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Boundary Conditions for the Relativistic Kronig-Penney Model*
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Relativistic corrections to the electronic states of heavy atomic crystals are investigated by solving the
Dirac equation for the Kronig-Penney potential, subject to certain boundary conditions, which diBer from
those used in earlier studies. These new boundary conditions enable the mathematics to be simplided con-
siderably, without obscuring any of the relativistic e8ects found previously. Comparisons are made between
the results obtained using the difterent sets of boundary conditions.

where e... are the x- and s-component Pauli spin
matrices, viz. ,

I. INTRODUCTION

A RELATIVISTIC theory of heavy atomic solids'
and their surfaces' ' has been formulated recently

on the basis of the Kronig-Penney (KP) ' model. The
behavior of relativistic electrons in these systems was
studied by solving the Dirac equation, subject to
certain boundary conditions, which involved both com-
ponents of the two-component spinor wave functions.
Such boundary conditions required a further restric-
tion, so that the correct nonrelativistic (NR) limit was
obtained for the KP relation. Moreover, in dealing with
the surface states, the analysis was found to be rather
complicated.

From the relativistic point of view, even the highest
electronic velocity in solid state physics is still suKci-
ently low to justify the assumption that the small
component of the spinor is of much less importance
than the large one. Thus, in the present paper, instead
of matching both components of the spinor, only the
large component and its derivative are matched across
the potential discontinuity. The advantages of adopting
these new boundary conditions are: (1) removal of the
additional restriction in obtaining NR limit of the KP
relation and (2) simplification of the mathematics in
analysing the surface-state energy and existence con-
dition, without loosing the previous useful classification
of surface states. Such a procedure is not only a useful
one, but also a very good approximation, as shown in
the Appendix. Finally, unlike the Glasser and Davison
(GD)' 8-matrix approach, a more straightforward tech-
nique is used here to obtain the KP relation.
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Using the two-component spinor

=(:)
Eq. (1) becomes

ihcgx'= (e—V)gs, e=E mpc-'
ihcgs' ——L(e—V)+2mpc ]gx.

(4)

(5)

Decoupling (4) and (5) for a constant potential V gives

$1,2 pu xp1, 2 y (6)
where

p,s= (e—V)L(e—V)+2mpc j/hsc

In matrix form, the plane-wave solution of (6) is

(Px
[e'"*+] e-'".

kxxsj &Ps

in which, because of the coupling between the compo-
nent equations (4) and (5),

xxx= —Vxxs ~ Px=vPs,
where

y = (e—V)/hcp, .
For a step-potential discontinuity at x=o, between

the regions II and III, GD chose the continuity
condition

II. CONTINUITY CONDITIONS FOR
DIRAC EQUATION

The two-component time-independent Dirac eq
tion for the linear potential V(x) is' ' '

ihcxr, P' mpc'xr, P = (E——V) P,
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fixx(0) = fixxx(o), (11)
which amounts to matching the two components of

(1) the spinor across the discontinuity. From (4) and (5),
it follows that the matt-, hieg of the first and second
components in (11), respectively, leads to a relation
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dfzzx"'

@=Q dg, ~=Q

(13)

can now be made for the continuity conditions.

III. BULK RELATIVISTIC KRONIG-PENNEY
MODEL

From Bloch's theoreme

between the derivatives of the second and first com-

ponents in the two regions, i.e., Pzz'(0) 0 Pxzz (0). Thus,
the matching of the spinor components results in a
nonmatching of their slopes.

In solid state physics, where s/c((1, p& (large com-

ponent) ))Px (small component). Hence, the coupling
between the large and small components in (4) and

(5) is no longer of great importance, so the main
interest becomes the solving of (6) for the large com-

ponent only. The choice

(12)

Inserting (15) in (16), using (20) yields

Pxx ~xzzzxx (22)

yxx
—(1 —e &(P Pxxr+)/(e (s+Pxr)+ —1) (23)

Hence, because of (14), the large component wave
function in the unit cell 0&x& u is

4zx =(zxz{e""*+Xxxe ""*). (24)

A. Energy Expression

In the vacuum region (x(0), the large component
solution to the Dirac equation is'3

IV. SURFACE RELATIVISTIC KRONIG-
PENNEY MODEL

The surface effect on the KP model is described by
terminating the potential at g =0 and taking the
potential for @&0 to be constant (Vz).

