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sites, respectively. The S; resonance is due to a Si¥
atom in the 2 nn shell.
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The orbit-lattice Hamiltonian for rare-earth ions is obtained using a new approach in which it is not
necessary to calculate the normal modes of the cluster consisting of the central ion and its first neighbors.
The determination of the parameters describing the first-order orbit-lattice coupling is greatly simplified,
whatever the environment. The problem of relaxation of a I's ground quartet is then studied. The equations
of evolution of the populations are solved for one-phonon and two-phonon processes, and the relaxation
times are calculated. It is shown that, under certain initial conditions, two relaxation times are sufficient.
The angular variation for the one-phonon process is established. The calculations are greatly simplified by
noting relations between matrix elements which were obtained from local symmetry and time-reversal
considerations. The experimental results on MgO:Er3t verify the existence of two relaxation times and
confirm their predicted angular variation. The discrepancy (a factor of 4) between experimental and theo-

retical values is discussed.

I. INTRODUCTION

HERE are some cases in which the splitting of the
ground term of a rare-earth ion by the cubic-
crystalline field results in a quartet as the ground state.
This quartet, which can appear only in Kramers ions,
is associated with the I's representation of the Oy group.
Bleaney! and Ayant et al.? have developed the theory of
these quartets. EPR has shown their existence and,
among them, the MgO:Er?t system has been studied
in great detail.® It is of interest to pursue this work by
studying the spin-phonon coupling in this system.
Much attention has been devoted to the theoretical
and experimental study of spin-phonon coupling in
rare-earth ions.5~'! But the special case of I's has never

* Laboratoire associé au C.N.R.S.

1 B. Bleaney, Proc. Phys. Soc. (London) B73, 937 (1959).

2 Y. Ayant, E. Belorizky, and J. Rosset, J. Phys. Radium 23,
201 (1962).

3D. Descamps and Y. Merle d’Aubigné, Phys. Letters 8, 5
(1964).

4E. Belorizky, Y. Ayant, D. Descamps, and Y. Merle
d’Aubigné, J. Phys. 27, 313 (1966).

5 R. Orbach, Proc. Roy. Soc. (London) A264, 458 (1961).

6 P. L. Scott and C. D. Jeffries, Phys. Rev. 127, 32 (1962).

7 Cha-Yuan-Huang, Phys. Rev. 139, A241 (1965).

8 R. C. Mikkelson and H. J. Stapleton, Phys. Rev. 140, A1968
(1965).
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give a review of the general problem of the relaxation until 1966.
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been considered theoretically,’? and we know of only
one experiment in which an attempt was made to
measure the relaxation time, that of Bierig et al.*® on
CaF.:Dy?*. In their case, the relaxation time was too
short to be observed. Dobrov!* tried to measure the
spin-phonon coupling by acoustic resonance, but his
results were not fully explained. We shall see that the
behavior of MgO:Er3+ is, on the contrary, well
understood.

In Sec. IT of this paper, we deduce the orbit-lattice
Hamiltonian expression, using a new approach, and we
show that, for direct and Orbach processes, it is not
necessary to consider only the cluster consisting of the
ion and its first neighbors. We arrive at the same formal
result as Orbach but with a more general meaning for
the parameters describing the coupling. In addition, the
calculation of these parameters for each particular case
is greatly simplified, as we indicate in the Appendix. In
Secs. 11T and IV, we give the outline of the calculation
of the relaxation times due to the direct process for a
T's quartet, with application to the case of MgO:Er+.
The full use of symmetry considerations enables us to
find relations between matrix elements and to show that

2Tn Ref. 11, R. Orbach and M. Blume have cited the case of a
Ts ground state only to give an example where the 75 tempera-
ture dependence of spin-lattice relaxation time could hold.

138 R, W. Bierig, M. J. Weber, and S. I. Warshaw, Phys. Rev.
134, A1504 (1964).

14'W. I. Dobrov, Phys. Rev. 146, 268 (1966).
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they can all be deduced from usual tables for matrix
elements. The solution of the equations of evolution for
populations indicates that, with our experimental con-
ditions, two relaxation times are sufficient to describe
the return to equilibrium at low temperatures. In Sec.
V, we give the experimental methods, and the results
of measurements are compared with the theoretical
predictions.

II. ORBIT-LATTICE HAMILTONIAN
A. Discussion of Approximations

To obtain the Hamiltonian describing the coupling
between the magnetic moment of the ion and the cry-
stalline vibrations, called by Orbach the orbit-lattice
Hamiltonian, a number of approximations have been
made by Van Vleck,!® which have since been generally
accepted. We shall consider two of them: (A) The ion is
coupled only to its first neighbors; (B) the wavelength
of the active crystalline vibrations is much greater than
the interatomic separation. For the direct process and,
in most cases, for the Orbach process, the approximation
(B) is valid. Then, near the ion, the relative displace-
ments of the neighbors are uniform and can be de-
scribed by the tensor ¢4, such that

Aru=ru_7u0=z Oy’ )
v

or
0A7,

Oyy=— 5

97,0

(u}v=x7 y’ Z) (1)

where 7, are the coordinates of the ion (r,° the equili-
brium values) and Ar,, are the displacement components.

The nine Cartesian components of o, can be linearly
combined to give nine new components belonging to the
irreducible representations of the rotation group:
gDo, :D1, D because DIX D= ZD()‘*‘ 501“‘ Ds. To takeinto
account the symmetry of the environment, it is better
to use new linear combinations which belong to the
irreducible representations of the group of local sym-
metry. o(T',,8) will denote the linear combination which
transforms like the Sth component of the representation
T',. The explicit form can be obtained easily for
each group.

In the O; group, Do+ D1+ D, reduces to I'i,+ s
+T'4,~4T'5,. We point out that, for I'e=T'1,, I'ss, I'sy,
the o(T'4,B8) are identical to the equivalent linear com-
binations of the Cartesian components of the strain
tensor- e, that is to say: o(I',B)=e€(T,B). The ion
displacements described by the ¢(T',;,8) are identical to
those resulting from infinitesimal rotations of the
neighborhood of the paramagnetic ion. The explicit
forms of the o(I's,8) are quoted in the Appendix.

