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Taking 6»))A~„A (cos+coj, ) may be neglected in the denominators of (84). Using this result in (83) gives, on

dropping the terms involving sin(k&k')E,

9 to'(4&)'I &pIrI'roIP') I' - (—&)"" (n'+l) (ns+l)-
+

i,@=1 (3j ) k, k'
GO&

Xcos(kR) cos(k'R) sin(k ja) sin'(-,'k'ja) sin(k j'a) sin'(ark' j'a) . (85)

K,"isl is obtained in a similar way and is given in Eq. (21) in the main text.
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The phonon optical properties of the mixed fluorite system Ca&,Sr,F2 are treated theoretically using
the "average-Green's-function" formalism. The calculations are based on a rigid-ion model for the pure
CaF2 lattice, with a defect model for Sr++ impurities that includes both mass and force-constant changes.
Results are compared with experimental observations on Raman scattering and far-infrared reQectjvjty
spectra.

I. INTRODUCTION

HE general problem of the effects of impurities on
the vibrational, electronic, and magnetic proper-

ties of crystalline solids has currently attracted much
interest. One aspect of this problem has been the study
of random disordered systems, and in recent years,
there have been numerous experimental and theoretical
investigations of the phonon optical properties of mixed
crystal systems. We have studied experimentally' the
Raman scattering (at 4, 77, and 300'K) from the
mixed fluorite systems Ca&,Sr,F2 and Ba& Sr F2 using
laser excitation and a photon-counting detection system.
Analogous work on the far-infrared reflectivity spectra
for these systems has been carried out by Verleur and
Barker. ' In this paper we shall present a detailed dis-
cussion of the numerical methods used, and the results
obtained, in an analysis of this experiment. A partial
account of some of these results has „appeared
previously. '
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The Green's-function methods which have been ex-
tensively employed for the isolated defect and random
disorder problems are briefly reviewed in Sec. III,
where it will be shown how the phonon optical proper-
ties can be expressed using this formalism. These tech-
niques have been very useful for qualitative and quanti-
tive understanding of impurity e8ects, although they
usually involve cumbersome computational difficulties

'

for physically realistic models of the impurity and the
host lattice. A low concentration theory for Raman
scattering and infrared absorption in mixed crystals,
based on an average Green's function (G), is described
and applied to the Ca~,Sr,F2 system in Sec. IV; theo-
retical calculations are presented and compared with
experimental measurements. The "proper self-energy"
(PSE) functions which arise in this formalism are
calculated to erst order in the concentration x, and
involve certain unperturbed phonon Green's functions
G so(ls, Ps'; co+is) which have been computed numeri-
cally for CaF2, using a rigid-ion model of a harmonic
fluorite lattice. Some of these Green's functions, as well
as some of the details concerning their computation,
have been included in the Appendix, since it is likely
that they would be useful for many other studies of
phonon impurity problems involving CaF&. For example
they could also be applied to problems of defect-induced
Raman scattering or infrared absorption from U centers,
to vibrational sidebands in electronic fluorescence
spectra, to neutron scattering, etc.

The literature in this Geld has been expanding so
rapidly that it would be futile to attempt to cite all of
the work that has been done. An excellent and extremely



K. B. LACINA AND P. S. PERSHAN

thorough review article on the effects of point defects
and disorder on lattice vibrational properties has been
given by Maradudin. 4 The experimental literature on
phonon optical properties in mixed crystal systems is
extensive; several examples of other systems that have
been studied by Raman scattering and infrared ab-
sorption include GaAs& Sb„'Ni& Co 0,' Znz Cd S,'
ZnSe~, Te„' Na~ ~K~Cl, ' K~,Rb, Cl, "KC1~,Br»" "

LiH&,D ." There would be many more examples if
the list were enlarged to include work on other than
phonon optical properties. There are also some general
articles which are a useful review of the experimental
results on mixed crystal systems" and a discussion of
the behavior of the long wavelength optical modes. '~
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D. Turnbull (Academic Press Inc., New York, 1966), Vol. 18,
p. 278; Vol. 19, p. 1.' R. F. Potter and D. L. Stierwalt, in ProceeChngs of the Inter-
rtatiortal Conference ol the Physics of Seraicortdttctors, Pans, I964
(Academic Press Inc. , New York, 1965), p. 1111.

' P. J. Gielisse, J. ¹ Plendl, L. C. Mansur, R. Marshallp S.
Mitra, R. Mykolajewycz, and A. Smakula, J. Appl. Phys. 36,
2446 (1965).' G. Lucovsky, E. Lind, and E. A. Davis, in Proceedirtgs of the
Irtterrtatiortal Conference oIt the Physics of II VI Semicoadg—ctors
(W. A. Benjamin, Inc. , New York, 1967); O. Brafman and S. S.
Mitra, Phys. Rev. 171, 931 (1968).

8 O. Brafman, I. F. Chang, and S. S. Mitra {unpublished); cf.
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Rev. 1/5, 1180 (1968).
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Sol@'s, edited by G. B. Wright {Springer-Verlag, New York,
1969), p. 467.

'4D. W. Feldman, M. Ashkin, and J. H. Parker, Phys. Rev.
Letters 1'7, 1209 (1966)."F.Oswald, Z. Naturforsch. 14a, 374 (1959).

'6 Y. S. Chen, W. Shockley, and G. L. Pearson, Phys. Rev. 151,
648 (1966)."H. W. Verleur and A. S. Barker, Jr., Phys. Rev. 149, 715
(1966).»¹D. Strahm and A. L. McWhorter, in Light Scattering
Spectra of Solids, edited by G. B. Wright (Springer-Verlag, New
York, 1969),p. 455.

» M. Balkanski, R. Beserman, and J. M. Besson, Solid State
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Verlag, New York, 1969), p. 369.

"O. Brafman, I. F. Chang, G. Lengyel, S. S. Mitra, and E.
Carnall Phys. Rev. Letters 19, 1120 (1967); in Proceedings of the
International Conference on Localized Excitationsin Solids (Plenum
Press, Inc. , New York, 1968).

'4M. V. Klein and H. F. MacDonald, Phys. Rev. Letters 20,
1031 (1968).

'~ S. S.Jaswal and J.R. Hardy, Phys. Rev. 171, 1090 {1968).
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Experimental observations on Raman scattering and
infrared absorption from such crystals has yielded,
basically, two characteristic types of behavior. Assume
that a mixed crystal Aj,B C can be formed as an
alloy of pure AC and pure BC, each of which is charac-
terized by one optically active mode with frequencies
to& and to&, respectively. Then, in the first (type-I)
behavior, the mixed crystal A&,B C continues to
exhibit''' " a single k 0 optic mode which shifts
linearly with the concentration x from the frequency
to~ (that characterizes pure AC) to coti (that for pure BC).
The intensity of the mode remains approximately con-
stant, and the linewidth increases and peaks near the
center (x 0.5) of the mixture. For the second (type-II)
behavior, ' the mixed crystal exhibits two modes
which are close to those which characterize pure AC
and pure BC. The intensity of these modes varies in
approximate proportion to the fraction of each corn-
ponent present. As the (molar) concentration x in-
creases, the intensity of the BC mode increases, while
that of AC decreases, with both shifting slightly.

It is possible for some modes of a crystal to exhibit
behavior intermediate between types I and II, and it
is also possible for different modes of the sanze mixed
crystal system to display different behaviors. The for-
mulation of a theory of the optical phonon properties
of a mixed crystal system in terms of average Green's
functions can provide" a criterion for the "virtual-
crystal approximation" that characterizes the linear
shift (type-I) behavior, and is also capable of explaining
the "local-mode" behavior that characterizes type-II
spectra.

