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Effect of Pressure on the Quadrupole Interaction in Iron-Fluorine Compounds*
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The interaction between the nuclear quadrupole moment and the electric field gradient at the nucleus for
Fe(III) in KSFeF6, Na3FeF6, and (XH4)3FeF6 has been measured to 170-kbar pressure. The quadrupole
splitting increases markedly with increasing pressure. Calculations are presented for both a point-charge
and a covalent model of K3FeF6. In both cases a relatively small change in local symmetry with presure will
account for the results. The amount of covalency appears to be appreciable. Similar calculations are made for
FeF2 using previously published quadrupole-splitting data plus x-ray measurements of the c and u axes as a
function of pressure. The observed decrease in quadrupole splitting can be accounted for qualitatively. The
eGect of covalency is negligible.

exceeded 20% so that a quantitative discussion is
difficult. In any case, the phenomenon is analyzed in
detail elsewhere4 and so will not be discussed further
here.

INTRODUCTION
' 'N this paper we discuss the effect of pressure (inter-
-- atomic distance) on the interaction between the
nuclear quadrupole moment and the electric 6eld gra-
dient at the nucleus for compounds of Fe(III) and
Fe(II) with F ligands. New Mossbauer resonance data
are presented for KeFeFe, Na&FeFe, and (NH4)eFeFe,
along with an analysis of the first compound. Previously
published data' for FeF2 are also analyzed in terms of
new x-ray data.

The ferric compounds were synthesized from iron
enriched to 90% in Fe't. The high-pressure Mossbauer
resonance techniques have been presented in detail
elsewhere '

Quadrupole Splitting

The quadrupole splitting as a function of pressure
for the ferric salts are presented in Figs. 2 and 3. Since
Fe(III) is an 5 state, in strictly octahedral (or tetra-
hedral) symmetry no quadrupole splitting would be
expected. For all salts of Fe(III) there apparently
exist distortions, as all of these compounds exhibit
significant quadrupole splitting. As can be seen, the
quadrupole splitting increases markedly with increasing
pressure; this is a general phenomenon for ferric corn-

pounds. ' Since K~FeF6 is the best characterized system
we have studied we shall discuss this compound in some
detail, with the hope that the ideas will have some
general application.

For KeFeFe, the (FeF,)' complex occupies positions
of a face-centered lattice with an (FeFe)' at 0 0 0. The
potassium occupies two kinds of sites; one type is that
of a face-centered lattice intermeshed with that of the
(FeFe)', but having a E+ at -', —,

'
—',. The other type of

potassium site is at the centers of the octants of the
(FeFe)'=or of the E+-face-centered cell. The unit cell
is cubic and its edges define the lattice vectors. Figure
4 portrays the unit cell. The six F ions form a slightly
distorted octahedron about the Fe(III). These six
Auorines lie near, but not exactly along, the lattice
vectors. Their locations, relative to the origin at the
iron, are given by Bode and Voss' as &L(x,y,s); (s,x,y);
(y,s,x)], where x=0.21 ao, y=0.04av, and s= —0.03av.
Figure 5 illustrates the (FeFe)' octahedron. The lattice
parameter av equals 8.581 A. The Fe-F distance equals
0.216ao or 1.85 A for all the fluorines. As indicated in

Fig. 5, the F-F distances are not all equal; A =0.302ao
while .8=0.308ao. It is convenient to select the axis
of highest symmetry of this octahedron, ignoring the
rest of the crystal, as the s axis. This axis now passes
through the centers of the two equilateral triangles

FERRIC COMPOUNDS

As mentioned above, the chief concern in this work
is with the quadrupole splitting. Before discussing this
in detail, two other observations should be mentioned.
For these compounds there was observed a small de-
crease in isomer shift (center of gravity of the spectrum)
with increasing pressure (0.02—0.05 mm/sec in 150
kbar), corresponding to a small increase in electron
density at the iron nucleus. This is similar in direction
but smaller in magnitude than that observed for a
variety of other iron compounds. ' Since the increase in
s electron density is usually associated with a spreading
of the 3d orbitals due to interaction with the ligands,
it is not surprising that the change is small for Ii

ligands. For a wide variety of compounds it has been
shown that Fe(III) reduced to Fe(II) with increasing
pressure. ' 4 Figures 1(a) and 1 (b), giving typical
spectra, show that this phenomenon is present in the
salts studied here also. However, the conversion never

*This work was supported in part by the U. S. Atomic Energy
Commission under Contract No. AT(11-1)-1198.
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One can now calculate from the observed splittings,
the pressure dependence of 8 required by this model.
The results of such a calculation are given in Fig. 7.
The values of V/Vp are taken from the x-ray data of
Fanselow. '

' G. Burns, Phys. Rev. 124, 524 (1961).
7 G. Burns and E. G. Wilkner, Phys. Rev. 121, 1955 (1961).
8 R. Ingalls, Phys. Rev. 128, 1155 (1962}.' D. L. Fanselow, Master's Thesis, University of Illinois, 1969

(unpublished).