We shall see that, with such a description, approxi-
mation (A) is superflous, and that it is possible to take

1 J. H. Van Vleck, Phys. Rev. 57, 426 (1940).
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into account the interaction between the central ion and
all the ions not too far away (the critical distance being
the wavelength of the vibration).

In this paper, we adopt the approximation (B) and
we suppose, in addition, that: (C) the substitution of a
lattice cation by a paramagnetic ion does not modify
the lattice parameter (see Sec. III); (D) the crystalline
vibrations can be described by the Debye model; (E)
the concentration of paramagnetic ions is small and the
dipolar coupling is negligible. Though approximations
(B) and (D) are not good for the Raman process, we
shall use them to obtain an order of magnitude for the
relaxation time.

B. Derivation of Orbit-Lattice Hamiltonian

We start from the expansion of the crystalline field in
terms of spherical harmonics:

V=2 Awmrd¥i™(0o,00), 2)

1,m,0

where the sum ), is over the paramagnetic electrons of
coordinates (70,00,00). In this expansion, only the A4,
terms depend on the position of the neighboring ions.

As the lattice vibrations have small amplitude, the
displacements of the ions are small. We can then
expand the energy (2) in terms of the components of
the tensor o6

av
V=V5t+2[ ] G(Fd;ﬁ)
8 LIo(T'e;8) eq

+second-order terms. (3)

Vs is the static energy. The derivative must be
evaluated with the equilibrium value of the neighbor
positions.

By rearranging the terms in Eq. (3), we get, for the
first-order term,

Vo= Y. Vo(lala)Co(T*LaB)c(TyB). (4)
s’
Using the Stevens’s equivalent operators!’, we obtain
the orbit-lattice Hamiltonian

VOL: Z V(Fayl;a)SlO(Fﬂ*’l>a’;ﬁ)q(rmﬁ)' (5)

la,a,B

In Egs. (4) and (5), the Co(T'al,e,8) are, for each
electron, the linear combination of spherical harmonics!®
of order / belonging to the Sth component of the repre-
sentation I's, and O(T'a,/,a,8) is the associated equiva-
lent operator. The index ¢ distinguishes between two
groups of linear combinations belonging to the same

16 R. Buisson, Ph.D. Thesis, Faculté des Sciences, Grenoble,
1968 (unpublished).

17 K. W. H. Stevens, Proc. Phys. Soc. (London) A65, 209 (1952).

18We use unnormalized spherical harmonics defined by
Cim="[4xr/2+1)J2Y ™.
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representation; s; is the appropriate Stevens’s multipli-
cative factor (s;=a, 8, v for I=2, 4, 6 in the Stevens
notation). The appropriate linear combinations can be
obtained, for the more common groups, from the tables
given by Griffith.? The V(I's,8,a) are the “parameters”
which remain when all the symmetry properties are used.
Their number is then fixed for a given symmetry group,
whatever the surrounding and the number of normal
modes of the cluster considered.

In the case of the Oy group, there are 11 coefficients
V(T'ayl,a). That number is frequently reduced to 7 by
suppressing the T'y, and Ty, terms.142 It is possible to
disregard the Ty, terms as soon as the nearest multiplet
which belongs to the same representation as the ground
multiplet is far away: such a situation is commonly
encountered. For the I'y, terms, one can only point out
that they are ineffective inside a multiplet which
belongs to a given representation I',, because neither the
symmetrical product (I'xXT,) for a non-Kramers ion
nor the antisymmetrical product {L',XT.} for a
Kramers ion contain the I'y, representation.?! But, when
transitions between various multiplets are of impor-
tance, the I'y, terms have to be included, as they must
be in the second-order terms of Eq. (3).22

We can, thus, rewrite Eq. (5), for the case of O
symmetry, as

VoL= >
1=2,4,6a,6b
a=1¢g,3¢,4¢,5¢; B

V(Ta,))s:0(To*,1,8)a(Ta,B). (6)

Some of the C(T',/,8) have been quoted in Ref. 20. The
others can easily be deduced from the tables of Ref. 19,
taking the same convention for the basis of the repre-
sentations as that used for the ¢(T'4,8) quoted in the
Appendix.

The last step is to express the oy, in terms of the
lattice normal modes. For a Bravais lattice, or, for
other lattices, counting only acoustical modes [approxi-
mation (D)7, one has

h 1/2
Cuv=1y, ( ) ®,7k,?(ap—ay,t),
» \2

Wp.

where w,, k.2, ®,7, a,, and a,' are, respectively, the
angular frequency, the wave-vector components, the
polarization components, the annihilation operator, and
the creation operator of the mode p. The expressions
for o(T'4,B) can be easily deduced.

In the calculation of the relaxation time, we shall
need the average value of the strain-matrix elements
for all polarizations and propagation directions of the
modes of a given frequency. We give below the result of

8 J. S. Griffith, The Theory of Transition Metal Ions (Cambridge
University Press, New York, 1961).

2 M. Blume and R. Orbach, Phys. Rev. 127, 1587 (1962).

2 M. Borg, Thesis, Faculté des Sciences, Grenoble, 1967
(unpublished).

2 D. K. Ray, T. Ray, and S. K. Gupta (to be published).
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this averaging along with the orthogonality properties'®:

| <'”1110(Fa:5) i”p+1><”p+1 l ”T(I‘a’n@/) l”p> I av
hw(N+1)
12Mov,?

= Oaa’0B8’
In this equation, v, is an average velocity of sound. For
a=3g and 5g, v, is defined by

(1/va?)=(6/5)(1/3v2+1/2v/%) ,

where »; and v, are the velocities of longitudinal and
transversal modes.

For a=4g, v, is simply v, because longitudinal modes
do not induce displacements associated to be o(T'4,,5),
and for a= 1g, v,, is simply v;.

N, the mean number of quanta in a mode of frequency
w at temperature 7', is given by

N=1/(e"/*7—1),

In conclusion, Eq. (6) is formally identical with that
deduced from considerations of the normal modes of the
cluster.'42° But, with our presentation, the meaning of
the V(T',l,a) is more general. In addition, we have
obtained Eq. (6) without taking into account the
details of the neighborhood of the ion. Of course, the
expression of the V(I',/,e) depends on the actual
surroundings and can be obtained easily with our
method for each particular case. We give, in the
Appendix, the general outlines of the calculation within
the approximation of point charges.