II. EXPERIMENTAL DATA

Ke have measured experimentally the linewidths and
frequency shifts for the first-order Raman active pho-
non mode in the mixed fluorite systems Ca& Sr F2 and
Ba& Sr F& for a variety of concentrations from @=0
to x=1. These crystals, which have long been known
to form continuous solid solutions, ""were obtained
from Optovac, Inc. The crystal samples were excited
by a cw gas laser source, and the method of detection
employed a photon-counting technique. Light scattered
at right angles from the laser beam was focused onto the
entrance slit of a grating monochrometer, which was
equipped with a motor drive for scanning the spectrum
wavelength at a constant rate. Signal pulses from a
phototube, placed at the exit slit of the monochrometer,
were fed into a Nuclear Chicago RIDL Model Xo.
34-123 multichannel analyzer. This instrument was
used in the "time base" mode of operation —all of the
pulses that arrive from the phototube, in a preselected
interval of time, are counted and stored sequentially in
400 channels. Thus, as the wavelength is scanned

P. S. Pershan and %.B.Lacina, Phys. Rev. 168, 725 (1968).
E. Rumpf, Z. Physik. Chem. (Leipzig) B'7, 148 (1930).

~' E. G. Chernevskaya and G. V. Anan'eva, Fiz. Tverd. Tela 8,
216 (1966) t English Transl. : Soviet Phys. —Solid State 8, 169
(1966)].
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linearly by the motor-driven grating, the RIDL channel
address advances linearly in discrete time intervals; the
result is that the spectrum is stored digitally in the 400
channels of the analyzer. The RIDL channel width is
variable with discrete values, and typically, a width of
1 or 2 sec was used. Furthermore, in order to improve
signal-to-noise characteristics, it is often desirable to
scan the same spectral range over and over, and add
up the results. One of the advantages of the present
method of detection is that this can be easily done, since
the RIDL is capable of adding a new spectrum to one
already stored in its memory. Thus, by means of an
electromechanical control device that was specially
designed to provide this multiple-scan feature, it was
possible to obtain very clean data by improved signal-
to-noise.

The earliest measurements' were made using a 1-m
Jarrell Ash Model 78-420 spectrometer, a Spectra
Physics Model 116helium neon laser (6238 A, 25 mW)
an Amperex XP1002 phototube (S-20), and a lab-built
cold-finger helium Dewar. Later measurements were
taken on a similar setup which included a Spex Model
1400 double monochrometer, a lab-built ionized argon
laser (4880 A, 200 mW), an EMI 9558 phototube
(S-20), and a Janis Super Vari-Temp Model 10-DT
helium gas-cool Dewar. Because the Quorite systems
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Fro. 2. Full linewidths (at half-maximum) for the Ca, ,sr, p,
system. Experimental points are the actual widths after convolu-
tion; dashed lines is theoretical. Open circles correspond to the
4880 A. data, and closed to the 6328 A. data.
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FIG. 1. First-order Raman line shifts for
Ca1 Sr F2 and Sr1, Ba F2.

studied here exhibit first-order Raman frequency shifts
on the order of 300 cm ', the separation from the
laser line is far enough that the problem of extraneous
light scattering in the Jarrell Ash spectrometer could be
eliminated by using a dielectric interference filter at the
entrance slit to reject the laser light. For the Spex doub]. e
monochrometer, the scattering problem is significantly
reduced, and such a Alter for eliminating the laser line
was not necessary when that system was used.

The experimental results for the Ca~,Sr F2 and
Sr&,Ba,F2 mixed crystal systems are shown in Figs. 1
and 2; the 6rst-order k 0 Raman line shifts linearly
with the concentration, with an integrated intensity
that remains approximately constant, and with a line-
width that increases and peaks at the 50-50 mixture.
Because Raman scattering intensities are typically very
low, it was necessary to use relatively large spectrometer
slit openings for studying these systems. (For the Jarrell
Ash spectrometer and 6328 A laser, 3.9-cm ' slit;
and for the Spex double monochrometer and 4880 A
laser, 1.6-cm ' slit. ) In order to obtain actua/ linewidth
results, it is then necessary to convolute the observed
line pro61es with the "slit function, " which can be
inferred experimentally from an observation of the
laser line spectrum with the same slits. Theoretically
(for curved slits, or for straight slits with small vertical
aperture) the slit function should be a triangle. However,
in practice, the slit function for the Jarrell Ash (which
has curves slits) had a small Rat top, and that for
the Spex (with straight slits) had a small tail on one
side, but was otherwise approximately triangular. In
order to deconvolute the experimental results, it was
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assumed that, in both cases, the slit function could be
represented as approximately trapezoidal. It is impor-
tant to note that it is not possible merely to subtract
the instrumental width from observed linewidths when
the slits are opened wide.

The low-temperature ( O'K) linewidth data were
taken using both the 4880 and 6328 A setups, and after
the appropriate convolution corrections, the results of
the two sets of measurements were reasonably consistent
(cf. Fig. 2). Taking into account the experimental error
in reading the data, as well as the error associated with
the convolution process, these values are probably ac-
curate to about &0.3 cm ', with a systematic dis-

crepancy of 0.3 cm ' in the two sets of measurements.
Taking into consideration that the two sets of data were
taken at different times (approximately one year apart)
and with completely different equipment, a systematic
error of that magnitude does not seem too large. The
source of that error is most likely in the assumptions
made for the shape of the slit function, which could
easily lead to an error of that magnitude when the two
sets of data are reduced by convolutions with different
slit functions. (It is not likely that this discrepancy is a
real effect, related to excitation with 4880 or 6328 A.)
The linewidth shift bl'= I'n(x) —I'~(0) for the two sets
of measurements is consistent, with an error of 0.3
cm ', and it is this quantity that shall be important for
the later comparison of theory with experiment. The
theory of the Ca& Sr F2 mixed crystal system to be
discussed in Sec. IV is only able to predict the ad-

ditional contribution that disordering makes to the
linewidth; thus, it is only the change in linewidth with
concentration that concerns us here. The dashed line of
Fig. 2 is the result of a numerical calculation (to be
described below) in which the linewidth at zero con-
centration is arbitrarily set equal to the measured one.

Some data were also taken at liquid-nitrogen tem-

perature, and within the experimental error, the results

for the shifts and linewidths were about the same at
4 and 77'K.

III. BASIC THEORY

Quantum-mechanical double-time Green's-function

methods have provided a useful approach to the study
of properties of crystalline solids containing impuri-

ties. 4 3 "These mathematical techniques can be suc-

3I Y. A. Izyumov, Advan. Phys. 14, 569 (1965).
» A. A. Maradudin, in Astrophysics and the 3IIany-Body Problem

(W. A. Benjamin, Inc. , New York, 1963); in Phonons and Phonon
Interactions, edited by T. A. Bak (W. A. Benjamin, Inc. , New
York, 1964).

"A. A. Maradudin, Rept. Progr. Phys. 28, 331 (1965).
34 R. J. Elliott and D. W. Taylor, Proc. Roy. Soc. (London)

A296, 161 (1967).
'5 R. J. Elliott, in Phononsin Perfect Lattices and in Lattices 2fith

Point Imperfections, edited by R. W. H. Stevenson (Plenum Press,
Inc. , New York, 1966); in Proceedings of the International Confer-
ence on Lattice Dynamics, Copenhagen, Denmark, 1963, edited by
R. F. Wallis (Pergamon Press, Ltd. , Oxford, 1965).