Because of the threefold symmetry about the s axis,
(ref)p= 0. The quadrupole splitting is

AE=
~

2E@
~

= (1—y„)Q(0.0201) a.u. (4)

at atmospheric pressure and room temperature.
Of course, one does not place the greatest of credance

in the absolute value of (4), but using Burns's' value
for Q and either Burns's and Wilkner'sr value for y„,
or Ingalls's value8 of —i0.6 for y„,

AJ-=2.3 or 3 7Xi0 ' a.u.

=0.65 or 1.05 rnm/sec,

which is not unreasonable, as it spans the observed
splitting of 0.78 mm/sec. Suppose the factors are
chosen so that (4) gives the observed splitting, that is
so that0. 78mm/sec= 6(1—y„)Q(3 cos'ep —1)/Vp, where
Vo ——bo' is the volume of the unit cell at atmospheric
pressure, then

Recalling that 0~——54.77', it is noted that the dis-
tortion must first rise with pressure, reach a maximum
(minimum e) at around 50 kbar, and subside. This is
because the quadrupole splitting at first grows faster
than Vp/V, but above 50 kbar, it rises more slowly
with pressure. The atmospheric trigonal distortion is
0.87' and the maximum distortion required by the
point-charge model is an additional 0.16' (18%%uq).

Con6guration-Interaction Model

Although the point-charge model does not give un-
acceptable results for the deformations required to
produce quadrupole splittings, many authors" " have
argued that even for the most ionic ligand, F, the
point-charge model cannot be physically realistic —most
especially in the calculation of energies. Covalency
eGects have, in fact, been observed directly through
the use of nuclear magnetic resonance and electron
spin resonance on many iron-series salts" ""including
the cubic salts KNiF3, KMnF3, and K2NaCrF6 which
demonstrated the presence of unpaired electron density
on the fiuorine ligands and indicated the presence of
covalency. In a series of papers, Shulman and Sugano, "
Simanek and Sroubek, " Watson and Freeman, " and

'0 S. Sugano and R. G. Shulman, Phys. Rev. 130, 51/ (1963).
~ E.Simi, nek and Z. Sroubek, Phys. Status Solidi 4, 251 (1964).
'2R. E. Watson and A. J. Freeman, Phys. Rev. 134, A1526

(1964).
N J. Hubbard, D. E. Rimmer, and F. R. A. Hopgod, Proc.

Phys. Soc. (London) 88, 13 (1966).
'4 R. G. Shniman and K. Knox, Phys. Rev. 119, 94 (1960).
'5 R. G. Shulman, Phys. Rev. 121, 125 (1961)."T.P. P. Hall, W. Hayes, R. W. Stevenson, and J. Wilkens,

J. Chem. Phys. 38, 1977 (1963);39, 35 (1963).
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wllele VF (r) and Vp~(r) are the nuclear potentials of

electrons. E is the energy (VIHI%') given by a Ritz
variational calculation.

If we assume the functions (7) as zero-order func-

tions, and define h@ such that

~E=(~l&.l~) =2IE.I,
AA, the quadrupole splitting, is given by

(12)

(~lb, le) =(P qp;I h,, I P g;c;)

+(2 sc.l~. lZ 2'.-~...)+ '.
n j, k

+(2 2 ~ ~ c'.
I
&ol 2 2 &' C'i' ). (13)

gk n jk

Fio. 6. Choice of axes for (FeF6) '.

ubbard, Rimmer, and Hopgood" have discussed ana-
ytical methods of introducing the ro er amo

y. n e covalent, configuration-interaction
treatment, Hubbard, Rimmer, and Hopgood have de-
fined trial wave functions

+=2 kP'+Z 2 ii;a C,s, (7)
o; j7c

where
6

@.—Ay. FeiIII)
Q

)c )i

P=1 .

