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Relativistic corrections to the electronic states of heavy atomic crystals are investigated by solving the
Dirac equation for the Kronig-Penney potential, subject to certain boundary conditions, which differ from
those used in earlier studies. These new boundary conditions enable the mathematics to be simplified con-
siderably, without obscuring any of the relativistic effects found previously. Comparisons are made between
the results obtained using the different sets of boundary conditions.

I. INTRODUCTION

RELATIVISTIC theory of heavy atomic solids!

and their surfaces*? has been formulated recently
on the basis of the Kronig-Penney (KP) * model. The
behavior of relativistic electrons in these systems was
studied by solving the Dirac equation, subject to
certain boundary conditions, which involved botk com-
ponents of the two-component spinor wave functions.
Such boundary conditions required a further restric-
tion, so that the correct nonrelativistic (NR) limit was
obtained for the KP relation. Moreover, in dealing with
the surface states, the analysis was found to be rather
complicated.

From the relativistic point of view, even the highest
electronic velocity in solid state physics is still suffici-
ently low to justify the assumption that the small
component of the spinor is of much less importance
than the large one. Thus, in the present paper, instead
of matching both components of the spinor, only the
large component and its derivative are matched across
the potential discontinuity. The advantages of adopting
these new boundary conditions are: (1) removal of the
additional restriction in obtaining NR limit of the KP
relation and (2) simplification of the mathematics in
analysing the surface-state energy and existence con-
dition, without loosing the previous useful classification
of surface states. Such a procedure is not only a useful
one, but also a very good approximation, as shown in
the Appendix. Finally, unlike the Glasser and Davison
(GD)! S-matrix approach, a more straightforward tech-
nique is used here to obtain the KP relation.

II. CONTINUITY CONDITIONS FOR
DIRAC EQUATION

The two-component time-independent Dirac equa-
tion for the linear potential V (x) is*3:5

theozd' —molto.6=(E—V)é, 1)

* Quantum Theory Group article S-153.

1 Permanent address: Department of Experimental Physics,
University of Wroctaw, Wroctaw, Poland.

1 Work supported by the National Research Council of Canada
and the University of Waterloo Research Committee.

1 M. L. Glasser and S. G. Davison, Intern. J. Quantum Chem.
(to be published).

2 S, G. Davison and M. Steélicka, J. Phys. C 2, 1802 (1969).

3S. G. Davison and J. D. Levine, in Solid State Physics, edited

1

where .. are the x- and z-component Pauli spin
matrices, viz.,
(0 1> ( 10
Oy = y Oz;= . 2
10 0 — 1) @
Using the two-component spinor
(") ®
¢s/’
Eq. (1) becomes
ihc¢1’= (6"‘ V)(;bz ) 6=E—’MQG2 (4:)
theps' =[ (e—V)+2moc®]ps. 5)

Decoupling (4) and (5) for a constant potential V gives

¢1,2" = —pb1,2, (6)
where
o= (e=V)[(e—=V)+2moc?] /B2 )
In matrix form, the plane-wave solution of (6) is
ary | 81 .
$= )ew+( )e—w, ®
a2 2

in which, because of the coupling between the compo-
nent equations (4) and (5),

B1=70:, (9)
y=(e—V)/hcp,. (10)

For a step-potential discontinuity at x=0, between
the regions II and III, GD chose the continuity
condition

a1= —7yas,
where

611(0)= ¢11:(0), (11)

which amounts to matching the two components of
the spinor across the discontinuity. From (4) and (5),
it follows that the maiching of the first and second
components in (11), respectively, leads to a relation
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between the derivatives of the second and first com-
ponents in the two regions, i.e., 11’ (0)# ¢1r1’ (0). Thus,
the matching of the spinor components results in a
nonmatching of their slopes.

In solid state physics, where v/¢<1, ¢, (large com-
ponent) >>¢; (small component). Hence, the coupling
between the large and small components in (4) and
(5) is no longer of great importance, so the main
interest becomes the solving of (6) for the large com-
ponent only. The choice

¢11? (0)= g1 ®(0), (12)
déu® =d¢111 @ (13)
dx =0 dx z=0

can now be made for the continuity conditions.

III. BULK RELATIVISTIC KRONIG-PENNEY
MODEL

From Bloch’s theorem?®

¢ (x)=u(x)ei= (14)
and (8), it follows that
o\ | B1\
u(x) =< )e@(ﬂv—u)r_'_( )e—l(l’v‘l‘#)x, (15)
Q2 2

w being the wave number. For the KP model,* which
consists of a linear array of rectangular barriers of
height V, width b, and lattice constant (a-b), the
continuity conditions for the large component are

w1 (0)=ur1(0),  w(—0)=wurni(a), (16)
wry (0)=u1l’(0), wn'(—b0)=wi'(@),  (17)

where the large component subscript 2 has been dropped
for convenience. Substituting (15) into (16) and (17)
and solving the resulting determinantal equation for
the coefficients gives the relativistic KP (RKP) relation

[cf. GD Eq. (46)]
cosp (a+b) = cosprra cosprrtd—a sinpria sinprd,  (18)

where
=3{pur -t porr '} . (19)

Carrying out the §-potential transformation, subject
to the limiting value [cf. GD Eq. (48)]

lim %Pglfdb‘): —Pr, (20)
P ®
Eq. (18) simplifies to
cospa= cospria+pr(sinpria/pna) . (21)

In the NR limit, (18) and (21) become the familiar KP
relation.

