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Self-Consistent Phonons and the Coupled Electron-Phonon System
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Keating s recent dielectric-screening theory of metallic and nonmetallic crystals is extended to anharmonic
systems within the context of the lowest-order self-consistent phonon approximation.

I. INTRODUCTION

'N a recent paper, Keating' employed many-body
- ~ perturbation theory to provide a unified formulation
of the lattice-vibration problem in metallic and non-
metallic crystals within the context of the harmonic
approximation. This treatment expresses the phonon
excitation spectrum exactly in terms of a properly
defined dielectric-screening matrix for the dressed
electrons, no assumption being made about adiabaticity.
More recently, Pick, Cohen, and Martin' obtained
similar, though less general, ' results —again, within the
context of the harmonic approximation. Since both of
the above-mentioned treatments restrict themselves to
the case of small atomic displacements; it is of interest
to ask how these results might be generalized to highly
anharmonic systems, especially in light of the fact that
significant advances have been made in recent years in
the treatment of such systems. We refer here to the
so-called self-consistent phonon theories. 4 For those
systems for which the interaction energy is expressible
in terms of a well-defined effective interionic potential
depending only on the instantaneous position of the
ions, the application of these self-consistent techniques
is straightforward. However, for a rigorous treatment
of the coupled electron-phonon system, one must from
the very beginning include the electronic degrees of
freedom.

The present work extends Keating's results to include
anharmonic contributions in the lowest-order self-
consistent phonon approximation. The technique em-

ployed is a functional-derivative Green's-function ap-
proach analogous to that used by Baym' in his early
work on the coupled electron-phonon system. In the
Sec. II, we derive an expression for the phonon prop-
agator in the lowest-order self-consistent phonon
theory, arriving at a result which bears many similarities
to Keating's expression for the harmonic phonon pro-

*Work supported by the U. S. Atomic Energy Commission.' P. N. Keating, Phys. Rev. 175, 1171 (1968).
'Robert M. Pick, Morrel H. Cohen, and Richard M. Martin,

Phys. Rev. (to be published).' Less general in the sense that the inverse screening matrix of
Pick, Cohen, and Martin does not include contributions arising
from the renormalization of the electronic spectrum via phonon-
exchange contributions and other interactions with the phonon
field. Also, Pick et al. work within the adiabatic approximation.' N. Boccara and G. Sarma, Physics 1, 219 (1965);P. Choquard,
The Anharmoeic Crystal (W. A. Benjamin, Inc. , New York, 1967);
T. R. Koehler, Phys. Rev. Letters 17, 89 (1966); H. Horner, Z.
Physik 205, 72 (1967).' G. Baym, Ann. Phys. (N. Y.) 14, 1 (1961).

pagator. Crucial to the derivation of our result is the
establishment of an equilibrium Quctuation theorem
from which the sum rules of Keating and of Pick et att.

follow as special cases. '
In order to avoid a proliferation of indices in what

follows, we confine ourselves to the case of a monatomic
lattice. The extension to more than one atom per unit
cell is straightforward.

II. THEORY

We begin with the total Hamiltonian of the system

H =H~+Hr, +HEI. ,
where

2m
d'r (Vgt(rt)) (Vf(rt))

+,'e' d'ri d'r-s Pt(rit)Pt(rst)
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—Q(r,t)f(r, t) (1)

H=Q [Pt(t)j'+',' Q (Ze)'V(x-i(t) —Xp(t)),
~ 2M

Hsr, Ze'g dsr p, (r—t—)tt (r —Xi(t)).