5

@.a Ay.xe(II)x n TT y P

P&n

C '("& is the 'thj excited Fe(II) configuration and
X~ is the kth excited state of the eth fluoride ion. The

been tr
represent configurations in which l t

een transferred from the nth fluoride ion to the iron,
whereas the C; represent a transfer of an electron from
one iron orbital to another.

It is shown by Hubbard et al. that in the event of
small overlap,

(ju~la —Els)

E(jkn) —E
where E(jku)=(yA~IHI7k~) and & '

Pp 6

+2 I:VF.(r.)+2 V~(r.)j
2M Ijt

(10)

e2

+s Z, (11)
P~v tp Iv

corresponds to the ith excited configuration of the

) '; e.g. , a P configuration like
I
is fi fe N

Here A is this he antisyrnmetrizing operator, and Xo is a
Quoride state. The ~~.e. e ~~; are scalar mixing coefficients,

coeffi
' t.

expected to be small except for $ the r d-
coe cient.

r 0, e groun -state

(a) Consider first the terms

(E~,c.lh. IZ~;c,) - Eu, ('lj)
~l 2

(14)

As shown by Hubbard et al. $; has a numerator which
relates to the transfer potential d d
e ualtot

an a enominator
equa to t e energy difference between the i 't l de ini ia an

na s ates, or between the ground state and the ith
excited state. Thus for K FeF th h' he, w ic correspond
to transfer from one d orbital to another will be of
small amplitude since the ener y dy enominator involves
spin-pairing energy. It is possible that transfers from

, evels to 4s or 4p may be quite important for energy
calculations but since neither thr e s, nor, electrons
(when quantized about the threef ldree o axis produce a
field gradient at the nucleus th 4
these transfers will not be considered. Thus, the terms

( ) are negligible or irrelevant except for $,Cs, the 'S
ground-state configuration. For simpl' 't h

(b) Next consider the terms

5 4.8

5 4.6

(I)
iLI

54,4
co
ii)

54.2CI

POINT CHARGE MODEL

COVAL ENT MODE L
——UNDISTORTED OC TAHE D RON ( 54.77 ')

K& Fe F6

5 4.0—

53.8

5 5.6
0 50

I

IOO I50
PRESSURE (KILOBARS)

200

Frc. 7. 0 versus pressure —K;FeF6.

(2 ~'c'lb. IE E;~;-),
a j,k

+complex conjugates. (15)
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Equation (10) may now be written as

(jk IH —zlo&
~&,I $p

E(jkn) —&
(16)

is small, as well as nearly symmetrical, this term will
be neglected.

(c) Finally, consider the terms

(2 2 a;~~,' IhoIE 2 a "C';")

0 P'0

W2 i
4,+= —Vp '+ —Vp',

v3 v3

4/7

—2/7 0

1
p 2 p l

v3 v3

Accordingly, we write (9) as

5

C =A/'X g &os, j=o, +, —
P~a

where O'=
I
tp, PNtpg+gtpg 1), etc. , while

C, =Ay, g x,s,
P=l

o. (17)

(Ig)

(19)

and 4p= I4g t4g+'ppg t&.
Equation (15) gives rise to two types of nonzero

elements. The first is

Z (xp'Ihalxp'&«p.
l p-&.

P=l

The factor (tpg I p ) is not zero since the wave functions
have not been properly orthogonalized. This term
represents the gradient at the iron site due to a "hole"
one of the Auoride sites. One expects this hole to
smear out over the six equivalent sites and to produce
little net gradient.

The second type is (t2, lh@lp ) which represents the
gradient at the iron site due to charge in the overlap
region between the iron and Auorine. Since the overlap

Ke see that a;~ also contains an energy denominator
which is the difference between the energy of the
ground state and. that of the C~;p~ excited (transfer)
configuration. The energy involved in transferring an
electron from the fluorine to an iron orbital must be
small, since it need not require spin-Qip and since,
under pressure, it is observed that a number of the
iron sites actually reduce by the acquisition of a
fluorine electron. (See above. ) Group-theoretical argu-
ments, however, dictate the fluorine s and p, electrons
can transfer only to iron Eg orbitals, while p can
transfer only to T2,. Again, transfer into an E, orbital
will not affect the quadrupole splitting, thus the u, I, of
interest are only the a0, a+, and a, denoting transfer
from any of the equivalent Quorines to the t2,0, t2,+ or
tpg orbitals given by Eqs. (17).

or
a;,& a;,&,"(jknlhol j'k'n').

a, a' j,j', k, k'
(20)

where only one of each type of transfer is considered
since, due to the Pauli principle, only one transfer to
any orbital is allowed.

