of magnitude.

Before proceeding further, it is useful to ask what
Eq. (15) implies in terms of a microscopic model of the
elasto-optic effect. We noted previously that this equa-
tion gives a simple two-parameter formulation of the
magnitude and dispersion of the elasto-optic coeKcients
in solids. Superficially, these parameters, the deforma-
tion potential 5) and the dispersion constant X, appear
to be wholly phenomenological and unrelated to identi-
fiable microscopic interactions. The apparent reason is
that precise calculations require complete knowledge of
e2(cu) and De2(&v). This, in turn, means that the complete
energy-band structure is known, and, in particular,
how each level shifts in energy throughout the entire
Brillouin zone as a function of strain. In our approach
we have avoided this difficult (and usually unsolved)
problem by resorting to a physically meaningful
Sellmeier oscillator description of the index of refrac-
tion, and further have introduced a deformation po-
tential parameter to describe strain-induced shifts in
the average Sellmeier oscillator position and strength.
This approach is not only a useful parametrization of
the elasto-optic problem, but is also significant from
the standpoint of microscopic interactions. The reason
is that the deformation potential can be estimated, in
the tight-binding approximation, from the strain-in-
duced modifications in the energy-overlap integrals
between the basic molecular orbitals describing the
valence and conduction-band states.

I I I I I I I

hg= P1V,Z,X„ (16)

where E, is the nearest-neighbor cation coordination
number, Z, is the formal anion valency, and N, is the
effective number of valence electrons per anion. The
constant P can assume two values: P;=0.26 eV in ionic
compounds and P,=0.39 eV in covalent compounds.
Substituting Eq. (16) into Eq. (15) yields

12-

I c I t I s I

0.2 0.4 0.6 0.8
I/) &(MICRONS) ~

I i I

1.0 1.2 1.4

Equation (17) can be used to estimate the mag»«de
of the interband contribution to the p coefficient»n

Fio. 2. Dispersion of elasto-optic coefficients
in GaAs, Ge, and Si,
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III. COMPARISON WITH EXPERIMENT

Comparison of the wavelength dispersion predicted
by Eqs. (15) and (17) with experiment can be made
on only a few materials since dispersion data are
very limited. In Figs. 1—3 we have plotted repre-
sentative elasto-optic dispersion data taken from
various sources' " for different types of materials. All

the data, with the exception of LiNbO3 and TiO~, were
obtained from static stress-optical experiments. The
LiXb03 and Ti02 data mere obtained by Dixon' using
ultrasonic light-scattering techniques. " In plotting the

Material
p.

CoeKcient $(eV) sp(eV)'

SrTi03b
LiNb03'
TiO, c

Si"

p44

P31

P33

p44

0.7

3.6
—4.7

—2.2
—2
—0.9
—1.3

5.74
7.08, 6.74
5.26, 5.17

4.0

a See Ref. 6.
b See Ref. 8,' R. W. Dixon (unpublished results).
~See Ref. 9.

TABLE I. Some representative values of S and X
extracted from Figs. ( and 2.

I I I I I I

quantity

(1—1/e')'

IK

IKI-
l9
ce 0

«4

"6-

-8-

-10 I I I I 1 1 I 1 1 I

0 2 4 6 8 10 12 14 16 18 20 22
ta~(M1CRONS)-'

FIG. 3. Dispersion of elasto-optic coe%cients
in KI, RbBr, and LiF.

"R. W. Dixon (unpublished results); LiNb03 and Ti02.
' A. A. Giardini, J. Opt. Soc. Am. 47, 726 (1957); SrTi03.
' V. I. Nikitenko and G. P. Martynenko, Fiz. Tverd. Tela 7,

622 (1965) (English transl. : Soviet Phys. —Solid State 7, 494
(1965)g; Si.

"A. Feldman and D. Horowitz, Jr., J. Appl. Phys. 39, 5597
(1968); GaAs.

"A. Feldman, Phys. Rev. 150, 748 (1966); Ge.
"A. Gavini and M. Cardona, Phys. Rev. 177, 1351 (1969);

KI and RbBr."R. Srinivasan, Naturwiss. 48, 96 (1961);LiF.

versus 1/X' in Figs. 1—3, we have, for convenience, used
arbitrary scales for the ordinate.