"R. J. Elliott, Argonne Natl, Laboratory Report No. ANL-
7237, 1966 {unpublished).

cessfully applied to the "isolated impurity" problem
whenever the perturbation caused by the defect is
spatially localized. Because of their generality, Green's-
function techniques can be used to describe a wide
variety of impurity sects on the physical properties
of solids; the underlying unity that characterizes these
methods allows the mathematical formulation of many
physically diverse phenomena to be carried out in es-
sentially the same way. " For the lattice vibrational
problem, there are several excellent review articles
available by Maradudin ' "' Elliott et al. 3 ' Kwok, '
and others. Ke shall discuss only some of the basic
aspects of the Green's-function formalism here, since
much of this theory is thoroughly treated in the litera-
ture. The main purpose of a short review here is to
establish notation and to provide a background for the
calculations that are described in Sec. IV below.

Because the problem of a single impurity is now
reasonably well understood, much of the current interest
in the properties of defects has shifted to studies of
mixed crystal systems. The most extensive theoretical
work on random disordered crystals has consisted of
attempts to extend those methods of Green's functions
which have proved so successful for describing the iso-
lated local impurity problem. These "average-Green's-
function" techniques" 44 4' have been fruitful for ex-
plaining many of the features of a disordered system,
although they are often limited by the approximations
that must be imposed for even the simplest models. In
some respects, these approximations have not been com-
pletely satisfactory; for example, they are inadequate
for explaining many of the complicated "spike" effects
which exact machine solutions have shown4' " can
exist for even the simplest systems. Part of the difficulty

3' P. C. K, Kwok, in Solid State Physics, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1968), Vol. 20,
p. 213."D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish
Transl. : Soviet Phys. —Usp. 3, 320 (1960)j."I.M. Lifshitz, Advan. Phys. 13, 483 (1964)."G. Benedek and G. F. Nardelli, Phys. Rev. 155, 1004 (1967).

4' M. V. Klein, Phys. Rev. 131, 1500 (1963); 141, 716 (1966).
4' F. Yonezawa and T. Matsubara, Progr. Theoret. Phys.

(Kyoto) 35, 357 (1966).
4' T. Wolfram and J. Callaway, Phys. Rev. 130, 2207 (1963).
44 J. S. Langer, J. Math. Phys. 2, 584 (1961).
45 H. Poon and A. Bienenstock, Phys. Rev. 141, 7105 (1966);

142, 466 (1966).
46 P. L. Leath and B. Goodman, Phys. Rev. 148, 968 (1966);

1'75, 963 (1968).
4' R. W. Davies and J. S. Langer, Phys. Rev. 131, 163 (1963}.

D. W. Taylor, Phys. Rev. 156, 1017 (1967)."P. Dean, Proc. Phys. Soc. (London) '73, 413 (1959); Proc.
Roy. Soc. (London) A254, 507 (1960);A260, 263 (1961)~

P. Dean and J. L. Martin, Proc. Roy. Soc. (London) A259,
409 (1960).

5~ P. Dean and M. D. Bacon, Proc. Phys. Soc. (London) 81, 642
(1963).

~2 J. L. Martin, Proc. Roy. Soc. (London) A260, 139 (1961)."M. D. Bacon, P. Dean, and J. L. Martin, Proc. Phys. Soc.
(London) 80, 174 (1962)."H. B. Rosenstock and R. K. McGill, J. Math. Phys. 3, 200
(1962).

~5 D. ¹ Payton, III, and W. M. Visscher, Phys. Rev. 154, 802
(1967); 156, 1032 (1967); 1'l5, 1201 (1968).
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arises because the approximations that are introduced
make tacit assumptions about the analytic behavior
of the average Green's function as a function of the
concentration x. Except for some "self-consistent"
analyses, "' " the usual approach is to expand the
inverse of the average Green's function (G(x)& ' as a
power series in x (which requires assumptions about
analyticity properties). Even in situations where such
approximations can be applied with reasonable assur-
ance of validity, tedious numerical calculations are
usually involved for realsitic models of the lattice and
defect which make it dificult to evaluate (G(x)& '
beyond erst order in x. Nevertheless, despite some of
these shortcomings, these techniques have had great
success in describing many of the impurity effects ob-
served in physical systems.

In this section, a summary of the Green's-function
methods that are applicable to the lattice dynamics of a
random, disordered crystal will be given. The rigid-ion
model in the harmonic approximation will be described,
and it will be shown how Raman scattering and infrared
absorption are related to certain phonon Green's
functions. The results of numerical calculations for the
Ca~,Sr F2 svstem will be given in Sec. IV.

A. Lattice Dynamics

In the harmonic approximation (to which the present
work shall be restricted) the vibrational Hamiltonian
of a crystal lattice can be written" '~

K=-,' P Mt„u (ltt)'+ ,' Q -tt (ttc)
LKA lKa, l'K'P

XC' p(ltd, t'tt')up(tV), (1)

where I (ltc) represents the n component of the displace-
ment from equilibrium of the atom with cell index l and
basis index tt. For a perfect lattice, the force constants
C p'(ltc, l'tc') depend only upon (Rt „.—Rt„), and the
masses JI~„' are independent of the cell index l. In an
obvious matrix notation, the Hamiltonian for a perfect
lattice is given by

lko) of the "momentum space" representation can be
expressed concisely by the transformation function

(tttn l ka) E—"'e*"a'"'ie (tt l ka), (4)

where the set of vectors ie (tc l
ko.) are eigenvectors of the

Fourier-transformed dynamical matrix

D~p'(kltttt') =Q e *"'&"'" '"'Dap'(ttt, t'tc'), (5)
l

P D-p'(kI«')~p(a'lka) =~s '~-(alka) (6)

In order to evaluate the phonon eigenfrequencies cok,
and eigenvectors se (tclko.) (which shall be needed in
later calculations of phonon Green's functions), it is
necessary to construct a model of the lattice. These
quantities shall be evaluated for CaF2 by using a
rigid-ion model, due to Ganesan and Srinivasan, ' for
the (ionic) fluorite lattice. The crystal is regarded as
consisting of a lattice of rigid, nonpolarizable ions
which interact through long-range electrostatic and
short-range repulsive forces. The short-range interaction
terms, whose physical origin is a repulsion between over-
lapping electronic distributions, fall off rapidly with
distance, and are included only for nearest neighbors
in the present model. The Coulomb forces between ions
are assumed to be electrostatic interactions between
rigidly spherical charge distributions (i.e., "point
charges") that are multiples of an eifective electronic
charge Ze. A more complete description of the physics
of the rigid-ion model, and of the successes it has for
predicting various experimental quantities, can be
found in the original source. "The formal details that
are relevant to the present calculations of phonon
eigenfrequencies and eigenvectors shall be described in
more detail here.

For Ruorite structure, shown in Fig. 3, the space
group is 0&'-Fm3m. The crystal consists of three inter-
penetrating fcc lattices, and can be pictured as a cubic

3-'= -'Q'Q+-'Q'D'Q (2)

where D = Ms 't'N M, 't' is called the dynamical
matrisc, and the (column) matrix Q is defined by Q= Ms't'u. The eigenvectors of the Hermitian matrix
D' are the phonon normal modes, lko&, where (k,a)
labels the momentum and branch index:

Dol ka&=~,.sl kn&

The relation between the basis vectors llttn& of the
"crystal lattice site" representation and the vectors

Fi FY

5 A. A. Maradudin, E. W. Montroll, and G. H. Weiss, in Solid
State Physics, edited by F. Seitz and D. Turnbull (Academic
Press Inc. , New York, 1963),Suppl. 3.

sr M. Born and K. Hnang, Dyrtaraica/ Theory of Crystal Lattices
(Oxford University Press, New York, 1966).