Consider Eq. (16) giving the a,p 's. The numerator
of this expression is equivalent to

((o IH —z
I o&+&+ IH —z I+)y(—IH —z

I

—
&

+Z, &~IH ~l~&)(~ -)+(~IH-~I-&,
j=o, +, —. (22)

The first term in (22) is proportional to the tpg p-
overlap integral, and we may consider the coeKcient
constant in first order. The second term is a sum of
(t„lHlp.) and E(tpglp. ), the latter of which is also
proportional to the overlap. (t„lH I p ) represents the
matrix element for transfer from the p orbital to the
t2, . This term may be expected to vary with pressure
in some complicated manner. However, it is physically
reasonable that the variation of the interaction should
be monotonic with changes in the overlap. For the
purposes of this treatment we shall consider, in first
order, (tpg IHI p ) as linear in (t2, I p.). Within this ap-
proximation, the numerator of a, may be considered
to be proportional to the t pg p„overlap —integral. This
overlap has been evaluated af ter the method of Mullikan
et al. '~ with the variation of interatomic distance taken
from Fanselow's compressibility data. ' The numerator
of a,q is thus A(d

I p), where A is a constant.
The denominator of (16) is dependent upon the

energy of the particular t2, to which the transfer is
occurring. If the polar location of the Auorides is
described as cos'tI= 'p+X, the resulting crystal-field
potential can be written as

V+ Vp+WX+ terms of order XP and higher, (23)

where V0 is the octahedral field and WX is a term
proportional to the trigonal distortion. 8' contains F20

as well as I'40. The T2, functions are thus split into a
singlet t2,' and a doublet t2,+. If the first-order matrix
elements are directly evaluated, it turns out that the

"R. S. Mullikan, C. A. Rieke, D. Orloff, and H. Orlo&, J.
Chem. Phys. 1'7, 1248 (1949).

In accord with the foregoing discussion, we shall be
interested only in the configurations C 0, C~, and C

Our original zero-order wave functions may now be
explicitly written as

~= to~o+(".C..+,.c,.+ .~ .), (»)
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Ee Ep be directly evaluated using the wave functions (17).
The expectation values of q= (3 cos'8 —1)/r' and
pi=3 sin'8cos'P/rs are also given in (17). Recalling
that ho= qQ(1 —R) (1+pi /3)'~', Eq. (24) indicates that

~&.=&~lb. l~&=(4/7)&r-&O(1-~)~ I«l p). l

X I
(8+3~)-s—8-pl

o+ 3hkq-'-
=co»tl«l p)-I' 1—1+ 8i (27)

Fe SITES

~ F SITES

Fe -F DISTANCES IN OCTAHEDRON:

1.99A A ND 2. I 2 A

FIG. 8. FeF2 unit cell.

energy splitting among the T2, levels is 3', where

9 (r'& 5 (r4&
h= —Z ——Z

7 6' 7 b'

and b is again the iron-Quorine distance, and if the
denominator of ao is 8, then that of a+ and a is
8+3hli. Equation (13) now appears as"

1 1
(+lho I+&=&'I «I p& I' —&c'p-I ho I

c'p-&+
8 8+3kb

X (&~+-I ho I ~+-&+&~--I hei C--&) (24)

Let us now take as an example

&4'+-lb' lc'+-& =&0lho
I o&+2&+ Ibo I+&+&—l»o I

—
&

+&~I hol ~&+2 &PlholP& (25).
P 1

&0lhol0&+(+ lbol+)+( —lbol —)=o, and ag»n al»w-
ing the hole to "smear out, "we see that

&C+- Iho I
C'+-&= &+ I bo I+) (26)

with similar expressions for Cp and 4p . (jlhol j) can

'P It should be mentioned that tp[ (Cp[hoICp& represents the
point charge gradient corrected for Rnite distribution of the
electrons on the Quorides. At the moment pve are not considering
this term.

If 3'((B, the expression in the brackets becomes
6hZ/8. Moreover, since h=const/b', we can set (27)
equal to

AEo = const
I (d I p) I

9./b'

=const
I (d I p). I'X(Vp/V) . (28)

(Note that the larger hX is, with respect to 8, the less
dependent the quadrupole splitting is upon the dis-
tortion, i.e., if the splitting is large to begin with, only
the ground state - is expected to receive transferred
electrons; if the splitting is small, the gradient will
reQect the extent to which the various levels are
populated. )
II'~.We can now take the values of E@ shown in Fig. 2
and see what variation of 'A with pressure is required
by this model. At atmospheric pressure, AEq, ——0.78
mm/sec, b'=43.4 au. , and I(d I p}~I'=3.03X10 ' a.u.
We have seen that cos'00=0.3471, so that X0=0.0138.
Thus the constant in (28) is given by

(0.78 mm/sec) (43.4 a.u. )
X10'=0.81X10' mm/sec.