Apart from GaAs and the alkali halides near their
interband edges, the dispersion data shomn in Figs. 1—3
fit Eq. (15) reasonably well. Ilecause of the difficulty in
estimating errors in elasto-optic experiments it is not
possible at the present time to draw hard conclusions as
to the general validity of Eq. (15). More elasto-optic
dispersion data are needed; however, the results pre-
sented in Figs. 1—3 suggest that Eq. (15) may provide
a sound basis for data analysis in many materials. The
increased dispersion in GaAs and the alkali halides
near the interband edge shown in Figs. 2 and 3 implies
that the single effective interband-oscillator model is
not applicable to these materials. Strong transitions
near the band edge are clearly important. As discussed
in Sec. IU, strain-dependent excitonic transitions can
lead to substantial increases in the elasto-optic disper-
sion on approaching the interband edge without
strongly affecting the refractive-index dispersion.

For those materials which obey Eq. (15) we can
estimate the parameters X) and X from the magnitude
and dispersion of the p coefficients. Some representative
results are listed in Table I. As expected, 5) values are
of the order of an eV, and

~
X~ does not differ substan-

tially from 1. It is of interest to note that all the listed
X values are negative indicating that strain-induced
shifts in oscillator energy and strength have the same
sign in all these materials [see Eq. (12)j.We point out
also that the value of X obtained from elasto-optic
data may be quite different from that obtained from
other kinds of experiments. For example, the dispersion
of the static birefringence in LiNb03' is described
by X=O rather than X=—2. This result is not sur-
prising in view of the expected difference between
strain-induced and polarization-induced energy-band
distortions.

"R. W. Dixon and M. G. Cohen, Appl. Phys. Letters 8, 205
(j.966'.
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IV. CONTRIBUTON OF EXCITONS TO
ELASTO-OPTIC COEFFICIENTS

Equation (4) applies, in general, whatever the source
of c2,,, When excitons are present, one or more strong-
absorption peaks appear slightly below the fundamental
absorption edge. Strain-induced shifts, splittings, and
strength changes of these bands are thus expected to
alter the refractive index and contribute to the elasto-
optic coefficients. Furthermore, we would expect anoma-
lously strong-wavelength dispersion of this excitonic
contribution because of the close proximity of the
exciton bands to the region of transparency. Gavini and
Cardona" have, in fact, evaluated exciton deformation
potentials in several alkali halides using elasto-optic
dispersion data (see below for a discussion of their
results).

Just as in the interband case presented in Sec. II we
approximate the exciton contribution to the refractive
index e by a single effective oscillator. In the low-
absorption range we then obtain

S,Z,' Sob 0'
e2 —1=

(1—X.o/X') (1—Xo'/X')

where the first term gives the excitonic contribution
(transition strength S. and oscillator position X,), and
the second term gives the interband contribution dis-
cussed in Sec. II. Tensor notation has been deleted for
clarity. Considering only the strain-induced changes in
the exciton band, we find on differentiating Eq. (18)
that

where

(20)

Equation (21) gives the elasto-optic coefficient asso-
ciated with an exciton band located at energy h, . We
can compare the magnitude of p, with the interband
part po given by Eq. (15) by estimating the magnitude
of X, from the following expression" for the excitonic

15 See, for example, T. S. Moss, Optical I'roperties of Semiconduc-
tors (Butterworth Scientific Publications Ltd. , London, 1961), p.
27. The total refractive index is given by n=1+ (1/2m') J0"a dX,
where 1 refers to the vacuum contribution, and n is the total ab-
sorption coeKcient from all sources.

and X, refers to the exciton band contribution to the
long-wavelength optical susceptibility given by S.X, .
Using the definition of the p coeKcients given earlier
and relating 6b, to strain through an excitonic deforma-
tion potential D„Eq. (19) becomes

contribution e. to the total long-wavelength refractive
index e= no+i', ;

e,= (1/2'') n, dh, (22)

where n, is the exciton absorption coefficient, and the
integral extends over the exciton band of interest. For
an order-of-magnitude estimate we take" o,,=10' cm '
and AX.=100 A. Equation (22) then yields ii, 0.05.
The susceptibility X, is given by e' —eo', from which
we obtain X,=2noe. 0.2 for ri&(tlo (eo is the back-
ground interband contribution). For definiteness we
assume further that D, 1. eV, E.=O, ' NO=2, and
h.=4 eV. Substitution into Eq. (21) then yields
p, 0.006 for X))X,. This value compares with po 0.1
previously estimated for the interband contribution.
We note, however, that p, exhibits a very strong wave-
length dispersion and that p, increases markedly as X

approaches X„while at the same time po remains rela-
tively constant. For example, at P =1.1P, we find that
p, 0.1 which is comparable to po.