Fro. 3. Crystal structure of the (fcc) CaF2 lattice, with the
primitive translation vectors t1, t2, t3 shown. The primitive cell
contains three basis atoms, Ca, F1, and F2, labeled I~:=1,2,3.

ss S. Ganesan and R. Srinivasan, Can. J. Phys. 40, /4 (1962);
40, 91 (1962).
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lattice of fluorine ions, with metal ++ ions in every
other body-centered position. The present model in-
cludes short-range forces between nearest-neighbor
Quorines, nearest-neighbor calciums, and between a
given calcium and its nearest-neighbor Ruorines. Sym-
metry techniques can be used to show that the most
general forms of the force constant matrices are

r
Cly

4'(-', rp, —',rp, —',rp, Ca,F)= —Pl
.Pl

'pp

+P(rp rp, 0; Ca, Ca) =
.0
Q3

&P(rp, 0,0; F,F)= —0
.0

Pl Pl'
Pl

Pl &1'

0
Pp 0
0 n2.

0 0
Pp 0
0 Pp.

(7)

with all of the other tensors obtained from appropriate
rotation operations. (rp is the F-F separation, which is
half of the "lattice constant. ") The "self-" force con-
stant matrices 4P(0,0,0; Ca, Ca) and +P(0,0,0; F,F) can
be calculated from the condition

P e(lK, l'K') =0
Pa

that results from invariance of the lattice under a rigid-
body translation, and are given by

+p(0,0,0; Ca, Ca) =4(2nl+2pp+np)1,

4 (0,0,0; F,F) =2(np+2pp+2nl)1.

The short-range force contributions to the Fourier-
transformed dynamical matrix [Eq. (5)j become

D„'"(kI1,1)=(4/mo, )[2nl+Pp(2 —cosk, cosk„
—cosk~coskg)+ap(1 —coskycoskg) j,

D»'"(kI 1,1)=(4/mo, )yp sink, sink„,

D, '"(kI 1,2) = —4nl(mo, mp) "'[cos-,'k, cos-', k„cos-,'k,
+i sin pk, sin2k„sin pk, j,

D»'"(kj1,2)=4Pl(mo, mp) ' 't[is-n', ksin —,'k„cos-', k,
+p Sln2kz Cosgkg COS2kpj& (10)

D„'"(kI2,3)= —(2/mF) [cxp cosk, +Pp(cosk„+cosk, )j,
D, '"(kI2,3)=0,
D.p'"(kI 1,3)=D.e'"(kI 1,2)",
D e'"(kI2,2) =D p'"(kI3,3)=(2/mp)(np+2pp+2n, ),
with all other elements determined by cyclic permuta-
tion of x, y, and z. (Thecomponentsof thek vector are
expressed in dimensionless units for which ro is taken
to be unity. ) The three basis atoms of the unit cell,
Ca, F~, and F2 of Fig. 3, are denoted by 1, 2, and 3,
respectively, in Eqs. (10).

In the harmonic approximation, the quadratic trunca-
tion of the (1/r) Coulomb forces leads to a sum of
dipole-dipole interactions, distributed over the entire

where

g~ggr
Do'"'(kIKK') = — S(k,r„„,),(3'„3E„)"'

e—ik (Rl+gaa')

(12)

S(k,r„„.) =g' ——
IR,+r„„.I

(Rl+r„„)(Rl+r„„.)
&& 3 —1. (13)

IRt+r- I'

The vector r„„=R„—R„ is the relative displacement of
two ions I~., a within a unit cell, and the prime on the
sum means that terms for which (Rl+r„„.) =0 are to be
omitted. (Clearly, no primitive translation vector R'can
make (Rl+r„„)=0 unless K=K so the prime on the
sum refers only to that case. ) The summand of (13)
falls off as 1/RlP at large distances, but since the area
of a spherical shell goes as E~', the sum falls off only

1/El. However, the convergence is assisted by the
phase factor, exp[ —ik (Rl+r„„)j, which oscillates
rapidly as R~ increases, and by the dyadic expression
in curly brackets (an angular factor which has Fp
symmetry) whose contribution over a large sphere tends
to average to zero The conver. gence of (13) is extremely
slow, and as k —+0, the sum is only conditionally
convergent, and depends (in a limiting way) on the
direction of approach to the origin. This fact leads to the
well-known phenomenon of splitting the degeneracy
between the transverse and longitudinal F~„modes in
CaF2.

In order to evaluate the Coulomb contribution (12)
to the dynamical matrix Dp(kIKK'), it is advantageous
to use techniques formulated by Nijboer and De
bette"" for a general class of lattice sums. Using

"B.R. A. Xijboer and F. W. De Wette, Physica 23, 309 {1957);
24, 422 {1958);24, 1105 {1958).

F. W. De Wette, Physica 25, 1225 {1959);Phys. Rev. 123,
103 (1961).

lattice. In the present model, the charges on the rigid
nonpolarizableions are assumed to be+2Ze for calcium,
and —Ze for fluorine, where Ze is an effective charge
which (along with the other constants nl, np, np, Pp, Pp,
and yp) will be determined from experimentally ob-
served parameters. Since the ions are assumed to be
rigid and nonpolarizable, the dipole moments arise
purely from mechanical displacements from equilibrium.
Thus, if the Coulomb energy is expressed as a quadratic
form, the electrostatic contribution'to the force con-
stants becomes

q;qt R;,R;;
No'"'(i,j)= — 3 —1, (i~j)

R,, z,,' I
'

(»)
~'"'(,j)=0, (=j)

where i and j refer to ion sites, q; q; to the effective
charges, and R;,=R;—R, is the equilibrium separation
between sites i, j. The Coulomb contribution to the
Fourier transformed dynamical matrix can then be
written
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those methods, it is possible to show that the dyadic
lattice sum S(k,r„„.) can be expressed as

TAnrE I. Experimental constants for CaFs (at 4'K), with
the resulting rigid-ion model parameters. The force constants nI,
p1, . . . are expressed in dimensionless form as multiples of e2/r03
(=1.14)&104dyn/cm in cgs units).

e '~'n'+""& (R~+r„„)(R~+r,„)
S(k,r- )=Z'

IR~+r- I' IR~+r- I'

XLerfc(gnlRg+r„„ I)+2IR~+r„„ I
(rr/a)'~s

Xe
—

~ "&+""~'(1+san
I R)+r„„ I s))

4a. (hg —k) (hg —k)
»x'&as' I&x &I /4~ 3 — —1

3v~ x

ma (cm-')
ruro (cm ~)

coLo (cm ~)

60

C&~ (dyn/cm')
C» (dyn/cm')
C44 (dyn/cm')
ro (X)

326
267~

472'
6.38'
2.047s

7.4)&10u b

5.6&(10"
3.59' 1011b

2.725

g2

0.'I

Py

P2

V2

A3

0.609
1,537
2.707
0.315
0.274
1.079

where v, =2ro is the volume of the primitive cell, n is
an arbitrary constant, and hz are the reciprocal lattice
vectors. S(k,r„„.) can thus be decomposed into two
sums, one over the real lattice, and the other over the
reciprocal lattice, and both sums are rapidly converging.
The constant 0. can be chosen conveniently to make the
two series converge approximately equally rapidly
(o=-,'s. was used for the calculations). The Coulomb
contribution (12) can be expressed completely in terms
of three sums S(k,r„„.) as

4Z2e2
D '"'(k I1,1)= — S(k,Loooj),

D"- ( I2,2) = — 5(k, l oooj) = D'-'(I I3,3),

Z 2e2

D""'(kl 1,2) = S(k I
-:—:—:3

(mc.mp) "'
D«"&(kl 2 1)e

Dcou~(kl 1 3) —Dc '(kl3, 1)*=Dc "'(kl2)1),

Z2e2
D«"~(kI3,2) = — S(k,L100j)= D '"'(kl2)3)*,

& Reference 70.
b D. R. Huffman and M. H. Norwood, Phys. Rev. 11'7, 709 (1960).

and the complete dynamical matrix D'(k
I
xx')

=D"(kIKK)+D«"'(klKK) can be used in conjunc-
tion with (6) to obtain the phonon eigenfrequencies
&ox, and eigenvectors re (x) ko) for the fluorite lattice.