It is clear that the method can be extended to any
symmetry group. The number of parameters (243 in
the case of no symmetry at all) is easily determined in
each case, and, by the method shown in the Appendix,
one may simplify considerably the calculation of these
parameters.

Finally, we want to point out that the parameters
introduced fully describe the coupling of the ion with
the lattice. They are not “effective parameters,” as
those introduced in the dynamic-spin Hamiltonian, and
it is for this reason that their number is so great. We
shall see, in Sec. III, that two specific linear combina-
tions of them are sufficient to describe the direct process
in a I's quartet. In other terms, two phenomenological
parameters should be sufficient.

III. RELAXATION IN I's QUARTET

We shall now apply the results of Sec. II to the case
in which the ground state of the rare-earth ion is a I's
quartet. A static magnetic field lifts the degeneracy, and
the four levels a, b, ¢, and d have energies such that
(Fig. 1) E,= —E, and E,= —Eg. The eigenstates |a)
and |b) are Kramers conjugate, as also are [¢) and |d).

In addition to the approximations indicated in Sec.
II, we shall suppose that the quadratic Zeeman effect is
negligible.
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[a>
[ ] 2
[b>

F16. 1. Zeeman splitting of a I's quartet.

First, we consider the one-phonon process. We calcu-
late the relaxation times and determine their variation
with the magnetic-field orientation. We then solve the
equations of evolution for the two-phonon processes in
the range of temperature where these processes
dominate.

A. Direct Process

The probability per unit time for a spin to go from the
state |b) to the state |a), emitting a phonon of energy
fw=(Ey—E,), is?!

Wyoa= (1/4mpv’ ) [(Ey— Eo) /7 JPA*(N+1),

where

A= T TV (CoDsilal 0T k) 5]

and p is the density of the crystal and v a mean velocity

__p_Pe—hwllkT 0
~ 0 — P — pehonlkT
A= P
PeHorlkT Pe*hwz/kT

The operator G is not Hermitian. The roots of its
secular equation are

r=0,

ra= — (14 e H2/RT) — P(14-ghor/bT)
r3= —P (14 7o1/*T)

74= —p(14-e #2/kT)

The eigenvalues are all different. It is then possible to
choose a basis of R* which diagonalizes 4. In this new
basis, the differential equation (7) is easily integrated.
If the equilibrium values of the populations are denoted
by (No)imw (NV3)i=w- .., then the solution of (7) may
be written as

Na= (Na) t=w+ C2erzt+ Cge—hwlekTerat_f_ C4ehw1/2kTer4t ,

Nb= (JVb) t=oo+ C2erzt_C’sehwglszerst_C4e—hw1/2kTer4t ,

Nc= (Nc) o _C2erzt+ Cseham/?kTer;;t_C4ehw1/2kTér4t s

Nd= (Afd) —o _C2erzt_cse—hw2/2lcTerst+ C4e—hw1/2kTer4t s
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defined by
1/95=(6/5)(1/3v,541/2v,5).

The probability for the reverse process is

1 /Ey—En\?
( ) Aui?N.
4rpvSh /2

Wasp=

In the case of systems with an odd number of elec-
trons, the interaction Hamiltonian, which is an even
operator with respect to time reversal, has zero-matrix
elements between two Kramers conjugate states

Wab= ch= 0
Moreover,
I(d, n+1| VOL]d>n>[ = I(b:n[ VOLIC; n+1>’ ’
|<a’7ni VOLIC, 71+1>I = l(b’ n+1l VOLId>n>l .
If p and P denote the probabilities W4 and Wa,, we
have
P=de=Wac; P=Wda= Wbc;
Woa=W zo= pe~Ba—E0) [bT= pe—hwz/kT ,
W pa=W ,y= Pe~(Ea—Ea) [¥T = Pg—to1/kT

The equations of evolution for the populations N,, Vs,
N, and N4 of the four levels can be written

dN

— =GN,
dat

M

where N is the R* vector with components N, N4, N,
and Ng4, and G is the operator whose associated matrix
A4 is

Pe—-hwz/kT P

Pe—hm/kT p

_Pe—hwzllaT__Pe—hwUkT 0
0 —P—p

where Cs, Cs, and C, are constants which depend on the
initial conditions. Let us write

A= 2C3 COSh(hwz/ZkT) y
and
M= 2C4 COSh(hwl/ZkT) .

We then have
No—Np=(Ny—Np)motAerst4-pemst |
N;—Na=(N;—Na)imotAerst—perst
from which
A=3(N,—Np+N,—Na)mo—3(NVo—No+N.—Na) tmo
p=3(No—Ny—NANa)o—3(NVe—No—NANag) tmso -

In our experimental conditions, we observe the time
variation of N,—N; We shall suppose that the per-
turbation is applied for a time sufficiently short to
modify only the populations of levels ¢ and & and to
leave the ¢ and d levels unchanged.
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We then obtain
(Na—Nb)t_(Na—Nb)t=w
= SV am N o) it etImP)

when the populations are initially inverted, and
(Na_Nb)t—(Na_Nb)t=w

= Vo= N (P i)
when the populations are initially made equal by
saturation. The relaxation times 7?7 and 7,2 are
given by
1/7:%= —rs= (1/4wpv5k)

X[ (Es—E.)/#PAud® coth[ (Es—E4)2kT],
and

1/7:P = —ry= (1/4mpv*%)
X[(Es—Es)/%]Ava® coth[ (Ea— E)/2kT].
Since, generally,
(Eq4—E,)/2kTK1,
we can write to a good approximation
1/72= (kT /2wpv’h?)[ (Ea— Eo)/ % *Aua?,
1/7:P= (kT /27 pv’ 1) [ (Ea— Es)/ 1 ?Asa®.
For a fixed orientation of the magnetic field, 1/7,? and
1/79P are proportional to H? (in the case of Kramers

systems with a T's or I'; ground level, 72« 771H~* for
the direct process).