We now turn to the dispersion predicted by Eq. (11).
To facilitate comparison with published data, we corn-
pute the logarithmic slope d(lnp, )/d(ink) given by

d(lnPo)/d(ink)=2t (1+1/X)P'/Xo') —1j ' (24)

where, consistent with Eq. (23), the dispersion in eo has
been neglected. Since X.)'Ao and X&X„ the exciton
contribution, if present, always dominates the inter-
band contribution near the band edge. Direct com-
parison of Eq. (23) with experiment can be made using
the results of Tell et ul." on CdS and ZnO. These
authors find very strong dispersion in the pro and poi
coefficients and considerably weaker dispersion in p».
The observed dispersion in pi, and poi is much too large
to be accounted for by the interband contribution given
by Eq. (24). For CdS, Tell et at. find for both p» and
p» that d(lnp)/d(ink) = —10, while for ZnO they find
d(lnp)/d(ink) = —4 with p» exhibiting slightly stronger
dispersion than P». By taking'A, =05 trio and X =0575 p
for CdS, we predict from Eq. (23) that d(lnp)/d(ink)
=—12 in agreement with experiment. A similar con-
clusion holds for Zno. Strain-induced shifts in the

6 H. R. Philipp and H. Ehrenreich, Phys. Rev. 131,2016 (1963).' This value of E', assumes a simple exciton band shift without
changes in strength (i.e., AS.=O).

'8 B.Tell, J.M. Worlock, and L.J.Martin, Appl. Phys. Letters
6, 123 (1965).' J. E. Rowe, M. Cardona, and F. H. Pollack, in II-VI Semi-
conducting Coespounds, edited by D. G. Thomas (W. A. Benjamin,
Inc., New York, 1967), p. 112.

(23)

where we have neglected dispersion in mo and have as-
sumed that K.=O. It is of interest to compare this
result with the interband expression obtained from
Eq. (15), i.e.,
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exciton bands can thus account for the anomalously
strong dispersion observed in CdS and ZnO.

Increased dispersion observed in the alkali halides
near the interband edge (see Fig. 3) is also very prob-
ably due to excitons. Gavini and Cardona" drew this
same conclusion and estimated values of exciton de-
formation potentials in several alkali halides using
elasto-optic dispersion data. These authors, however,
did not consider the possible interband contribution to
the total observed dispersion. According to our model,
elasto-optic data should be fitted to the sum of Eqs.
(15) and (21), whereas Gavini and Cardona used an
expression corresponding to Eq. (21) alone. In our
model, the nonmonotonic behavior of p44 in RbBr ob-
served by these authors can be understood in terms of
a dominant excitonic contribution at short wavelengths
and a dominant interband contribution at long wave-
lengths. For illustrative purposes we can use the long-
wavelength data together with Eq. (17) with Z, =1,
iV, =6, Ã, =8, and P=0.26 eV to estimate X)44 and X44
in RbBr. The results are X)44= —0.5 eV and X44= —0.7.

To summarize, our deformation potential model of
the elasto-optic effect provides a two-parameter fit to
the interband contribution which agrees with experi-
ment in several materials in which excitons are absent.
Both of these parameters are found to have "reason-
able" values. In the more general case involving ex-
citons a four-parameter fit is required to describe the
complete dispersion data. We have not attempted
detailed fits to published data, however, simply be-
cause an ample number of fitting parameters is clearly
at our disposal.

V. SPECIAL EFFECTS IN FERROELECTRIC
CRYSTALS

Although the discussion up to this point should be
applicable to any crystalline solid, there are special
features in ferroelectric crystals which require separate
examination. We consider here additional contributions
to the elasto-optic coefficients present in the ferroelec-
tric and paraelectric phase which are uniquely asso-
ciated with the occurrence of ferroelectricity.

A. Ferroelectric Phase

In piezoelectric crystals, where applied strain pro-
duces lattice polarization, it is important to distinguish
between elasto-optic measurements made at constant
field ps and at constant polarization p~ /see Eq. (2)j.
The reason, of course, is that the strain-induced polar-
ization can produce a refractive-index variation via the
electro-optic effect. The basic lattice contribution to the
elasto-optic effect is described by pi' and is expected to
follow Eq. (15). The pz coefficient is the superposition
of the basic p~ coefficient and the additional strain-
induced electro-optic effect. In ferroelectric crystals

~( —
)