P (x)=u(x) e'&*

and (8), it follows that

((zx /Pr
u (~) —

~

e~(n~ y) ~+
~

e
—((pe+11)~—

k(zs (ps

4x(*)=Pe'"*

At the surface, the continuity conditions are

4 (0)=4 (o), 4 '(0)=A'(o)
(15)

which lead to

(25)

(26)

p being the wave number. For the KP model, 4 which
consists of a linear array of rectangular barriers of
height V, width b, and lattice constant (a+b), the
continuity conditions for the large component are

uzz(0) =uzzz(0), uzz( —b) = uxn(a), (16)

uzz (0)=uzzz (0), uzz (—b)=uzzz (a), (1'7)

where the large component subscript 2 has been dropped
for convenience. Substituting (15) into (16) and (1'7)

and solving the resulting determinantal equation for
the coefficients gives the relativistic KP (RKP) relation

Lcf. GD Eq. (46)j

cosrx(a+b) = cospzza cospzzzb —o sinprxa sinpzrxb, (18)

where

Pz (1+~xx)=Pn (1 l(R) ~

From (25) and (27) comes
sin Pzx

e'" =cos$zx+i$r
err

For surface states, ~

4=psa.

p=n7(/a+it, -t real)0

so that (21) becomes
sin err

(—1)"cosht a=cos(rz+pxx
6r

(27)

(28)

(29)

(3o)

(31)

s {Pzz +Pzzz ) ~ (19)
U'sing (28) and (31) gives the energy expression

5Ix cot$xx '{$xx $x )/2pxz —z$x,Carrying out the 5-potential transformation, subject
to the limiting value Lcf. GD Eq. (48)j

(32)

lim -', pxxxsab = Prz, —
b —+ 0

PIXY ~ ~ B. Existence Condition

Eq. (18) simplifies to With the aid of (30), subtracting (28) from (31)
(21) yieldscosrxa= cospzza+ pxz (»npxza/pxxa) ~

sinbx
(—1)"sinhrxa ={pxz

—igx)In the NR limit, (18) and (21) become the familiar KP
relation.

(33)

which, in the NR case, reduces to the mell-known Tamm

(20) relation. '

s F. Bloch, Z. Physi 52, 555 (1928). ~ I. Tamm, Z. Physik '76, S49 (1932).
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Since the RKP relation has exactly the same form as
the nonrelativistic KP (NRKP) relation, the (23+1)th
band gap occurs in the range m. & $zz& (23+1)3r. In any
band gap)

so

sign = ~ )

(zz
(34)

Pxx& 36

from (33). In Tamm's notation, "

q2= 2m a'Vz/h', (p2= 2mpa'p/h2,

hence, (35) becomes

p & {q'—$o'}'"L1—~'{9'—ko'}3'"

via (7) and (29), with

2t =h/2mpac.

(35)

(36)

(37)

(38)

In the NR limit, (37) reduces to Tamm's condition

p& {v'—~"}"'.

V. DISCUSSION

(39)

In the relativistic formulation, the upper band edges
are given by

When the left-hand side is positive, i.e.,

pxx2& {g2 —&p'}, (45)

(44) is always satisfied, since the right-hand side is
always negative. Because (45) is analogous to the NR
Tamm condition (40), the surface state satisfying it is
called a relativistic Tamm state (RTS). In addition,
it is also possible for (45) to be satisfied when the
left-hand side is negatizie, i.e., when (45) is violated.
Since such a possibility arises only as a result of the
Dirac formulation, the surface state satisfying

(46)

is known as a Dirac surface state (DSS).
The classi6cation of surface states, for heavy atomic

solids, into RTS and DSS was 6rst used in a previous
paper. ' However, contrary to that work, where both
components of the spinor were considered, the present
treatment is concerned with the large component only.
In this way, a much simpler analysis was possible,
without any loss of the relativistic effect in solid state
physics.
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$zz = rxpr, (40)
APPENDIX

which in a first-order relativistic (IR) approximation
becomes' '

gp= 237r 22t2&p'—— (41)

Similarly, the tower band edges are given by Lcf. (37)j
pB'= {q2—kp'}L1—AV' —&p'}j (4»

The rt2 terms in (41) and (42) are the IR corrections to
the NR band edges. The effect of these terms is to
shift the band edges towards the center of the energy
spectrum, i.e., to band-structure diagram shrinks, in
agreement with the numerical calculations of GD.

Solutions of (32) atzoays exist in the range rid. (fzx
& (n+1)pr, provided 23&0. For these solutions to
represent surface states, they must also satisfy the
inequality (37). When N=O, (32) has solutions only if

Although the present approximate treatment leads
to the same qualitative results as the previous accurate
calculations, ' it is useful to estimate the order of the
error introduced by this approximation.

In this paper, the small component is replaced by
the derivative of the large component, so, as can be
seen from (8) and (9), the ratio pzz/pz is used instead
of yzz/pz in the matching condition. Such an inter-
change of p's and y's also occurs in the KP relation
(18) and surface-energy expression (27).

From (10) and (7) comes

vxz/vx= (pzz/px) (1—Vz/p+2mpc'),

thus, the fractional error introduced by the approxi-
mation is

Vz/(a+2mpc ) e'/c'

right-hand side~ t„=p)1. (43) for Vi c. Equation (41) shows that: the relativistic
correction to the energy is

p"—{q'—~"}& -~'{v' —~"}'. (44)

M. Stqslit ka, Physica (to be published).

Thus, for surface states to occur in the 6rst band gap,
both (37) and (43) must be fulfilled.

The inequality (37) can be written

3
xt2$ 3~~3/c2

Hence, the ratio of the error to the relativistic correc-
tion is O(zt '). When rx) 8, O(e ') (10 ', and for higher
band numbers, where the relativistic eQect is more
pronounced, the approximation becomes even better.