All operators are in the Heisenberg representation. P(rt)
is the field operator for the electrons and Xi(t), Pi(t) are
the position and momentum operators for the ion
associated with lattice site l. p,(rt)= P(rt)it(rt) is the-
electron-density operator. Finally, V(X&—Xi ) repre-
sents the ion-ion interaction and g(r ri) is the—effective
interaction between an electron at r and an ion core
at 1. The equations of motion for P(rt), Xi(t) are easily
written. ' Thus, we proceed immediately to the equations
satisfied by the appropriate interaction-picture imagi-

' See Ref. 1, Eq. (17).When one imposes the condition of charge
neutrality, the "acoustic" sum rule of Pick et al. follows from
Keating's result.
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nary-time Green's functions, defined as

1&LS(P)~( t)~ ("t')).)
G(rt, r't') —=-

(Ls(p)),&

(Ls(p)x,.(t)]+)
dt (t)=-

(Ls(p)]+)

. ((Ls(p)x (t)& "(t'))+)
d«p-'(«') -=(-')I

(Ls(p)],)
dp(t)d—i "p'))

V,(11')=—
~
ri —ri'

~
'b(t i—t i'),

Q (11)G(11')—= ie' V, (11)LB/b U(1))G(11'),

m(1i) d(i 1')=Lb/u(1'))Z(1) .

Finally,

(2) Kg,"(tr) = (Ze)'

X((LS(p)V4 )V(X,,(t,) Xr(t,)))+» Ze d r'

&&&(t:S(p)p.(r't )~ "4(r' —X (t ))]+)&
Here ( .]+ denotes the time-ordering operation in the
imaginary time interval LO, iP]—and ( ) denotes an
equilibrium ensemble average with respect to B.
Further,

dt Q Xp(t) Jp(t)

ie-
+ dt d'r p(rt) U(rt)

~

r0

where we have introduced the external fields Ji (t), and
U(rt).

Note that the external scalar potential U(rt) couples
to the total charge density

V
p(rt) —=p,(rt)+Z P —p(r —X~(t)) .

& 4m

The equations of motion for G, d&, d«
'

may be
written symbolically as

LGp '(1l) —U(11)—Q (11)]G(11')= b(1 —1'),
~'(")'(')= (')+~('»

LD '(11)—M(11))d(11')= b(1 —1') .

In the above, we employed the summation convention
for repeated indices. For electron coordinates, 1 stands
for (ri, ti) and for lattice coordinates, 1 stands for
(oi,lr, ti). r-space integrations are taken over all space
and time integrations extend from 0 to —ip. Further,
we have defined

8 V' ')
Gp

—'(11')—= i + ~b(ti —t,') b(ri —ri ),
at, 2m)

82
D-'(11')—= —M 8(ti—ti') b(, , (, ,

8/12

U(11')= U(1)+eP V, (11)L—iG(11+)

Z
+—Q (Vr'&(ri —x((tr))&) b(1 —1'),

4x'

+Z d'r' U(r'ti)

V~2

X 5 V), ' r' —X) /), 5
4x

and we have introduced the notation

&((S(p)A(rt)]+)) for (Ls(p)A(rt))+&/(/S(p)5+)

Our goal at this point is to calculate the phonon self-

energy function 3f(11') in a low-order approximation
which treats both the lattice and the electronic spec-
trum self-consistently, yet makes no assumption about
the size of the atomic displacements. This is accom-
plished in two steps. First, we assume that in lowest-
order one need keep only those correlations between
electronic and lattice motion which serve to dress the
electronic spectrum. Formally, this is the statement that

«(s(p),.(.t)q(. -X,, (t ))),»
= &(Ls(p)p.(«))+»(&Ls(p)4(r' —x (t'))] » (6)

Secondly, we assume that in dealing with functionals of
the lattice operators X&(t), one may make an expansion
in terms of semi-invariants, 7 keeping only terms up to
second order in such an expansion. Thus, for example,

«Ls(p)y( —x,(t))],)&

=((Ls(p) exp( —x,(t) v)],»&(r)

—expL —dt(t) V+ ,'i P d(p"-(t,t)V"V"]y(r),

and

«Ls(p) v(x, (t) —x,'(t))),)&

=lim exp((d~(t) —di'(t)) V+ 'i P fd« '(—t,t)

+d& i -'(t, t) —2d&p" (t,t)]V-V"'}V(r) .