=2 g,,siI'd'i,
&~2j,,

(25)

where PI, refers to the kth component of the total crystal
polarization. An important simplification occurs in
oxygen-octahedra ferroelectrics where the g-tensor ele-
ments are found to have the same elmerica/ magnitude
when expressed in a coordinate system aligned along
principal axes of the basic BO6 octahedron building
block. ' The orthogonal transformations that relate
these fundamental g coeKcients to the g coefficients
in Eq. (25), appropriate to the principal axes of the
spontaneously polarized crystal, are given elsewhere. '

In a strained crystal, Eq. (25) must be modified to
include the basic elasto-optic contribution p~ associated
with crystal strain. The result is

Here, as before, the superscripts x and P denote mea-
surements at constant strain and constant polarization,
respectively. The strain components in Eq. (26) include
both polarization-induced (electrostriction) and stress-
induced contributions. An incremental change in strain
8x „modifies Eq. (26) to read

(27)

where the spontaneous polarization axis has been taken

"See Ref. 1 for a discussion of these materials and their
structure.

this latter effect can be quite large and in fact exceed the
basic p~ contribution.

The spontaneous polarization P, of a ferroelectric
is a function of the temperature difference Tg—T,
where Tg is the Curie point. Since the refractive index
depends on the magnitude of P„strain-induced shifts
in the Curie point will modify the refractive index.
This Curie-point shift is the origin of the strain-
induced electro-optic contribution to the px elasto-
optic coefficients and can be calculated quite generally
for the class of oxygen-octahedra ferroelectrics. ' These
materials include, for example, perovskite (e.g. ,
BaTi03), tungsten bronze (e.g., Ba,NaNb50i~), and
I.iNb03-type structures. In order to make a connection
between the Curie point and the refractive index, we erst
relate the spontaneous polarization P, to the refractive
index. As described in detail in Ref. 1 polarization-
induced refractive index changes in the ferroelectric
phase can be written in terms of the qladratic electro-
optic g coefficients associated with the centro-sym-
metric paraelectric phase. These electro-optic g coefIi-
cients are defined by the relation
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to be the 3 axis. For elasto-optic measurements at con-
stant electric field Eq. (27) gives

8I','
E= . . xijmn =gi j33

8Xm„

~~1
+2 2 gljk3 Ps

@+3 8x „
8XI,l+2 p;;kip . (2g)
Bx

This equation is identical to Eq. (2) when we recognize
that 2gP, gives the electro-optic f tensor (see Ref. 1 for
details) and that e~=BP/8x. Equation (28) can be
further simplified by introducing electrostriction ex-

plicitly, i.e.,

eP 2/6T p 2il,P——,2/C, (34)

where ~, is the static relative dielectric constant along
the spontaneous polarization or c axis. The strain-
dependent spontaneous polarization contribution to Pe
is then simply

to a strain-dependent Curie-Weiss temperature, i.e.,
T3=T3*+2ekCc~Qxx S.ince all other coefficients are
assumed to be independent of both temperature and
strain, the strain-induced spontaneous-polarization
change derived from Eq. (33) is related only to the
strain-dependent Curie-Weiss temperature. Using this
thermodynamic treatment it can be shown' that

Xkl Xkl +g Qklns PnPs s (29)
p;; = 2g, j33x(k.P 2/C) (lITp/llx ) . (35)

where the electrostriction Q tensor is defined at con-
stant stress as indicated by the superscript X. Sub-
stituting the derivative of Eq. (29) with respect to
strain into Eq. (28), we obtain

BI',~
E . . Xpi jmn =gij33

where

+2 Q gsjk3 Psekmn'
It:&3

bXI,l"
+Z p' »' —,(3o)

I, l $g „

gijkl gi jul ~ ~ Pijmn &mnA:l
m 3

(31)

ek „~=BPk/8x „. (32)

The third term in Eq. (30) gives the direct strain eRect
resulting from the change in unit-cell volume and is not
related to the ferroelectricity, while the first two terms
give the electro-optic contribution associated with the
piezoelectric effect. We have explicitly shown the strain-
dependent spontaneous polarization contribution in the
first term, i.e.,

Pjj mn gjj 33 (ePs /eXmn) ~

We can compute the magnitude of p;, „under the
assumption that it is caused by a strain-dependent
Curie temperature. This assumption is equivalent to our
use of the following simplified one-dimensional free-

energy expression:

F=-2'L(T—TP')/33CjP'