It is instructive to examine the k=0 modes in Inore
detail. Using the standard techniques of group theory,
it can be shown that the synnnetry of the long-wave-
length modes is given by I'(k=o) =Fs,+2F&„. One of
these F„rrepres netati ons corresponds to the (three)
acoustic phonon branches, while the other six degrees
of freedom correspond to optic modes. The (triply
degenerate) Fs, mode is Raman active, and the in-
frared active F1„mode is split into longitudinal and
transverse branches, as we shall show below. This
phenomenon is connected with the macroscopic polari-
zation field which accompanies a polar vibrational mode,
and arises because of the long-range Coulomb inter-
actions. '7 It is easy to show that, for the even F&, mode,
the calciums remain stationary, while the two fluorine
sublattices vibrate against each other. For the odd F1„
optic mode, the Quorines all have the same displace-
ment, and that of the calcium can be obtained by re-

quiring the center of mass to be stationary in such a
mode. The (unnormalized) mode vectors at k=0 are

(Ca)r

x
w= (Fr)r

(Fs)r

0 0 0
0 0 0
0 0 0
j. 0 0
0 1 0
0 0

0 0
0 —I 0
0 0

—2/4~c. O 0
0 —2/v'pcs 0
0 O —2/&mc.

1/QMF 0 0
O 1/gmp 0
0 O 1/gmp

1/Qmp 0 0
0 1//mp 0
0 0 1/Qmp

F1„optic mode

Qmca 0 0
0 /mc. 0
0 0 Mme.

Qmp 0 0
0 Qmp 0
0 0 Qmp

Qmp 0
0 Qmp 0
0 0 Qmp
F1 acoustic mode

(16)

If the term in (14) for which X= (0,0,0) is split off, the
two remaining sums are absolutely (and rapidly) con-

vergent, and as k —+ 0, the value of each will approach

zero. (This is a consequence of the fact that both sums

will contain an angular factor F2 symmetry, and there
exists no linear combination of the spherical harmonics
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Fk that has cubic symmetry. ) Thus, as k-+0, only
the X= (0,0,0) term will remain, and

kk
lim S(k,r„„)= —(42r/3v, ) 3
k~p k2

(17)

This dyad clearly depends upon the direction of ap-
proach as we take the limit k —+ 0, but it is independent
of r„„.. The dyad (3kk/k' —1) can be taken to define

a set of axes with one longitudinal vector parallel to k,
and two (arbitrarily selected) transverse vectors per-
pendicular to k. In that cartesian system, the dyad is

diagonal, with eigenvalues, respectively, 2, —1, —1.
It is easy to show, from Eqs. (10) and (15)—(17) that
the limiting k —+ 0 frequencies are given by

tpit'= (4/mF) (ni+nk+2PU), (18a)

Q)To =. 22
1 2 -f 42r

+ ~
2ni — Z'e' (,

m, mc. I 3v.
(18b)

cubi„o = 2

-1 2-~ 8~
+ ~

2n, + Z'e'
222 F 222cp- k 3v,

(18c)

1 g2~2-

Cii = —ni+2pk+np+3 (19a)

where co& is the frequency of the F2, Raman mode, and

cuTo and coLo are the transverse and longitudinal Ii~„
frequencies. These relations can be used to help deter-
mine the parameters of the rigid-ion model; three other
relations are supplied by the expressions" for the first-

order elastic constants,

number of force constants from eight to six by making
the assumption that nk and PU, which measure forces at
right angles to the relative displacement of two atoms,
are zero. The six remaining constants, ni, Pi, Pp, yp, np,

and Z' can then be determined from Eqs. (18) and (19).
The coz, o frequency is usually obtained from the experi-
mentally measured TO frequency using the Lyddane-
Sachs-Teller formula, 4pLo ——tpTo(pp/p„)'t'. Using the ex-
perimental constants given in Table I, the phonon
density of states, and dispersion curves for the L100$,
$110j, and $111j directions have been calculated" for
CaFN (at 4'K), and are shown in Fig. 4.

B. Green's-Function Formalism

The (retarded) Green's function (at temperature T)
for two Heisenberg operators A(t) and B(t') is defined
by31—38

GA~(t —t') = (1/i) 8(t —t')(LA (t),B(t')j)„(20)
where 8(t) is the unit step function, defined by 8(t) = 0
for t(0, and 8(t) = 1 for t) 0. The brackets ( )v repre-
sent an average over a thermodynamic ensemble de-
fined by a density matrix expL —pÃj, where p=- 1/kT.
This Green's function can be used to express, to lowest
order, the driven response of a system in thermodynamic
equilibrium at temperature T, to an externally applied
field. If the unperturbed system is defined by the
Hamiltonian 3'., and an external perturbation is applied
which couples a driving force F(t) to some operator B,
such that the new Hamiltonian is given by H =K
+B F(t), then the response for an operator A is given

by
t'p

1 11, Z 8

Cak = —2pi 2yk —ni 2n—k p—k p—p-
fp— 2 pg

(19b)

t

(A)v(t)= —. «(L A( )t, B(»)j)vF(t)

1 Z2~2

C44 = —ni+2np+ pk+ pa —3
t p &a

(—p, ySZ'~'/v. )
'-

(19c)
ni+nk+2p,

Following Ganesan and Srinivasan, "we can reduce the

dt'G"'(t t')F(t')— (21)

to lowest order in F. For the case of an external 6eld of

frequency tp, given by (the real part of) F (t) =Fp
&& exp( —itpt+ pt), the response becomes (A)r(t) =XA~(pt)

&(F (t), where the linear susceptibility XA~(tp) can be
expressed in terms of the Fourier transform

GAB(s) = dt vtztGATT(t) (22)

tx
3

0,1,2 .3 .4,5 tt A 4 J A,5.6.T 0,1 2 A .4.5.6,T JI,N ip 0 I.p 2iI Xp

k,itt ' k, /tr k,/tt Ik UNITS df Il~„~

by XA~(pp) = GA~(pi+i 0). Frequently, the Fourier trans-

form of certain thermally averaged correlation functions
of the form RA~(t t') =(A(t)B(t'))v —appears in the
treatment of physically observable quantities. It can be
shown" that such a correlation function has a spectral

FIG. 4. Calculated phonon density of states and dispersion
curves in certain directions of high symmetry for CaF2 (based on
the rigid-ion model).