¢ F. Bloch, Z. Physik 52, 555 (1928).
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Inserting (15) in (16), using (20) yields
Brr=MAgaur, (22)
where
Ap= (1—¢#s—pms) /(gilutema—1), (23)

Hence, because of (14), the large component wave
function in the unit cell 0<x<a is

orr=an{erus4-Agetruc}, (24)

IV. SURFACE RELATIVISTIC KRONIG-
PENNEY MODEL

The surface effect on the KP model is described by
terminating the potential at x=0 and taking the
potential for <0 to be constant (V7).

A. Energy Expression

In the vacuum region (x<0), the large component
solution to the Dirac equation is*3?

é1(x) =peirr=. (25)
At the surface, the continuity conditions are
¢1(0)=01(0), ¢1'(0)=¢n'(0), (26)
which lead to
pr(14+Nr)=prr(1—X\g). (27)
From (25) and (27) comes
. SinEH
etre=cos¢rr+iér , (28)
II
where '
Er=pia. (29)
For surface states,’
p=nw/a+i{, ¢ real>0 (30)
so that (21) becomes
sin.fu
(—1)» cosh{a=cosén+pr (31)
II
Using (28) and (31) gives the energy expression
£ coténn={t®— &%)/ 2pr—1t1, (32)

which, in the NR case, reduces to the well-known Tamm
relation.”

B. Existence Condition

With the aid of (30), subtracting (28) from (31)
yields

SiIlE]I

(—1)"sinhpa={pr—ié} .

11

(33)

71. Tamm, Z. Physik 76, 849 (1932).
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Since the RKP relation has exactly the same form as
the nonrelativistic KP (NRKP) relation, the (z+1)th
band gap occurs in the range #nr< 1< (r41)7. In any

band gap,? in
SINé&ry
sign( " )= (=0, o)
35,
so
Pr>1E (35)
from (33). In Tamm’s notation,”
q2= Zmoa2VI/h2 , go = 27n()ll2€/h2 y (36)
hence, (35) becomes
pr>{@— &Y P —n*{f— £} 1 (37)
via (7) and (29), with
n="n/2moeac. (38)

In the NR limit, (37) reduces to Tamm’s condition
p>{@—&. (39)

V. DISCUSSION

In the relativistic formulation, the #pper band edges
are given by
(40)

tfu=nm,

which in a first-order relativistic (IR) approximation
becomes!—
(41)

Eo=nr— 302k,
Similarly, the lower band edges are given by [cf. (37)]
per={@— &M 1—n{@— 2 ] (42)

The 7?2 terms in (41) and (42) are the IR corrections to
the NR band edges. The effect of these terms is to
shift the band edges towards the center of the energy
spectrum, i.e., to band-structure diagram shrinks, in
agreement with the numerical calculations of GD.
Solutions of (32) always exist in the range nwr <fyp
<(n+1)w, provided #s%0. For these solutions to
represent surface states, they must also satisfy the

inequality (37). When #=0, (32) has solutions only if
right-hand side| g—o>1. (43)

Thus, for surface states to occur in the first band gap,
both (37) and (43) must be fulfilled.
The inequality (37) can be written

PR =7 > = {g— £}

8 M. Steslicka, Physica (to be published).

(44)
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When the left-hand side is positive, i.e.,

P> {g—4&0}, (45)

(44) is always satisfied, since the right-hand side is
always negative. Because (45) is analogous to the NR
Tamm condition (40), the surface state satisfying it is
called a relativistic Tamm state (RTS). In addition,
it is also possible for (45) to be satisfied when the
left-hand side is negative, i.e., when (45) is violated.
Since such a possibility arises only as a result of the
Dirac formulation, the surface state satisfying
0> pr*—{@— £} > —*{g*— &%)
is known as a Dirac surface state (DSS).

The classification of surface states, for heavy atomic
solids, into RTS and DSS was first used in a previous
paper.? However, contrary to that work, where botk
components of the spinor were considered, the present
treatment is concerned with the large component only.
In this way, a much simpler analysis was possible,
without any loss of the relativistic effect in solid state
physics.

(46)
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APPENDIX

Although the present approximate treatment leads
to the same qualitative results as the previous accurate
calculations,? it is useful to estimate the order of the
error introduced by this approximation.

In this paper, the small component is replaced by
the derivative of the large component, so, as can be
seen from (8) and (9), the ratio prr/py is used instead
of y11/vr in the matching condition. Such an inter-
change of p’s and ’s also occurs in the KP relation
(18) and surface-energy expression (27).

From (10) and (7) comes

v1/v1= (pr1/p1) 1=V 1/et2moc?) ’

thus, the fractional error introduced by the approxi-
mation is
Vi/ (e42moc®) ~v2/c?

for Vi~e. Equation (41) shows that. the relativistic
correction to the energy is

%n2éo3~'v3/62 .

Hence, the ratio of the error to the relativistic correc-
tion is O(v™"). When #>8, O(v1) <107, and for higher
band numbers, where the relativistic effect is more
pronounced, the approximation becomes even better.