+ 42 PP'+ ,'q*P'+ 2c x-' qxP'-, (33)-—
where 33 is the free-spa, ce permittivity, q=Qxc~, c~ is

the elastic constant, C is the Curie constant, To' is the
constant-strain Curie-Weiss temperature, and $' and q*

are assumed temperature-independent coefficients as
zero strain. By combining the first and last terms we
observe that the electrostrictive effect is equivalent

To give a numerical example, we make use of the ob-
servation that the hydrostatic-pressure variation of
To in several perovskite ferroelectrics is approximately
—5'C/kbar from which we estimate

~
6T3/lIx~ =10"C

using a typical bulk modulus of 2&&103 kbar. Taking

g =0.12334/C2 and C= 1.5 X10"C' we find on substitution
into Eq. (35) that P=ll,P,2/100. Since il,P,2 varies
between 10 and 100 in a wide range of oxygen-octahedra
ferroelectrics, ' we predict a very large contribution to
the elasto-optic effect, viz. , p=0.1—1.

It is of interest to compare in detail the above model
with the observed hydrostatic-pressure dependence of
the refractive indices in LiNbO3 reported by Vedam
and Davis. " Since no shear strain components along
principal axes are present in such experiments, Eq. (30)
is simplified considerably. Taking the crystal point-
group symmetry to be 3m below To and 3m above To
we then find, for example, that

~pll g13(~P,'/»i) —2gi4e22

Ap33 ——g33 (8P,2/8x3), etc. ,

where AP=Pe —P~. A further simplification occurs in
LiNb03 because structually this material has approxi-
mately 6mm symmetry though the actual point-group
symmetry is 3m. This comes about because the Nb06
octahedra stacked along the threefold I'. axis are alter-
natively rotated by very nearly 180'.' Because g&4 and
e» are identically zero in 6mm symmetry, we expect
that terms containing the products of these quantities
will be small in LiNb03, A consequence of this observa-
tion is that only the stra, in dependence of P, is important
in the hydrostatic-pressure experiments. As a result,
the total Pa coefficient is then given by Eq. (35) plus
the direct strain contribution given by the p~ term in
Eq. (30). In order to compare our Curie-temperature-
shift model with the hydrostatic-pressure results, it is
convenient to recast the analysis in terms of hydro-
static stress Xo, since we have a reasonable estimate for

2'K. Vedam and T. A. Davis, Appl. Phys. Letters 12, 138
(1968).
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bTp/bXp of —5'C/kbar. The Curie-temperature-shift
contributions to bmo/bXp and &it/bXp are obtained
from Eq. (35) by replacing x by X. We then 6nd

bm p/bX p np——'g po( bT—p/bX p) (~,P,'/C) (36)

I.O

0.8-
085 055 5
Tp=OOC

Taking

bli/bXo= ter gro( —bTo/bXo) (g.P /C) ~ (37)
0.6—

Ol
CL

I

CL

0.4

4IYssl ~ ~ ~~ W0

8ACKGROUND INTERSAND
CON TR I 8 U T ION

ng= 2.299 ) n3 ——2.210 ) gi p =0.03m'/C',

goo=0. 1m'/C', C=1.5&&10"C, ir,P',o= 15

(see Ref. 1 for numerical values), and bTp/bXo= —5'C/
kbar, we obtain beo/bXo=6&&10 ' kbar ' and bit/bXp
=2)&10 kbar '. The values measured by Vedam and
Davis" are brio/bXo=6. 9X10 4 kbar ' and bet/bXp
=3.2&10 ' kbar '. The agreement between experi-
mental results and our Curie-temperature-shift model
implies that the quantity bTp/bXp which has not to
our knowledge been measured in I.iwb03, has very
nearly the same value as in other oxide ferroelectrics,
viz. , —5'C/kbar. Finally, since the computed value of
bm/bXp, which neglects the p~ contribution, agrees
with experiment we conclude that the p~ contribution
may be of order 10 ' kbar '.

B. Paraelectric Phase

The foregoing discussion has assumed that all mea-
surements were performed in the ferroelectric phase
where P,/0. We now ask if the elasto-optic properties
exhibit any special ferroelectricity-related behavior in
the paraelectric phase. Experimental data are severely
limited in this temperature range. Measurements of
p» —p» and p44 in the cubic phase of KTap poKbp 3o0,
performed by Price" show that these coefficients in-
crease by almost a factor of 2 on cooling towards
T,(=0'C). We now propose a physical model to account
for such behavior. We postulate that the refractive
index can be separated into two contributions. The first
and major contribution no is spatially uniform and is
unrelated to ferroelectricity. It seems from interband
transitions. The second contribution bn is related
directly to the presence of random lattice-polarization
fluctuations which, in high-dielectric-constant materials,
have appreciable mean-square amplitude.