®)

B. Calculation of Matrix Elements of
Orbit-Lattice Hamiltonian

Let us choose, for the frame of reference, the 3
fourfold axes of the cube. When H is parallel to 0z, the
eigenstates of the Zeeman sublevels, which we shall
denote by ||M), are given by

|23 =Y aw,|J, £M,) with My=-£3mod 4,
My

|1£5 = am,|J, £M;) with M ;=% mod 4.
My

These four particular eigenstates will be chosen as
the basis for the subspace associated with the TI'g
representation.

We obtain, by application of the time-reversal
operation,

GlVoul —5H=ElVorl -$)=0,
Gl Vorl$y=—(=3lVoul -,
GlVorl|=3)=(=3lIVorlD,
whese the dagger denotes Hermitian conjugate (because

these matrix elements are, in fact, lattice operators).
From the selection-rule theorem,

(3|0m|2)=0 only if m=—5, —1, 43,
(—3]0:m3)5%0 only if m==£2, £6.
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We then deduce
Glvol$)=L X GlloTs,51)]%)
1=2,4,6a,6b
XS[V(I‘50,Z)]€(F5”,1)

=4 (P5071)€(P50’1) )
Gl VOL”%):[; Gl0(T'36,1,0)[13 )51V (T3,0) Je(T'5,,0)

=4 (F3a70)e(r3070) )
Gll VOLH%>=[ZZ: GllO(T4,1,0) 1352V (T'30,8) Je(Ts,,6)

= AI(P30)6)€(F30)0) ’
and

(=3l1Vorl$)={(=3Vor(Ts)[|3)+ (=} Vor(Tsp)|3),

where

(=3l VOL(I‘aa)II%>=[ZZ (—=3[0(T'30,1,9)13)
XSZV(P39;Z):|€(P30; E)

=4 (Psg,E)G(FSg, E) )
and

(=3l Vou(Tsp)||3)= [Zz (=3ll0(T'5,,1,0)[13)
XSIV(FW:Z)]e(PSa’O)
=A(T'54,0)€(T's,,0) .

The computation of A(I's,,1) and 4(T5,, —1) requires
the knowledge of matrix elements which are not tabu-
lated. We show, however, that these are simply related
to A(T's,4,0), which is easily evaluated.

The starting point is the invariance of any matrix
element under any operation of the group. We shall, for
instance, use the invariance of (3[|O(T's,,7,1)||2) under
the rotation R(Ox,7/2). As Ds/2=T's,, we have, from the
explicit expression of the matrix Dss(0x,7/2),

RIg) = 18— )~ gy
2—2\/22 2\/2_2> E\/—EII_§>+;\/E_”_%>;

R == )= -3y — )= —g),
V2 w2 V2 w2
From I's;= I'4y XT3, and from ;= T, we deduce??
R[O(T55,,1) 1= —30(T'54,0,1)
i
+ 60(F5g,l,0)+%0(1‘5,,, 5, —1).

% These formulas for the transformation of operators and wave
functions under R (Ox,7/2) are also given in Ref. 19.
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The invariance of ([|O(T's.,/,1)||3) leads to
<%“O(P5y;ls1)”%>= _VZ<—%”O(P5WZ:O)”%>,

and

A(F5m1) =—V24 (F50y0) . (9)
Similarily, one can relate A(T's,6), A4'(I's;,6), and
A(T34,8). From

R[O(P:;g,l,f)]: %O(PM;Z;E) - (\/g/Z)O(P3g,l,0) )
and from the invariance of (3]|O(Ts,,%)||3)=0 and
<%“O(I‘30;17£)”%>: O: we deduce
3ll0T36,1,0)[13)+3GI0(Ts,,0,0)[13)
+2<—‘%”0(F30)11£)”%>=0’

and

3(3110(Ta0,,0)[13)+ GIOT's0,0,0)]12)
—2(—3{|0(Ts5,,,9)[13)=0.

From these relations, we obtain
<%”O(P3y)l;0)”%>: _<%”O(P3a)l70>H%> )
(%”O(F3(I’l:0)“%>= *(%”O(P%,l,f)”%),

and
Al(P&ho) ZA(P3010) )

A(Ts0,8) = A(T's,,0) .

In conclusion, we have shown that the only matrix
elements we have to calculate are those included in

A(Fgg,a) and A(Psg,O).

(10)

C. Dependence of Relaxation Times on
Orientation of Magnetic Field

The diagonalization of the Zeeman Hamiltonian gives
the eigenstates |a), |8), |c), and |d) as linear com-
binations of || M) states. Let us write

|d)=di||3)+dsl|3)+dsl| —3)+dd| —3),
|y=01]13)4ba]|3)+bsl| =)+ 04 —3),

%] ay= —b3)+05M ) — ¥ =)+ ¥ —3),
*x|c)= —dHM3)+dsM|H) — | =) +di¥| - 3).
The two latter states are deduced by time-reversal
operation on the former. We choose the sign plus or
minus, respectively, as j=15/2 modulus 2, or J=13/2
modulus 2. The orthogonality of these vectors requires
budi+bods= bsdy+b1ds,

and
bi*dibo*detbs*ds+bi*dy=0.

Then,
+(a| Vor|d)= (—bsdi+b:ds) 3| Vorl3)
+ (bsds—bods) 5[ Vorl|3)
+ (bsd1—b1ds) (5[ Vorl|3)
+ (—bada+b2d i) (3| Vorl3)
+ (—bods+b1do) (=3[ Vor[l$)
+ (—buds+bsd) 5l Vorl| —3).
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Using Eqgs. (9) and (10), we obtain

Au®={4| —bud1+b1ds|?
+ | —bods+-b1do—buds+ bsds | 2} [A (T35, ) T2
+{2|bsd1—b1ds] 24 2| —byda+body|
+ | —bodi+brdobads—bsds| 2} [A(T'5,,0) J2.

The expression of Apq? is deduced from that of Age? by
replacing b1, bs, bs, and by with b4*, —bs*, by*, and —b,*,
respectively.