(3.03 a.u.) (0.0138)

The change of 8 required by this model is shown in
Fig. 7 along with that corresponding to the point-
charge model. It is seen that the behavior of 0 with
pressure is similar to that required by the point-charge
model except that the maximum distortion occurs at
lower pressure and the tendency towards higher sym-
metry at higher pressure is more pronounced. The
actual behavior of 0 versus I' could be shown to lie
somewhere above the lower of the two curves of Fig. 7,
depending upon the relative strengths of the two
effects, since the lower of these represents the extreme
of a point-charge model while the upper represents
only a transferred electron model, ignoring the con-
tribution of a ligand-field gradient. Evaluation of the
constants in Eqs. (4) and (27) indicate that the con-
tribution due to covalency is of the order of 25% of
that due to the distorted octahedron directly, but as
indicated earlier, the absolute values for the Sternheimer
and other factors are questionable. In any event, a
composite model would, as does either extreme, require
but a small variation in 8 to account for the data.
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TABLE I. X-ray data for FeF2.

Pressure
(kbar)

0
27
58

100
133

4.697
4.68
4.66
4.64
4.63

3.309
3.24
3.18
3.11
3.09

TEMPERATURE DEPENDENCE

Figure 2 illustrates that K3FeF6 shows a quadrupole
splitting at 143 K which is about 87%%uz of the splitting
at room temperature and that the pressure dependence
of these splittings is about the same. This phenomenon
can be accounted for in the covalent model by ob-
serving that the higher-lying T2, levels are more easily
populated by electron transfer at higher temperatures.
In short, the thermal energy tends to randomize the
distribution of transferred electrons, thus increasing
the average symmetry and decreasing the gradient at
the nucleus. A Boltzmann factor can be entered into
the population probabilities. After evaluation of the
matrix elements, Eq. (20) appears as

~&o= co»t(2
I
ao I'—

I a+ I

'—
I
a-.

I
') (29)

Assuming t2,+ and t2, to lie at E= T~ above t2, , the
right-hand side of (28) becomes

2 fao~f2 —
I a+~ f2& r'~r fa-

const X . (30)
1+~ Ty(T+~ sly/T— —

observed splitting dropped to about 0.87 of the room-

temperature value upon heating to 420'K.

FERROUS COMPOUND FeF2

In this section, we shall examine the behavior of the
quadrupole splitting of a ferrous salt, FeF2, with
pressure. Ferrous Quoride has the rutile structure with
a tetragonal unit cell containing two formula units. "
(See Fig. 8.) We use the previously published Mossbauer
measurements and the lattice parameters presented in
Table I.

Point-Charge Treatment

The environment of each iron is a distorted octa-
hedron of six Quorines. In choosing the axes, we shall
take the four equidistant fluorine sites. at 2.12 A to
determine the x, y plane. The s axis thus passes through
the two fluorine sites at 1.99 A. Since the Quorines in
the x, y plane form a rectangle rather than a square,
it will be convenient to choose the x and y axes parallel
to the sides of the rectangle with the x-axis coincident
with the crystallographic c axis. This choice results in
the d „and the d3, ~ „~ orbitals being of E, symmetry
and lying higher in energy than the T2, since they are
directed more or less toward the negative ligands. The
x, y, and s axes are all rotation axes of order 2, which

implies that they are the major axes of the EFG
tensor at the origin. This also means that the d „, d„„
and d, orbitals are eigenfunctions of the crystal field,
but the lower azimuthal symmetry will allow some
mixing between d ~ „2 and d3, ~ „2. Therefore, we adopt

g(T')/g(T) =300'K/420'K=0. 72. (32)

If 50%%u~ of the quadrupole splitting were due to the
covalent contribution, the splitting would be expected
to drop halfway to this value or to 0.86 of the original
value upon heating from 300 to 420'K. This is because
the ligand-held contribution has no provision for tem-
perature-dependent behavior (aside from a negligible
volumetric increase due to thermal expansion).