The index of refraction of the medium can be written
as

0.2—

IO 20 30
T-Tp (4C)

40 50 60

FIG. 4. Temperature dependence of p» —p» in KTa0. 65Nb&, »03.
The Quctuation-theory contribution has been calculated from
Eq. (43) with To ——O'C, and V= (33 A)', (50 A)', and (100 A)'.

The quantity (bP') can be calculated from the fluctua-
tion dissipation theorem" "which gives

(bP') =kTe*/V, (40)

P=Pp+((g)kT/V)(be /bx), (41)

where pp is the background interband contribution.
Taking e = epC/(T Tp), we then —obtain

P= P,+ ((g )e,cu/V) LT/(T T,)'3(bTp/»)—. (42)

If we neglect the temperature dependence of V, Eq. (42)
predicts that the elasto-optic coeKcients should increase
as T/(T Tp)' on cooling—toward the Curie point.
Precise conclusions regarding the magnitude of the
fluctuation contribution cannot be made because the
ratio (g)/V as well as its temperature dependence are
unknown. However, an estimate can be made using the
following reasonable values for the parameters"':
(g)=0.1m4/C', C=10"C, and

I
bTp/bxI =104'C. Using

these values we estimate that

where kT is the thermal energy, e is the clamped low-
frequency dielectric constant, and t/' is a characteristic
volume corresponding approximately to the size of a
polarization-Quctuation cluster. '4" Substituting Eqs.
(39) and (40) into (38) and differentiating with re-
spect to strain, we find that

m=mp+ (be), (38) IP—Po I
= (10'/V) CT/(T —To)'3, (43)

(b~) = —(-',n, ')(g)(bPo).
~' K. E. Price (unpublished results).

(39)

where (bn) denotes the space-time average rnacro-
scopic index fluctuation. This quantity is related to the
mean-square polarization fluctuation (bP') via an aver-
age quadratic electro-optic coefficient (g), i.e.,

where V is the correlation volume in A'. In Fig. 4, we

"Fluctuation Phenomena in Solids, edited by R. E. Burgess
(Academic Press Inc., New York, 1965).

'4 M. DiDomenico, Jr., S. H. Wemple, S. P; S. Porto, and R. P.
Bauman, Phys. Rev. 174, 522 (1968).

"S. H. Wemple, M. DiDomenico, Jr., and A. Jayaraman,
Phys. Rev. 180, 547 (1969).
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show the temperature dependence of pii —pi, as mea-
sured by Price" in KTao. 65Nbo 3503 (To=0'C) together
with our predictions for V= (33 A)', (50 A)', and
(100 A)'. It is clea, r that the experimental results are
consistent with a "reasonable" correlation volume of
(50 A)' (e.g. , see Ref. 25). More precise conclusions
must await further experimental observations in a
wider range of ferroelectric materials.

Pote added ie proof Rec. ent ultrasonic measurements
of the temperature dependence of pii and pi~ in the
paraelectric phase of BaTi03 [M. G. Cohen, M.
DiDomenico, Jr., and S. H. Wemple, Phys. Rev. (to
be published)] confirm the validity of Eq. (42) and
lend strong support to the view that the correlation
volume V is at most a weak function of temperature
and does not display critical behavior in displacive
ferroelectrics. These measurements give a value V=4.5
)(10' A' for BaTi03.

VI. CONCLUSIONS

By combining a physically meaningful Sellmeier-
oscillator description of the optical susceptibility with
appropriately defined strain-induced changes, we have
derived a phenomenological expression for the rnagni-
tude and dispersion of the elasto-optic tensor coeS-

cients. According to our model the microscopic origin
of the elasto-optic effect is in strain-induced modifica-
tions of the electronic energy-band structure. As a
consequence, the p coefficients are found to be directly
proportional to a deformation potential parameter; a
similar result was found previously' for the electro-
optic effect where the deformation potential is replaced
by the polarization potential. In addition to the basic
interband contribution to the elasto-optic coeKcients,
we have also calculated the inhuence of excitons, and
have shown that excitonic effects become dominant
under conditions where the exciton absorption is strong
and the exciton transition energy is sensitive to strain.
In the case of ferroelectric crystals two important
elasto-optic contributions have been identified. The
first relates to the effect of strain-induced Curie-point
shifts in the ferroelectric phase, and the second to the
enhancing effect of polarization fluctuations near the
Curie point in the paraelectric phase.
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