We can now establish the angular variation of the
relaxation times in an actual case using Eq. (8), where
the values of (E;—E,) and (Ey—E,) can be obtained
from Ref. 2. We see that, as group theory predicts, two
terms, 4(T's;,¢) and A(Ts,,0), are sufficient to describe
the one-phonon process.

D. Two-Phonon Processes

The transition probability for the two-phonon process
between the Kramer’s conjugate states is not zero. The
return to equilibrium after the perturbation of the
populations is not so simple as it was for the direct
process. With the same notations as before, the G
operator of Eq. (7) has three nonzero eigenvalues, 75, 73,
and 74, from which we deduced the three relaxation
times,

1/7'1: —7s, 1/T2: 73, 1/7'3= —74.

Let us consider the case in which 27 is much larger
than the Zeeman splitting of the TI's levels. In these
conditions, we find

1/71=2Wap+Waa),
1/ 7e=Was+WaatWoatWa,

FLWas—W aa)*+ (W pa—W a,) T]H2,
1/ 73=Wap+WaoatWoot+Wa

—LWar—=Waa) (W pa—Wao) ¥ 112,

The expression for the transition probabilities are
given, for instance, in Ref. 5. Without going into detail,
we point out that, in addition to the Orbach process, the
Raman process can give three terms with different tem-
perature dependence, due to the fact that the ground
state is I's. The 7° and 7® terms, characteristic of a
Kramers ion, both appear since there exist, respectively,
far-excited and near-excited (T's itself) levels.!! The 77
term appears because, inside the I's quartet, the transi-
tion probabilities between non-Kramers-conjugate
levels are nonzero. It is clear that, in an actual case and
for a given temperature range, one or two of these
terms dominate and some of the transition probabilities
which appear in Eq. (11) can be neglected. In Sec. IV,
we shall give the results of the calculation for the case
of MgO:Er®". This calculation will be also greatly
simplified owing to relations analogous to (9) and (10)
between matrix elements.

(11)
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IV. APPLICATION TO MgO :Er®t

The ground level of the 4! configuration of Erd* is
#I152. In the octahedral-crystal field of MgO, the
degeneracy of this J=15/2 state is partially removed
(Fig. 2). Lea et al.2* have calculated the energies and
eigenfunctions of the crystalline levels as a function of
the parameter x characterizing the relative importance
of the fourth- and sixth-order terms of the crystalline
Hamiltonian. For J=15/2, the eigenfunctions of the
T's ground quartet depend on the x value, because I's
appears three times in the reduction of Dj5.. The
effect of the magnetic field is described by two param-
eters called P and Q by Ayant et al.? The values deduced
from the experimental spectra are given by?

P=4.927, 0=1.925, x=0.71.

From the quadratic Zeeman effect, Descamps and
Merle d’Aubigné have determined the scale of the
cubic-field splitting (W=1.66 cm™!; in the Lea Leask
and Wolf notation). Figure 2 gives the energies of the
various levels.

The eigenstates of the I's ground quartet for the
magnetic field parallel to (100) are given by?!

| £3) =ause| F4)Fase| F)tasp| £3)taue| 4,
I£3) =awse| F5) Farp| Fi)tae| £3)tas| £3);
a13/2=0.0270, as2=0.1845,
aze=—0.2309, a11/2=0.9549,
a152=0.0331,  @r2=0.4698,
a1js= —0.4456, ag2=0.7613.

With these values and the results of Sec. ITI, we
obtain

A (Psg,g) = [2551 V(Pag,Z)
+2.398V/(T's,,,4) — 7.094V (T'5,,6) X 102,
A(T5,,0)=[—4.742V (T'5,,2) —0.913V (T'5,,4)
+5.545V(T's,,6,4)+8.357V (T's,,6,B) X 10~2.

To estimate the V(T's,la), we shall use the spectro-
scopic results. As we have seen, the quadratic Zeeman
effect has given the scale of the cubic-field splitting, and
the parameter x has given the ratio between fourth-
order and sixth-order terms of the crystalline field.
Using the point-charge contribution of the nearest
neighbors only, we obtain?

16 W«

ee' (r*)
RS 718,F(4)’

2R, R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem.
Solids 23, 1381 (1962).

25 If one takes into account the contribution of all neighbors
until the fifth, these values are only affected by ~29, for the
fourth-order terms and 69, for the sixth-order terms.
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With the experimental values of W and x, we deduce

ee’ {(r*) ee' {r®)
=—1010 cm™! and = —360 cm™!. (12)
R

These values must be compared with

ee' (r*) ee' {r®)
=—500 cm™!, =—110cm™,
R5 R7

(13)

obtained with ¢/= —2¢, R=2.1 A (the lattice parameter
of pure MgO), and the values (r%)=1.126a,* and
(r%)=3.9784a,° for the free ion given by Freeman and
Watson.?6

The difference between the values (12) and (13) can
be explained by several effects. First, because theionic
radius of Er¥ (1.04A) is greater than that of
Mg?+ (0.78 &), and because Er*+ has an extra charge,
the value of R can be modified. The magnitude of this
modification has been calculated by Borg and Ray, and
the result shows that R is reduced by about 109.% This
correction gives a better agreement between (12) and
(13). Second, the values of (#*) in a solid can be different
from the values for the free ion. It was found, for
instance in PrCl;, that these values are increased many
times.? Those modifications are very sensitive to the
chemical bonding and must be evaluated for each
particular case.

( 2';12&) J. Freeman and R. E. Watson, Phys. Rev. 127, 2058
1962).

27 M. Borg and D. K. Ray, Phys. Rev. (to be published).

28 M. T. Hutchings and D. K. Ray, Proc. Phys. Soc. (London)
81, 663 (1963).
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The value ee’(r*)/R? cannot be deduced from known
experimental results. We shall use the value —2400
cm™ obtained with (r?)=0.6664,%2 R=2.14, and a
shielding coefficient a= 0.5 (see the discussion in Sec. V).
With this value, and the values (11) deduced from
experiments, we calculate the parameters V(T,/) taking
into account all the neighbors up to the fourth (see
Appendix). We obtain

V(I1y4)=—1.12X10% cm™,
V(T'14,6)= —0.335X10* cm™,
V(T'35,2)= —1.44X10% cm™,
V(I's4,4)=0.861X10* cm™,
V(T3,,6)= —0.435X10* cm™,
V(T4y,4)=0.708X10* cm™!,
V(T4,,6)= —0.220X10* cm™,
V(I's,,2) = —0.960X 10* cm™,
V(T55,4) =0.262X10* cm™?,
V(I'sp,6@) = —0.099 10* cm™1,
V(T'5,,60)= —0.290X 10* cm™,

(14)

TaBirE 1. Angular variation of theoretical and adjusted values
of the products ;7 (in units of 1073 sec’K).