The results of this calculation are seen as convincing
evidence that the covalent contribution makes up a
significant fraction of the Geld gradient, since the

If, for the present purposes, we consider fao I'= fa+ I'
= fa I' and T& only slightly varying with pressure,
there arises the temperature factor

g(T) = (1—e " )/(1+2e " ) (31)

which implies that the quadrupole splitting will be
smaller when experiments are done at higher tem-
peratures. It turns out that the ratio g(T')/g(T) is
nearly independent of T& (and consequently, of pres-
sure) for 0(T~(500'K and 300'KCT, T'(1000'K.
Within these limits, g(T')/g(T) is given by T/T'. Thus,
for the KSFeF6 experiment,

/
Xy'

g ~r
r ji

I
r I

l ~I
/ lr

r ll
3d /

I

yz, zx p'
r &2 y2rh&2gr ry „, i

CUBIC TETRAGONAL AZUMUTHAL
F I ELD D I STORT ION D I STORT ION

ATOMIC
IRON

Fe F& ATOMIC ENERGY LEVELS

Fio. 9. Splitting of energy levels in FeF2.

"J.W. Stout and S. A. Reed, J. Am. Chem. Soc. l6, 5279
(1954).
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TABLE II, Energies from the point-charge model. '

Configuration A

~l
T2

Configuration 8
~l
T2

Pressure kbar
0 27

1300 1210
1150 1070

1300 1180
1150 990

58 100

1120 1020
960 850

1020
820

860
630

133

990
780

730
480

& All energies in 'K.

the following notation:

Eg s

~2g ~

e4 n~ 3S——'—r') —P
~

x' —y') y

@s——
~
sx),

ey ——a
~

xs —y )+P
~

3ss—rs)

(33)

where a'+P'= 1. The subscripts are chosen so that the
orbitals are arranged in the order of the energies as
predicted by the point-cha, rge Geld. (See Fig. 9.) Of
the Eg orbitals, +4 is directed toward ligands lying at
a lesser distance than those toward which%'3 is directed.

Thus, the Eg doublet is split and %4 lies higher. In the
x, y plane, the ligands lie closer to the x axis as chosen,
so that clearly ~sx) lies above ~ys). This leaves open
to dispute the choice between %o and 0'i as the ground
state. As Tinkham2o has shown, a point-charge ap-
proximation leads to a ground state given by 4o.
Ganiel and Shtrikman" preferred to follow Abragam
and Boutron" who, in their interpretation of Wertheim's
Mossbauer data, "'4 required, in their approximation,
a ground state given by %~ to account for a measured
value of p equal to 3 at atmospheric pressure and 45'K,
but equal to 0.4 at 4.2'K. By assuming a mixed ground
state, it is possible to evaluate n and P. Both schemes
will be presented here. The values of a=0.99 and
/=0. 11 (from Ganiel and Shtrikman and the relation
n'+P'=1) will be taken for both presentations, since
no better values are attainable from point-charge con-
siderations. Knowledge of the exact value taken by
P/n is not critical as long as the ratio is small, as it is
expected to be since 6, or 10', the splitting between
the T2g and Eg is of the order of 9000 cm 'or 13 000'K."
Both treatments will ignore spin interaction.

The potential of the ligand point-charge 6eld is
expanded about the origin in spherical harmonics to
give

/4s. '" 1 1 Q6
l'(r) =«'i — 2 ———l'so+ —cos2&(&s'+&s-') +Zr' — ——+ —Y4'

bs p3 ps 9 2 b' p'

+10 +70
cos2&(I"P+V4 ')+

2 ' 5
cos4$(I'44+ V4 4) +6th and higher-order terms. (34)

Here b is the Fe-F distance along the s axis, while p is the Fe-F distance in the x, y plane. At atmospheric pressure,
these are 1.99 and 2.12 A, respectively. Z for the fluorines= 1 and g is the smallest, positive azimuthal co-ordinate
of the Quorines in the x, y plane. Direct integration. of the spherical-harmonic, triple-product integrals yields the
energies E2, Ei, and Eo.

V(r) 4r ——Es~ ——Esp ' [(p/b)' —1j —2(n' —p') +6cos2p —2np/V3

+o +o .&o.