"Following Ref. 58, the force constant p1 is modified in the
co& calculations by giving it a k dependence: P& ~ P& (1—0.342/~2}.
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density given by The real part H &'&(cu) is given by a Hilbert transform,

clt e' '(A(t)B(0))r =if1+n(c0)$
1 H c"(c0')

H c'&((a) = —(P deo"—
x' CO M

(30)

)& lim fG" e((o+ic) G"—e(~ ie)—j, (23)
e ~0+

which satis fes an equation of motion, in matrix
notation,

(25)

Where it exists, the Fourier transform (22) for (24) is
given by G(co) '= Mcd' —i'. The eigenfrequencies &o,

for the normal modes of vibration are determined from
the secular equation det(M~' —4) = 0, and thus appear
(for a finite crystal) as simple poles of G along the real
axis in the (complex) frequency plane. For the perfect
lattice, the Green's function G'(s) can be expressed in
terms of the dynamical matrix D' as

G'(s) =M "'— M-D
~ko)(ko )

=Ma—"'Q —Mo "'.
S 07k@

(26)

Then, using (4), G po(i&c, l'&c'; s) = (lien
~

Go(s)
~

i'&c'P) can be
written in spectral form as

1
G p'(l&c, l &c' s) = P eik (Rts—Rt'x'&

where n(co)= [eP"—1$ ' is the Bose distribution func-
tion. The Green's function that is useful for the vibra-
tional problem is the displacement-displacemen t pho-
non Green's function,

G p(l&c, t'&c', t) = (1/i) 8(t)((N (t&c,t),esp(l'&c', 0)j)z, (24)

By means of the transformation function (4), the
matrices Hc'&(a&), Hc'&(cp) can be expressed in the
crystal lattice site representation

~
l&cn);~ thus, for

example,

FF p'c(&l &clY; (v) = — P c&((v' —a)&, ')
1V(M 3E )i» &,s

Xe'~'&"c Rc"'&io
(&c

~
kg)iop*(K'~ kg) . (31)

Clearly, if co lies outside of the phonon frequency
band(s), the imaginary part H "&(&u) of the Green's
function Go(cv+ie) will vanish, since the 8 functions
can only make a contribution when + is in one of the
band(s). Equation (28) shows that the sign of the
imaginary part of G'(s) changes as the branch cut on
the real axis is crossed.

The phonon Green's function G is useful for express-
ing many quantities of physical interest in lattice
dynamical problems —e.g. , density of states, Raman
sca ttering intensity, dielectric susceptibility, etc. The
formalism arises naturally as the most convenient
mathematical framework for studying the perturbations
due to impurities on the lattice dynamics of a pure
crystal. Their usefulness for expressing concisely the
coupling of an impurity site with the rest of the lattice,
as well as their significance of representing the response
of a lattice to an external (electromagnetic) field,
makes them ideally suited for the study of the optical
properties of crystals containing defects.

If an arbitrary configuration of (substitutional) im-
purities is introduced into a pure lattice, the perturbed
Green's function is

G(~) '=G'(~) '+& (32)

io. (&c I kcr) iop*(&c'
~
kcr) 1

(2"1)
~2 ~ 2 ~,1/2

'G( ~cdirt) = H&'&(&o) ~iH&'&((o) (2g)

where the matrix H "&(~) is given by

H &"(ca) = AM
—'&' Q ) ko) t&(co' co ')(kcr

~
Mo——'&' (29)

For a finite lattice, the Green's function G'(s) has poles
along the real axis which become densely spaced as
lV —+~, and is analytic in the upper half-plane. In an
infinite crystal, G'(s) will have branch cuts along the
portions of the real axis corresponding to the (positive
and negative) frequency bands of the crystal. Specifi-
cally, if &u() 0) is in one of the phonon vibrational bands
of the perfect lattice, then the Green's function G'(s)
will exhibit a jump discontinuity as s crosses the real
axis from cu+i e to co —ie:

where the "defect matrix" V is defined by

V= (M —Mo)cd' —(e—e') . (33)

(It is always tacitly assumed that the subsitutional im-
purities do not distort the lattice; this is not strictly
true, of course, but the assumption can be justified-
or at least made plausible- -by pointing out that lattice
distortion effects will be implicitly incorporated in any
realistic model of the host lattice and defect. For the
dynansica/ properties of the crystal, the force constants
are the fundamentally important quantities, and the
lattice spacings do not appear explicitly in the results.
Lattice distortion effects along with possible changes
in the form of the impurity interaction, are implicitly
incorporated when the force constants are determined
from experimentally measured quantities. This assump-
tion is always made for this type of problem, since it is
desirable to be able to continue to describe the lattice
at equilibrium by the vectors Ri„of the perfect lattice. )
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In principle, Eq. (32) represents the solution for an
arbitrary configuration of impurities, although for a
general defect matrix V, it has little practical usefulness
for providing any explicit knowledge of the nature of the
perturbed modes, or for changes in actual physical
quantities. For a single, isolated, substitutional defect
in an otherwise perfect lattice, it is possible to obtain
several useful results from this formalism. If vo is the
defect matrix for a single impurity located at some site
i=(tp Kp), then

G (~) '=GP(~) '+vo (34)

F("(~)=E vp(i)I:&+G'(~)vp(i)] ' (37)

Analogous, but more complicated expressions hold for
the higher-order terms. The brackets ( ) in (35) repre-
sent a "configurational average" over all possible ar-
rangements of xX substitutional impurities (of the same

type) in a perfect lattice described by GP((p). To lowest
order in the concentration,

Mp'/2(G(x, (p))Mp" 2

= Lp)2 —Do+xMo ~/2F(»(~) M;~/2j —~ (3g)

We shall later be interested in the function

g (1)() M —1/2F(1) (~) M —1/2 (39)

which can be expressed in momentum space using (4) to
obtain

(k I
8("(~)Ik' '&=b-6'"(k,~)-, (4o)

and if the "defect subspace" (the total number of sites
coupled by vp) is small, the techniques of ma, trix parti-
tion and the exploitation of group theory can be used to
simplify the calculations. "40 The difficulty of carrying
out numerical computations for an actual crystal lattice
increases rapidly as the size of the impurity subspace
increases, so it is often desirable, and usually necessary,
to restrict the assumptions on force constant changes.
In order to make a problem manageable, compromises
have to be made that will provide a physically realistic
model of the impurity and the host lattice, and simul-

taneously keep the defect subspace as small as possible.
Since the use of Green's functions for such problems
has been thoroughly discussed in the literature, par-
ticularly in several review articles, no further account is
necessary here.

It was shown in an earlier publication" how it is
possible to extend the single-impurity results to a
random, disordered crystal, by means of a differential
technique. The average Green's function (G(x,(p)) is
given by

(G(x,(p)) '= G'((p) '+ F(x,pp), (35)

where the proper self energy (PSE) F(x)-is assumed to be
expandable in a power series:

F(x,p)) = xF(')(p))+-', x'F(')(p))+ (36)
where

C. Phonon Oytical Proyerties

The phonon modes of a perfect lattice transform ac-
cording to the irreducible representations of the crystal
space group, and thus modes at k = 0 have the symmetry
of the crystal point group. For a crystal which contains
a center of inversion symmetry, Raman scattering and
infrared absorption provide two complementary tech-
niques for studying the long-wavelength optical modes.
In this section, we shall show how these phenomena can
be described using phonon Green's functions.

Raman scattering (RS) from lattice vibrations in-
volves the creation (or destruction) of certain k~0
phonons when light interacts with a crystal. An incident
electromagnetic wave of frequency ar; is coupled to the
phonon modes of a crystal by means of the electron~'c

polarizabitity P e, which establishes an induced dipole
moment

~-(t) =2 &-eL(u'(t) };~']&e(;)e-'"". (42)

The prolarizability depends parametrically upon the
instantaneous positions of the ions u, (t), and the
(inelastic) scattering mechanism is the guctlations in
I'

p that are induced by the vibrating lattice; the
radiating dipole has a frequency cv; that is modulated by
lattice vibrational frequencies due to the intermediate
coupling with the electronic structure. The description
of Raman scattering in terms of the polarizability is

where

5'"'(k (p) = Q e '"'"' "'"'w.*(/(Iko)we(/('I ko')
l tte, l' «'P

&&u„-'/2(t~a
I vpL1+ g'(~) vpg-

I PdP)m„.-~/2.