[’} 0 10 20 25 45
() 1.24 1.20 1.16 1.08 0.98
(2T )t 8.5 7.7 5.9 5.1 3.6
(117)aaj 0.44 0.43 0.40 0.37 0.32
(727 aqj 2.2 2.07 1.76 1.59 1.27

and, from these values,

A(T3,,6)=150 cm™,
A(Ts5,,0)=120 cm™.

It is easy to verify that the transition probabilities
between Kramers’s conjugate states are negligible (they
are always 102 smaller than the transition probabilities
between non-Kramers’s conjugate states) and to calcu-
late the relaxation times with Egs. (8) using p=3.58 and
2=6.4X10% cm/sec. The first two rows of Table I give
the results obtained with the experimental value of the
resonant frequency (9100 MHz) and with the magnetic
field lying in a {100} plane at an angle 6 to a (100)
direction. When H is parallel to (111), we obtain

71 7=0.86X1072% sec’K ,
72T=1.6X1073 sec’K.

We have also calculated the relaxation times due to
Orbach and Raman processes taking into account the
I'; and the Ts? excited levels when H is parallel to
(100). For this calculation, we have not considered the
quadratic terms of the orbit-lattice Hamiltonian, but
we have included the linear terms which belong to I'y,
and T'y,. The various matrix elements which have to be
calculated are of the form

(Ts®m||Vor(Ta,8)||Tn,m”)
= D\zV(I‘a,2)+>\4V(I‘a,4)+)\s,,V(I‘,,,Ga)
ooV (Tay68) r(Tas) X 102, (15)

where Vor(T's,8) is the part of Vor corresponding to
the Bth component of the T', representation and where
ITa,m’) are the excited states. Table II gives the values
of the \; for the various terms. These values are calcu-
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lated with the following states?:

[Tz, £3)=0.6332]| F42)+0.5819| F5)
—0.4507| £2)—0.2393| £41),

[Ts®, +3)=0.0677| F42)+0.7534| F1)
—0.2400| 1) —0.6084 | +2),

[[Ts®, +5)=0.7731]| F12)—0.4643| F3)
+0.3995| +=3)+40.1644 | +=3L).

It is then possible, with the values given by (14), to
evaluate the transition probabilities for the various
two-phonon processes. We obtain

WoR=1.9X10-°T°, W4R=0.61X 107",
WaaR=4.7X10~7T7, WaR="7.9X10~"T",
W’baoz 1.9)( 1098—158/T+3>< 1096—202/7‘,
W a:0=0.4X 10%158/T 1.5 X 10%~202/ |
W a0 = 1.5X 10%158/74-2.93¢ 10%202/T
W 4,0 = 2.6 X 10% 155/ 4.8 X 10%202/T |
W paBO=W4BO=1.9X 1047,

where W;R, W0, and W;BO, are, respectively, the
transition probabilities between the 7 and j states due
to the Raman, Orbach, and Blume-Orbach!! processes.

With these values and Egs. (10), we have calculated
the relaxation times associated with each process. We
have found that, for temperatures below 55°K, the
Orbach process is dominant and the relaxation times
are of the order of 109X ¢~158/7, This result indicates
that the Orbach and the direct processes are of the same
order of magnitude for T~11°K.

V. EXPERIMENTS AND RESULTS

Figure 3 shows a block diagram of the experimental
apparatus which was constructed by Berthier.® It can
be used either to invert the populations by fast adiabatic
passage or to saturate the transitions.

The microwave frequency was about 9100 MHz for
all the measurements. The temperature of the sample
was varied in the 1.3-4.2°K range and was measured by
the vapour pressure at the surface of the liquid-helium
bath. The crystals were obtained from Semi-Elements
Inc. and are nominaly doped with 0.39, Er3*. The
recovery signals were nonexponential at any tempera-
ture, but they were always fitted by a sum of two
exponentials with equal weight, as the theory predicted:

S= So(e“/ﬂ—i- e“/”) , (1'1< 1'2) .

The cross relaxation was ruled out because (i) the
time constants of the two exponentials vary with the
temperature; (ii) the shortest time constant is un-
affected by a variation of the duration of the saturation,

2 E. Belorizky (private communication).
%Y. Berthier, thesis, Faculté des Sciences, Grenoble, 1966
(unpublished).
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Fi16. 4. Temperature dependence of the two relaxation times.

(iii) the relaxation times are short, reducing the in-
fluence of fast relaxing ion which could possibly be
present; and (iv) the angular variation follows the
theory very well.

The longer relaxation time was obtained by use of
the pulse-saturation technique which gives a better
stability of the base line. In the tail of the recovery
signal, the variation due to the first exponential is
negligible and the points fall very well on a straight
line on a semilog plot. The slope of this line is 75. The
shorter time was deduced from measurements with fast
adiabatic passage which gives a signal about twice as
large. Just after the inversion, the points of the decay
curve fall on a straight line on a semi-log plot. The
value of 7 can easily be deduced from the slope (but is
not identical to it) of this straight line and from the
72 value.?!

Figure 4 shows the temperature variation of r; and
72 when H is parallel to (100). These results are fitted by

7oT=(2.240.1) X 1078 sec’K ,
71T = (0.44=-0.04) X 10~ sec’K .

TasLE II. Values of the \; coefficients of Eq. (15).