—4, 1 0
+&4p '"1 [4(p/b)'+3] n'+6/' —20 cos2$ np/Q5 +35 cos4& n'

- —1. .0. ,
(35)

where Ks= (2/7)Z(r')&q and K4 ——(1/42)Z(r4), d.
Table I gives the variation with pressure of the

crystallographic u and c. Knowing these and the
geometric relations

b =0.300av2,

(2p)'= (0 400aV2)'+c'
'0 M. Tinkham, Proc. Roy. Soc. (London) A236, 549 (1956)."U. Ganiel and S. Shtrikman, Phys. Rev. 177, 503 (1969).
22 A. Abragam and F. Boutron, Compt. Rend. 252, 2404 (1961).
~ G. K. Wertheim, Phys. Rev. 121, 63 (1961).
24 G. K. Wertheim and D. N. E. Buchanan, Phys. Rev. 161,

478 {1968)."G. D Jones, Phys. R. ev. 1SS, 259 (1967).

p = (a/2) [0.320+ (c/a)'j'~'

cos2@= c/2p,

the energies can be found as functions of K2 and K4.
In order to evaluate the K's, we will use Ganiel and

Shtrikman's atmospheric values of Tj and T2 for the
energy splittings indicated in Fig. 9. The particular
order of the wave functions chosen by these authors
had very little eQect upon the numbers they ultimately
got out, because of the way in which the orbitals
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combine to produce the same gradient at the nucleus.
That is, if only one orbital is occupied, the value of
q(1+i]'/3)"' is the same for any orbital (excluding a
rather small effect from mixing it some @4). The con-
figuration shown in Fig. 9 will be considered first. This
arrangement of the levels will be referred to as "con-
figuration A."

The ground state of configuration A is %p.

T2=E2 Eo=13—00 K= (3 999Ep—0 827%4) X10 2,

Ti=Ei Ep= 11—50 K= (0.794Ep+0.669K4)

X 10 '. (36)

E
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Fro. 10. Measured and calculated quadrupole
splitting versus pressure —FeF2.

1+2 (~& P&) q »/&-
(q) = (2/7)(r ')

1go rg/T+ e
—T2/T—

3 4~3p/Pe Tz/T 3&
—T2/T—

(39)
]'..(T)= (2 H+'I ~;Iq")e ~""j)/Z ~ a'"', (37-)

The simultaneous solution of Eqs. (36) leads to values
«&2=0 546X1o"K. and E4——1.071X10~0
these values are substituted back into (35), Table II whereupon Eq. (37) is evaluated as
results.

The energies of the T2, levels decrease with com-
pression as the crystal field grows. The splitting be-
tween them also decreases because as c/a decreases,
the local symmetry about the iron increases.

In order to apply the thermal expression

we need to calculate the matrix elements (@;I
qI%';) and

(+; I qi] I+;), denoted q,; and (qr/);;. One obtains

Again, we have the quadrupole splitting given by

q» ——qpp= ( 2/7)(r ) i/o2= —i/op=3,

q =(+4/7)(' —P-')(-'), ~ =2~~-/3/(-' O'), —(38)
where the f(Ti,To) for this configuration is

(40)

$1+1.01' 2~~/~+/; »'4/r ]—36e &1/& ——e r2/—r 0 61—(ri+r2i/&)i/&

f(Ti To) =
1+g &i/&+/ T2/&— —

U»ng Ti and To from Table II and T= 295'K, f(Ti,To) can be evaluated. Figure 10 depicts the observed curve, '
as well as the above results.

In configuration 8, the ground state is %~. This implies that the d„„d„doublet splits under the azimuthal
distortion, but that both these levels still lie above the mixed state, primarily d, 2 „~. Accordingly,

Tp Ep Ei 1300'K=——(3.20—5Ão ———1.497E4) X 10 '

Ti=Eo Ei 1150'K= (—0.7—94IC——o—0.669E4)X10 '. (42)

These equations are directly analogous to Eqs. (36) and they, of course, imply new values for E& and K4. Zz
= —0.256X10"K and E4———1.1416X10"K.The resulting values for Tj and T~ appear in Table II. Equations
(39) now take a slightly different form, with the reassignment of the T;. Taking this into account, the f(Ti,T&)

of (40) configuration 8 is given by

LI 01+a &&x/&+o &&2i& 1 3—6e—&x/& —0 61~—&z/& e—(&i+&2)/&pi/&

f(Ti To) =
1+e Ty/T+ e Tg/T—— (43)

The predicted quadrupole splitting for this model also
appear in Fig. 10. While the data do not permit one to
select unequivocally the best model, Configuration A
seems superior, as the curvature is better. More
seriously, configuration 8 requires negative values of
K2 and X4 which seems unreasonable.