vp is the defect matrix for an impurity at some (arbi-
trary) origin in (41), so the summations over (lKn) and
(t'K'P) in (41) extend only over the defect subspace of a
single impurity. The proper self-energy will be diagonal
in k, and since G ((p) is diagonal in k, the average
Green's function (G(x,(p)) will also be diagonal. The
mathematical process of averaging over all configura-
tions has the important effect of restoring k as a good
"quantum number, " in a certain sense. (G(x,(p)) must
have all of the space group symmetry of the empty
lattice, and the fact that it is diagonal in k is an expres-
sion of the translational invariance that an "average
crystal" would be expected to possess. This is not to
say that there are eigenmodes of the perturbed system
with well-defined momentum k; the random, disordered
crystal is defined by a configuration average over a large
ensemble of systems, each of which is not periodic. An
experiment which probes the crystal by exciting a dis-
turbance of well-defined momentum k will, therefore,
yield a spread in frequencies. Mathematically, this will
be described by the imaginary part of the PSK.
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based on the early work of Born and Bradburn, 6' and
has been expanded into a very useful formalism by
Xinh, " which we shall follow here. A comprehensive
review of many aspects of RS has also been given by
I.oudon. '4

In the semiclassical approach to be followed here, the
incident light field is regarded as a classical source, and
the details of the electronic states of the system are
lumped into certain phenomenological constants that
characterize the polarizability I' p. It can be shown'~ "
that the intensity per unit solid angle for RS radiation
at frequency ~r = o~r+o& is given by

O);4

I(co) = g rz zzpi, ,pz(o))E,Ez*,
2m' ~pv&

(43)

where 8 is a unit polarization vector of the scattered
radiation, and E is the (complex) amplitude of the
electric field for the incident radiation. The scattering
tensor i „ez(o&), can be expressed as a Fourier transform
of a correlation function for the electronic polarizability,

00

z-v.ez(~) =-
2m

dt e'"'(Ppz(t)P. ,*(0))r, (44)

where P e(t) is a Heisenberg operator. If P e(t) is ex-
panded in terms of the nuclear displacements

P.p(t) =P.e+P P.e,„(lz)u„(l~,t)+ (45)

tion of (substitutional) impurities in the lattice; if we
define a (column) matrix p, such that (&trip=p„(lfr)
=g en P e,„(la).Ee, Eq. (48) can be expressed in
matrix notation as

I(co)-p ImG(co+ze) p. (49)

For a perfect crystal, the coupling coefIicients
P e,„'(k) are independent of the cell index l, and have
symmetry properties determined by the group of oper-
ations that leave the crystal and the site ~ invariant. '
The symmetry of each site a determines the form of the
tensors P e,„'(Ir), and provides one point of view for
obtaining the selection rules for the first-order Raman
eGect. The introduction of defects into a perfect crystal
will, in general, alter these polarizability coefhcients;
if we define p= p'+bp, the Raman scattering intensity
from a random, disordered crystal becomes

I(o~) ImLP'(G(oi+i&)) p'+ p'(G(oi+ie) bp)

+(~PG( + ))p'+(~PG( + )bp)j (5o)

Thus, in addition to perturbations in the lattice dy-
namics, the first-order RS also refIects changes in elec-
tronic properties. If the mixed crystal is formed from
two similar isomorphs (such as the Car, Sr,Fz or
Bar,Sr,Fz systems), it may be reasonable to assume
that the polarizability coefFicients do not change
signihcantly, and in that case, the dominant contribu-
tion to the spectrum would be given by the first term
in (50),

I( )-p'(G( +z ))p'. (51)
and substituted into (44), the first term of (45) will

contribute to Rayleigh scattering, the second term to
first-order (one-phonon) RS, the next to second-order
RS, and so on. For first-order RS,

i ~,e&(ro) = P P ~,„(llr)I„„(k,lY; &a)Pe&,„(lV), (46)
l ttp„, l' tt'v

where
00

I„,(llr, l'Ir'; o~) = — dt e'"(u„(l~,t)u„(lY,O))r. (47)
2'

The relation (23) can be used to express the Raman
scattering intensity I(co) in terms of the electronic
coupling coefficients P e,„(l~) and the phonon displace-
ment-displacement Green's function (24):

I((o) Ezz((o)+ 1j P P, ,„(llr)
l ttp, l' tt'v, aPy5

XImG„,(ill, lY; co+i a)Ppz „(1'z')

Xzz zzeE,E *. (48)

This is a general result, valid for an arbitrary configura-

6z M. Horn and M. Bradburn, Proc. Roy. Soc. (Londonl A18S,
161 (1947).63¹X. Xinh, Westinghouse Research Report No. 65-9F5-
442-P8, 1965 (unpublished); J. Phys. (Paris) 28, Suppl. 2, Cl-103
(1967).' R. Loudon, Advan. Phys. 13, 423 (1964).

For a host which has one first-order allowed Raman
line (such as CaF~), the coefficients p„'(~) have a struc-
ture that projects onto this (k=0) Raman mode,

I(a) Im(k=0, o.zl M, 't'(G(o&+is))
X Mo'I'l k=0, ozi). (52)

This can be shown by inserting a factor Mo 't' 1.Mo't'
between p and (G) and between (G) and po in Eq.
(51), with the following identity for the unit matrix:

p Il~tz)e'~'a'"w~(lrlko')(ko I ~ (53)

Since the coefficients (ktzlpo=p„'(~) are independent
of the cell index, the resulting sum over / that arises
will produce a bi, 0 factor, and further simplification will

lead to a sum

Z p'(~) ~„(~lk=o, ~)

that is nonvanishing only for the Raman-active mode

o = o ~. Equation (52) shall be the basis for the numerical

calculations for the Ca~,Sr F2 system that are pre-
sented in Sec. IV.

If the impurities that are added to a pure lattice are
radically different (in their electronic properties) from
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the host atoms they replace e.g., U centers in CaF~-
the RS may also exhibit contributions from the bp
fluctuation terms in (50). The important thing to
emphasize is that the spectrum of Raman scattering
from phonons depends upon a combination of eRects—
lattice vibrational characteristics, and electronic polari-
zability. If the impurities differ mainly in mass or
"spring-constant" characteristics, but are not very
different in electronic structure, it is reasonable to
assume that the polarizability coefficients will not
change, or will change only slightly. In any case, some
assumptions abou t the electronic coupling of defects
(in addition to those about the mechanical, vibrational
characteristics) must always be made if the Raman
eRect is to be used as a probe of the perturbed lattice
dynamics of crystals containing impurities.

When far-infrared radiation impinges on a crystal, it
interacts strongly with only those transverse optical
phonon modes near k=0 which possess an electric
dipole moment. Stern" and Martin" have discussed the
study of lattice vibrations by far-infrared spectroscopy,
and Kubo', . and many others" "have used the Green's-
function point of view to treat the complex dielectric
constant e(ar), from which the absorption, reflectivity,
etc. can be calculated. The review article by Maradudin4
can be consulted for many references to work on im-

purity-induced infrared lattice absorption in crystals.
Although an accurate treatment of the interaction of

light with the crystal lattice requires a redefinition of the
normal modes of the total system of vibrations and
radiation ("polaritons"), we can begin to discuss the
problem in the limit that the electric dipole moment for
these modes is vanishingly small. In such a process, the
absorption of light energy is accompanied by the excita-
tion of a phonon, but with no change in the electronic
state of the crystal. The k 0 selection rule will be re-

laxed if impurities are introduced into the crystal and
then light will be able to interact with other polar modes
of the (imperfect) lattice. For a perfect crystal without
phonon damping processes (i.e. , in the harmonic ap-
proximation), the so-called reststrahlen bands are 8-

function absorption peaks at the k—0 TO modes which

have vectorlike symmetry.

P Assume that a (long-wavelength) light field, turned
on "adiabatically, " interacts with the electric dipole
moment M of a crystal lattice:

K'= —M E exp( —i(st+et). (54)

This perturbation is of the same form as that considered
in Sec. III 8, and leads to a response function X p(co) for

"F.Stern, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1963), Vol. 15, p. 299.