5@, m Tnyme Te, B8 A2 A Aéa Neb
TsW, —5 Iy, 3 Ty, & 2.01 334 —1.75 0
s®, 3 I, % Iy,0 0 —2.03 —2.75 0
Ts®, —3 Iy, 3 s, 0 —4.73 4.85 2.83 5.78
T®, 3 Is®, 3 Ty 0 0.60 —3.68 0
rs®, § Is®, 3 T, 0 1.86 332 —0.55 0
rs®, § Irs®, % T'y,0 0 2.36 5.98 0
rs®, 3 Is®, § Iy, 0 0 —3.68 0.65 0
Ts®, —3 Ts@, % Is, 0  7.61 205 —031 —9.29
Ts®, § Ts®, —1 Ty, 0 449 1.99 —6.71 —2.62

8 C. Jacolin, thesis, Faculté des Sciences,

Grenoble, 1968
(unpublished).
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Fic. 5. Experimental angular variation of the products ;7. The
magnetic field lies in a {1 0 0} plane and 6 is the angle between H
and (1 0 0). The solid lines correspond to the theoretical results,
the values of the parameters 4 (I'sy,£) and A4 (T's,,0) being deter-
Enined) from the measured values of 71 and 7, for H parallel to

100).

The angular variation of the products 7,77 when H
lies in a {100} plane and makes an angle § with (100)
is shown on Fig. 5.

When H is parallel to (111), it is not possible to
distinguish between 7, and 7.. We can only conclude
that 777 Z0.6X 103 sec °K and 7.750.65X 103 sec °K.

In order to compare the theoretical and experimental
angular variations, we have used the experimental
values of 7;7 for H parallel to (100) to determine
A(Ts,,¢) and A (T's,,0), and we have found

A(T5,,0)=24046 cm™,
A(T's,8)= 230423 cm™

We have calculated the products 7,7 for other field
directions. The results are given in rows 3 and 4 of
Table I and are represented by the curve on Fig. 5.
For H parallel to (111), we find 7,7=0.3)X107? sec °K
and 757=0.8X 1073 sec °K.

The experimental results confirm some theoretical
conclusions: (i) The one-phonon process is dominant in
the investigated temperature range; (ii) the angular
variation follows the theoretical predictions very well;
and (iii) the experimental and theoretical ratios be-
tween the long- and the short-relaxation times are
comparable. For H parallel to (100,

T2 T2
(—) =5.0 and (——) ~6.8.
T1/ exp T1/ th

The agreement between the absolute values of the
relaxation times is not very good; there is a ratio of 4,
with the theoretical relaxation rate smaller than the
experimental one. The cross relaxation has already been
ruled out as a possibility for the discrepancy. We also
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reject the possibility that the value of the average sound
velocity (to which the theoretical results depend sensi-
tively) is not correct: The value adopted comes from a
sophisticated averaging on the 13 special directions of
cubic symmetry?"%? and must be correct. Also, we have
used the static values of e¢’(r")/R"+! (n=4, 6) deduced
from spectroscopic measurements, and it is not im-
possible, although highly unlikely, that the dynamic
values are different.

We feel that the major part of the discrepancy
probably comes from the second-order term for which
we have taken R=2.1 A (the unperturbed lattice value)
and a=0.5. We have already indicated that the modi-
fication of the value of R, calculated in Ref. 27, is about
10%. The value of a=0.5 is not precise and was chosen
from the results obtained by Barnes et al.® for Tm3*
(the neighbor of Er in the periodic table). They have
found a=0.7 and a= 0.4, respectively, for TmES and
Tm,O3. More information would be necessary to deter-
mine the correct values of these factors. In particular,
the determination of the V(I's,/,a) themselves would be
of great interest. The relaxation-time measurements
inside the ground quartet alone cannot give these
values. Measurements of the Orbach process would
have given complementary information. But, as we
have seen in Sec. IV, for this purpose it would be
necessary to go above 11°K, a temperature range where
the relaxation time is too short to be accurately mea-
sured with our apparatus.

When one looks into details of the calculation of the
angular variation, one sees that the A,.? and Azq? are
almost constant in the angular range investigated and
that the anisotropy comes from the anisotropy of the
spectrum [via the (E;—E,)/#% terms in Eq. (8)]. The
small variation of the A% and As,? is a consequence of
the near equality of 4(T's,,£) and 4 (T's,,0) which is not
a specific property of the I's quartet.

VI. CONCLUSION

In this paper, we have shown that, by simple group
theoretical considerations and without the necessity of
finding normal modes of the clusters, it is possible to get
the formal expression for the orbit-lattice Hamiltonian
in the case of rare-earth ions. With this description, the
calculation of the contribution of several shells of
neighbors can easily be made. We have particularized
the expression for O symmetry, but it is very easy to
apply these results to any symmetry group. The method
developed in the Appendix will permit the treatment of
some problems where the determination of the cluster
normal modes is too difficult. We have also shown that
all the matrix elements of the orbit-lattice interaction
can be related to usual tabulated matrix elements, thus,
simplifying the calculations greatly.

 J. Rosset, Ph.D. Thesis, Faculté des Sciences, Grenoble, 1968
(unpubhshed)

3 R. G. Barnes, R. L. Mossbauer, E. Kankelelt and J. M.
Pointdexter, Phys Rev. 136, A175 (1964)
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The special case of a T's quarter as a ground state was
treated and compared to the experimental results of
relaxation-time measurements. The two relaxation
times predicted by the theory were clearly observed,
and their ratio is nearly equal to the theoretical one. The
observed angular variation is also very well explained.
There is, however, a factor of 4 difference between
theoretical and experimental values, and some com-
plementary experiments on the MgO: Er$t system will
be necessary to explain this discrepancy.
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APPENDIX: CALCULATION OF
V(C4l,a) PARAMETERS

The energy of an electron at a point r(r,0,¢) due to
charges ¢; at Ri(R;,0;,¢;) is given by
© 7’l 47['

V(r}9) (P) = _Z €qi Z Z
i =0 R+ m,e 2141

XZin' (05,00 Z1m" (0, 9) ,
where Z;,,4(6,¢) are the tesseral harmonics defined as
1=0: Z'=YP,
Zim= (AN [V "+ (=)"Y "],
Ziw*=G/N2)[Yim—(=)"Ym].
We write Eq. (A1) as

V(r,@,go) = Z 7Z'Ylthlmt(0y‘P)1
l,m,t

2 M,

(A1)

t=c:

t=s:

(A2)
with

,Y[mt:_

dmeq; Zin'(0:,0:)
T 2041 R

Only the v,;,,* depend on the positions of the charges.
The parameters V(I's,l,a) are defined, from Egs. (4)
and (A2), by

14 Pml) C Pml) ;6 =[—_—:|
% ( a) ( ‘ ) a”(Fa;ﬁ) eq

a')’lmt
-5 rlzmtw,@)[——] . (A3)
2 00T L

As the C(T'a,/,a,8) are linear combinations of spherical
harmonics, they can be expressed in terms of tesseral
harmonics. The values of the V(T'4,/,a) are then found
by equating the coefficients of the tesseral harmonics in
Eq. (A3).