' H. Horner, Z. Physik 205, 72 (1967).
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Employing (6) and (7) in (5) we find that

Ep(t) =(Ze)' p «(S(p)Vi'Vi"'V(Xi(t) —Xp (t))1+»(d~i"' '(t, t') —d~-i"'"(t,t')j
eJt "(t')

—Ze' d'r' «Ls(p) Vi'p(r' —X~(t))j+&& &&I S(p)p, (r't) $+&&
D p"(t')

+«(S(p),(r't)j )) p «LS(p)V V "p& ' —X (t))j ))d ~ ""(t,t')

+Z d'r' U(r't) Q S(p)Vt V)
"

0 II

—
ply

y(r' —X,(t))
4x

dt)"'" t, t' . 8

Following Baym, we evaluate

Lb/~J(2) j&(LS(P)t.(1)j &&

as

Thus, we have the alternative definition

E(11')= 8(1—1')+e'V, (11)

where

V. '(11)L~(i —1')—E(11')jL~/h~(2) jC'(1') (9)

C'(1)—=Z Z «P(P)4& —X (t ))j+)&

Xl «(S(p)p, (1)]+» ~, (11a)
6U(1')

which, within the context of the approximation (6),
reduces to

E(ii') = SU,(1)/SU(i'),

U.(1)—= U(1)+e'V.(11)(&LS(P)p.(1)3+».

(10b)

V (11')=——(V,'/4~) S(r,—r,') S(t,—t,').
E(11') is defined by the integral equation

E(11')=8(1—1')+e'V, (11)

r
Xl «(S(p),.(i)]+» E(i'1'). (10a)

sU(i')

This last is equivalent to

E(11')= b(1—1')+e' V,(11)(—i)
XL«LS(P)p.(1)p, (1')j ))
—«Ls(P) p (1)j+»«P'(P)t. (1')j+»j (iib)

(10b) defines E(11') as the response of the electrons
alone to a scalar field which couples to both the elec-
trons and ions. With all external fields set equal to zero,
E may be identified as the inverse screening matrix for
the electron system. Furthermore, (11b) relates E to
the equilibrium electron density-density correlation
function.

We now employ the approximation (7) to explicitly
carry out the functional differentiation in (9). Thus,

. . .(«[S(p)p, (r,t,)$+&)= d I' dt'~ — ~L&(r, —r')&(t, —t') —E(r,t„r t')j
8Ji,"(t2)

XZ P «(S(P)V,,"@( ' —X,, (t'))j,»d, ,„".(t,t,).
This last result, in conjunction with (8), provides us with sufficient information to construct 3f(1,1 ) in lowest
order. Turning o6 the external fields and introducing the time-temperature Fourier-series expansion

iViv' '(t t') = —g e—'"&' "&Mtt '"(z„), s„=xv/( ip), i =ev—en integer,
( tp) "—

we 6nd that

M(p-'(e„) =(Ze)'(8(p Q &VPVi" V(Xi—X(-)&—&Vi'Vi" V(Xi—Xp)&)

+Ze' d'r'&V'p, (r'))&V 'P(r' —X~)&An —(Ze)' d'r' d'r"&V g(r' Xi))—
V&2

X~ — ~L5(r' —r")—E(r',r",s„))&V"P(r"—Xi.)). (13)
4 I
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E(r', r",s„) is defined analogously to M« ~~'(s„). We may further rewrite (13) by introducing the equilibrium-
Quctuation theorem established in the Appendix. Thus,

Mip-'(s„) =(Ze)'(()ip P &Vi'Vi 'V(X(—Xp ))—&7'i 7'i"V(Xi—Xv)))
~II

g/2

+(Ze)' ()ii. lim d'r' d'r" (P ((7'(())(r' —Xi )))l — —lLh(r' —r") E—(r', r", co+i0+)j
co ~p gI r

V/2

X(1«"P(r"—X«)) — d'«' d'«"(1«'P(r' —Xi))(— ~[5(r' —r")—K(r', r",r,)](V"P(r"—X«)) . (14)
4~i

P 8
&p,(r))„=(p,(r))—I dpi e"" —H(N) e—'"

0 BQ plim Q M« '(co+i0+) =0
CX) ~0

As a consequence of our using the relation (A7) we see obtaining
that the translational-invariance condition

is trivially satis6ed.