Covalent Contributions

Although the contribution to the quadrupole splitting

of ferrous compounds is expected to be small, it is

interesting to note that its eBect is negative, whereas

in ferric compounds, it is positive. In FeF2, where the
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iron is surrounded by Quoride ligands, this contribution
is expected to be especially small, since in the first
part of this section, the covalency of the Quorine pro-
duced a gradient comparable to that arising directly
from the distorted ligand field. The latter gradient is
expected to be smaller than the gradient due to the
valence electron by a factor of about b s/(r '), where
b is the iron-fluorine distance (about 4 a.u.) and (r ')
of the electron is about 5.1 a.u. according to Ingalls. "
This is a factor of about 3)(10 '. Thus, the covalent

"R. L. Ingalls, Ph. D. Thesis, Carnegie Institute of Technology,
1962 (unpublished).

contribution is expected to amount to only about 0.3%
of the total quadrupole splitting in FeF2.

The formalism of the theory directly follows that
outlined for K3FeF6 above. When this is applied, and
a value for o,g of 0.05 a.u. is assumed, " the covalent
contribution is about 0.25%.
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Crystallization and Instabilities in Highly Anharmonic Crystals*
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A unified treatment of crystalline order and instabilities in highly anharmonic crystals at all temperatures
is presented. This treatment is based on the study of singularities in the atomic-displacement correlation
function or its Fourier transform (structure factor). As a result, it is rigorously shown that in the thermo-
dynamic limit the mean-square fluctuations of the equilibrium position of a lattice particle are infinite in
one and two dimensions at nonzero temperatures and in one dimension at sero tensperutlre. This result,
which is proved'for an interacting many-body system without assuming the harmonic approximation, is
obtained by using an exact Dyson equation for the displacement-response function. At finite temperatures,
the demonstration of similar instabilities in a variety of condensed many-body systems of one and two
dimensions is usually based on inequalities originally due to Bogoliubov. Since an analogous inequality can
readily be extracted from the Dyson equation of the present approach, our method allows the extension of
these results in anharmonic crystals to zero temperature. Finally, it is shown that additional dynamical
information in this Dyson equality can be used to derive the relationship between elastic anomalies and
sound absorption in the vicinity of critical points from the anomalous increase of the second derivative of the
displacement-autocorrelation function.

I. INTRODUCTION
' 'N a number of physical systems, the traditional ap-
& - proach to lattice dynamics, that of expanding the
interatomic potential in powers of atomic displace-
ments, is entirely inadequate. Conspicuous examples are
the so-called quantum crystals, such as the crystalline
forms of the isotopes of helium, where the zero-point
motions are large, or the paraelectrics of the SrTi03
family, where the polarizations are large. In particular,
when applied to solid helium, the harmonic approxima-
tion yields a negative dynamical matrix and, therefore,
imaginary phonon frequencies. ' On the other hand,
x-ray measurements show that these systems do form

* Work supported by U. S. Atomic Energy Commission under
Contract Xo. AT (30-1)-3699,Technical Report No. NYO-3699-39,
and the Deutsche Forschungsgemeinschaft. A short account of
this work was reported by G. Meissner, Bull. Am. Phys. Soc.
14, 367 (1969).

t On leave from the Max-Planck-Institut fiir Physik, Miinchen,
Munich, Germany. Present address: Institut Max von Laue-
Paul Langevin, Munchen-Garching, Germany.' F. W. de Wette and B. R. A. Xijboer, Phys. Letters 18, 19
(1965).

crystals with well-defined structures. For these reasons,
a microscopic theory of such highly anharmonic crystals
must specify a criterion for crystalline ordering which
does not start from the harmonic approximation. Of
a variety of choices available for selection as such a
criterion, two are of particular interest. They are related
to two diferent theoretical treatments —the single-
particle and the collective pictur-- —which have emerged
for allowing the displacive motions 'of, the particles in
such systems to be large. '

In the single-particle picture, it has been shown' that
long-range order in the crystalline phase may be attrib-
uted to a translational symmetry breaking statistical
operator. This gives rise to nonvanishing Fourier com-
ponents p„of the one-particle density for nonzero recip-
rocal lattice vectors x. The umklapp phonons, which are
revealed as Bragg peaks in the scattering of x-rays, can
then be obtained as the symmetry restoring collective

s N. R. Werthamer, Am. J. Phys. 3/, 763 (1969). This paper
gives a detailed review of the two diferent approaches to the
theory of highly anharmonic crystals.' G. Meissner, Z. Physik 205, 249 (1967).