3 M. T. Hutchings, in Solid State Physics, edited by F. Seitz
and D. Turnbull (Academic Press Inc., New York, 1964), Vol. 16,
p. 227.
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To calculate the derivatives 9yim’/d0(I's,8), one

writes the v;,! in terms of Cartesian coordinates of the
position of the charge

'YlmtzAlmt Z flmt(Xii YuZz) =Almt Z fiy
and one uses the formula

6‘)’ lmt
90(T'a,8)

00y

oy af; 0X;

uz,'y (9)(«h aauv aU(Pa»B)

dfs 0Z;

OY: 004y 06(Ta)  0Z: d0y 00(Ta8)

004y

where the .6X i/ 804, are obtained from the definition of
ou» given in Eq. (1), and the doy,/90(T',,8) are easily
deduced, for each symmetry group, from the definition

of the ¢(T's,8) themselves. For the O, group, the o(T',,8)
are defined as!?

o(T19)=e(T'1g) = (1/V2)(exat€yyte.2)
U(P&ng) = f(P3y;E) = (\/3/2) (fm“fyy) ’
a(T'3,,0) = €(I'3,,0) = 3(2es—€ro—eyy);

o(Tasg,1) = —(3/2)(3) [0y =02y Fi(020—022) ],
"(F4gao) = (7'\/3/2) (0'11/ —0ya) ’

G'(I“iy) - 1) = (1/2) (%) 1/2[0'1/2‘0'21/“7:@'2;':_0';2)];
0(T54,1) = €(T5,,1) = —i(3)V2(ey+tess) s
0(I's54,0) = €(T'54,0) =1V3 ey, ,

o(Tsg, —1)=¢(Ts5, —1)=1(3)"*(e,.—1ss).

As an illustration, we calculate V(I's,,6) in the case
of Oy group. From tables of Ref. 19, we find

C(T'3,6,0)=2(m/ 13)'*[(TV/%/ 2V2) Zoo*~+- (1/2V2) Zos°]..

From Eq. (A3), we obtain

Ta\ 12 Fve
V(F3a;6)<_"> =76[—’ﬁ0—] .
26 aU(P39:0) eq

From Ref. 34, and with the same charge ¢’ for all the
neighboring ions of the same shell,

ee' [ m\12
Yoo =— ——(—‘)
8 \13

23128—315Z *R*+105Z 2R ,A*—5R 5
X ——
) RiIS
=Ade’ 2 fi-
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We then calculate

afs (231)(132:5)
90X, _[_ R

(315)(11Z %)

Ri13
(105)(9Z2)  5X7
— —]XFGiXi,
Rill RiQ

df;
aY;

aa—Zfi =G:Z~+[(231)(6Z:*) —(315)(4Z:°R ?)

i

=GV,

A
+(105)(2RH}—.
Ri13
We have, in addition,
€.z
9e(Tsp,0)

Oz Jdeyy

0¢(T'35,0)  9e(T'sq,0)
aY;

)

=X,~°,

afxx
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so that
3760
A S 2 (2z2—X 2= TG
9e(T'3,,0) B
272
+ 3[(231)(621'4)_(315)(4Zi2Ri2)+(105)(2Ri4)] .

R
For sixfold coordination, one obtains easily
V(T'34,6)=7(7/2)2(ee’(r®)/R7).
For eightfold coordination,
V(Ts,,6) = [(16)(14)72/9 ] (e€ )/ RT) .

For 12 equivalent neighbors (the second neighbors
in CaF, and MgO structures, for instance),

V(I's,,6) = [(49)(14)"/%/16 J(e€'(r*)/ R").

The values of the V(T',,l,a) for MgO structure ured
in this paper are, taking into account nearest neighboss
up to the fourth,

V(T1,,4) = 5(14/3)12(ee’ (r*)/ RO [1+(1/8V2) — (8/81V3) — (1/32)],

V(T1,,6) = 7(e€’(%)/ RO [ 1+ (13/32v2)+ (64/729V3) — (1/128)],

V(T's0,2) = 6(ee(r*)/R¥)[1+ (1/4vV2) — (8/27V3) — (1/8) ],

V(Tsg,4) = —5(5/3)1%(ee’ (r*)/R%)[ 14 (37/80v2)+ (32/405V3) — (1/32) ],

V(Ts0,6) = 7(7/2)V2(ee (%) R 1~ (7/64v2)+ (32/1701V3) — (1/128)T;

V(Tsg,4) = —2(35/3)1%(ee’ (r*)/ R¥)[ 14 (1/8V2) — (8/81¥3) — (1/32) ],

V(T40,6) = 211/2(ee (#9)/ RT)[ 1+ (13/32V2)+ (64/729V3) — (1/128) T;

V(Ts50,2) = 4(ee' (r¥)/ R*)[1+4(1/4V2) — (8/27V3) — (1/8)],

V(Ts04) = —2(5/3) 2(ee (r*)/R%)[1+ (5/4V2)+ (40/81V3) — (1/32) ],
V(T's0,6,0) = 5(35/2)/2(ee’ (r*)/R7)[1+(13/32V2)+ (64/729v3) — (1/128) ],
V(Ts0y6,8) = 3(77/2)V%(e€! (#5)/ RT)[1 — (17/96V2)+ (64/656 1V3) — (1/128) ;

where, in the brackets, the ith term is the contribution of the ith shell and ¢’ is the effective charge of

the oxygen'ions.