III. DISCUSSION
Also, however,

X[p,(r) —(p,(r))])+O(p'). (A1)

Result (14) for the phonon self-energy represents the
lowest-order self-consistent phonon approximation for
the coupled electron-phonon system. A complete self-
consistent solution requires what we evaluate the
"smeared" ionic charge density (Z/4~) P( &')('P(r —Xi)&

using (7) and then proceed to solve (4) for the electron
Green's function. This last then permits the evaluation
of the kernel in the integral Eq. (10a) for the inverse
screening matrix. Actual numerical calculations prove
to be dificult, even in lowest order, although some
degree of success has been achieved in certian cases. '

We note two features of result (14). The bare
Coulomb interaction between cores has been replaced
by a "smeared" Coulomb interaction. Furthermore,
the result of averaging the electron-phonon interaction

Pi (t)(r Xi) is—to modulate the form factor ()I)(q+K) by
a Debye-%aller —like factor in reciprocal space.

Finally, we point out that Keating's sum rule follows
from the equilibrium fluctuation theorem (generalized
to more than one atom per unit cell) established
in the Appendix if we specialize to the harmonic
approximation.

APPENDIX

& .( )&.= &
'"" .( )

=(.( )&+ &LA ( )j&+O( '& (A3)

Equating the coeKcients of I in (A2) and (A3) yields
the equilibrium Quctuation theorem

P -()
—z&LA, p, (r))& = dpi e " —H(u)

Bs —p

X [p «(«)r(p-(rr))].) —bW. )

H(u) =H gd'r' (Ze')
l
p—,(r'+u) —p, (r'))P(r' —Xi) .

(A4) now yields the relation

Equating higher powers of I in the expansions of (A2)
and (A3) would yield higher-order fluctuation theorems.

Let us consider the particular case where A =I', the
total Inomentum operator for the system of electrons.
The unitary transformation is then the Gnite translation
operator e' ~ and

&Vp, (r)) = d'r'(Ze')g dX
Ke consider the following equilibrium-ensemble

average of the electron-density operator p, (r):
X f &P"4 (r' —Xi(—i~))jp (r' —~~)P.(r)&

&p.(r)&-=Trl:e '"("]p.(r)hlTrl e '"'"'j,
where

H(N) =e'""He'"~ =H —i—N(tA, H j+O(N') .
(A1)

—&(~'4( ' —X)) .( ')&( ( )&}

d'r'(Ze') Q ('7'y(r' —Xi)&

Here H is the Harniltonian defined in (1), and e'""
is a unitary transformation dered in terms of the as
yet unspecihed Hermitian operator A. I is an arbitrary
real parameter. We expand (A1) to first order in I,

' N. S. Gillis, Phys. Rev. Letters 22, 1251 (1969).

X d&L&p.(r', -~] )p.(r) &

(P (r )&&P (r))J ~ (A3)
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The last equality above follows from functionally
differentiating the relation (6) with respect to U(rt).
From (A5), it follows immediately that

(Vp (r)&(V4'(r X ))

= (Ze') d'r d'r'(Vg(r —Xi))

X d~np. (", -'~)p.()&-(p.("»(p.()n

L(r, r', s) is defined in terms of the time-ordered density-
density correlation function as

i ( ((—p,(rt)p, (r't')]+& —(p,(r))(p,(r') ))

P e ~z„(t t')I —
(z z~ s ) .

( ~P-) "

But from (11b), we have that

( '7'q
I

——~LE(r, r', s,) 5(r —r') j—=e'L(r, r', s,) .

Hence, (A6) finally becomes
X p (v y(r' —X,.)),

which may be further rewritten as
d'r(v p, (r) )(VP(r —Xi))

d'r(v p, (r))(vy(r X,)&— = —Z lim d'r dr'( Vg(r —Xi))

= —(Ze') lim d'r d'r'(VP(r Xi)&L(r', —r, ~+iO+)
co~0

~Z«~("-X» (A6)

t' v"
[LX(x', r, ~+iO+) —B(r—r') j4~)

XQ (V'p(r' —Xp)&. (A7)