«D. H. Martin, Advan. Phys. 14, 39 (1964).
"R.Kubo, Boulder Lecturesin TheoreticaL Physics (Academic

Press Inc. , New York, 1958),Vol. 1.
"H. Silz, in Phonons in Perfect Lattices and in Lattices mth

Point Imperfections, edited by R. W. H. Stevenson (Plenum Press,
Inc. , New York, 1966).

69 T. P. Martin, Phys. Rev. 160, 686 (1967); 1VO, 779 (1968)„

(M )r(i) which can be expressed as the Fourier trans-
form of the Green's function G~~(t) between two M
operators:

(~.)(&) =Q X.p((o)Ep exp( —icvt+et), (55)

where

X.p((v) =i dt (LM (/), 3fp(0) j)r exp/i(at —et(. (56)

If it is assumed that there is no static polarization PP,
and if only the first-order electric moment (linear term)
is retained, then insertion of Eq. (57) into (56) will give
the one-phonon absorption contribution to the far-
infrared dielectric constant. The susceptibility becomes

X p(co) = Q K,„(k)G„„(k,l'K'; s)+is)Kp„(lY), , (58)

or, in matrix notation )and analogous to Eq. (50)j,
& p((o) =K 'G((o+ie)Kp'+K 'G(a)+is)bKp

+hR.G(a)+ie)Stp'+ bR.G((o+ie) 8%p & (59)

where we have defined a column, (kg~% =& „(k),
and have expressed K„+9R '+hgt, relating the per-
turbed crystal to the pure host. The first-order coeSci-
ents K,„(k) have the significance of representing an
effective charge tensor, and just as for the force con-
stants C p(k, lV) and first-order electronic polariza-
bility I' p, „(k), they will satisfy certain symmetry
conditions. " For the perfect crystal, the coefficients

gg, „'(~) are independent of the cell index, and (just
as for the case of Raman scattering) the summations
over /, /' in Eq. (58) will lead to a projection onto certain
k —+ Omodes. However, thelimit ask ~ Oof the phonon
Green's function G is not uniquely defined for modes
that have an electric dipole moment. This complication
is related to the fact that the Coulomb contribution
(15) to D (k) has a term $cf. Eq. (17)7 that looks like
(3kk/k' —I) as k ~ 0; the limiting singularities are well

defined, of course, but there will be a dependence upon
the direction of approach. The origin of the splitting
into longitudinal and transverse branches is the macro-
scopic electric field that is associated with the longi-
tudinal wave. '~ The susceptibility X p(k ~ 0, co) can be
expressed as4

x.p(k ~ 0, ~) =k.kpx'(~)+ p.p
—k.kpjx'(u). (60)

There are, therefore, two scalar susceptibilities, Xr(co)
and Xz(~0), which measure the response of the lattice to
transverse and longitudinal electromagneticgfields,
respectively. It is the former quantity that is of in-

The electric dipole moment I can be expanded in
terms of the ionic displacements,

M.(t) =gR +PK.,„(k)u„(k,t)+ . (57)
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terest for the optical properties, since the electric
moment vector M is coupled to a transverse electric
(radiation) field in Eq. (54). It is only the transverse
optic phonon modes that can contribute to the lattice
absorption, 2(E dM/dt)=&a ImXr(or)

~
E(&u)

~

' and it
will be only the transverse lattice susceptibility Xr(u)
that contributes to the optical dielectric constant e(~).
For a mixed crystal in which the first-order electric
moment coefficients do not change appreciably from
those of the pure host, the dominant contribution to the
far infrared lattice susceptibility will come from the
first term in Eq. (59), provided that the pure crystal
has an infrared-active mode. (By using arguments
similar to those invoked for RS above, we can show that
St M0 't' projects onto k=0 modes with polar vector
symmetry. ) If the effective-charge characteristics of
the defects are significantly different from those of the
pure host lattice, a more complicated situation results,
and the 8% fluctuation terms in Eq. (59) must also be
included. In general, it is very difficult to treat such
problems if the concentration of impurities is not small,
and, in fact, studies of impurity-induced RS of infrared
absorption have generally been confined to systems in
which the pure host lattice does not. exhibit a first-order
effect. Thus, if we adopt the assumptions above, the
(transverse part) of the lattice susceptibility can be
expressed as

Xr((u) (k=0, TO~ M I (G((@+i'))
&&MD"2ik=0, TO). (61)

LThis can be demonstrated by inserting a factor M0 't'
1 M0't' between g)P and G and between G and Pg'

in the first term of (59), and using the identity (53) for
l.j In addition to the TO optical-phonon contribution
to the dielectric constant e(&u), there will also be a con-
tribution from electronic absorption processes. In the
far-infrared region, the frequency u is so low that the
latter processes contribute only a constant value,
X' (e„—1)/4' to the total susceptibility (where e„
is the high-frequency dielectric constant). Thus, if
defects are added to a crystal with only one infrared-
active mode, and if we assume that the first-order
electric moment coefficients do not change, then for the
disordered crystal

e(co) —e„~E(k=0, TO~ M 't'(G(co+is))M 't'

X ik=0, TO), (62)

where the constant E is determined completely from
parameters that characterize the pure host lattice. We
can easily verify that this result holds for the perfect
lattice by inserting the expression (26) for G0(&a+i~),
which gives (for co)0)

e(co) —e„~E(k=O, TO~ (co' —D'+ie) '
&& (k=o, TO). (63)

The constant E can be expressed as K= —&oTo'(eo —e~),
where e0= e(0) is the static dielectric constant, and we

obtain the familiar result
&O &c)

6 GO = Eoc, MTO ~

M MTo +16

Equation (62) for a mixed crystal becomes, finally,

.(.)/, -i=(i-- .To &k=O, TD[M. '

IV. MIXED-FLUORITE SYSTEM, Ca~ .Sr,F~

In addition to a physically realistic model for the
pure CaF2 lattice, a good model is needed to describe
the effects of a substitutional Sr++ impurity. The calcu-
lation of the PSE, to lowest order in the concentration
x, can be carried out for the mixed-fluorite system
Cai, Sr F2 by using Eq. (41). In order to make the
computational aspects of the problem manageable, as-
sumptions have to be made on the force-constant
changes (induced by a Sr++ impurity) that will keep
the defect subspace as small as possible. In the model of
the defect to be adopted here, we shall assume that the
long-range Coulomb forces are not affected. The defect
matrix v0 ——(M —M0)m' —(N —e') shall be constructed
from the following assumptions: (1) The mass of the
++ metal ion changes (Sr++ replaces Ca++); (2) the
effective charge Ze does not change; and (3) all nearest-
neighbor short-range interactions, except for that be-
tween ++ ions, may change. These requirements lead
to a defect space that contains nine atoms; it is an XI'8
complex, consisting of the ++ impurity and its eight
nearest Auorines, as shown in Fig. 5. The calculation of
the first-order PSE from Eq. (41) requires the evaluation
of v0[1+g'(&v+ir)vaj ', which is of order 27&(27.
Even with the present simple assumptions, the dimen-
sionality of the impurity subspace is quite large, and
without the simplifications that point symmetry can
provide, the calculations would be a formidable task.
The matrix g' is the Green's function (imbedded) in

x~ 2

FrG. 5. XFS Impurity subspace.

&((G((u+ie))M0'"~k=O, TO), (65)

and will be the basis of the theoretical calculations of
the infrared reQectivity spectra of the Ca&,Sr,F2
system, to be presented in Sec. IV.
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that subspace, for the unperturbed lattice. Even though
it is here confined to the defect subspace, g' has the
full symmetry of the perfect lattice —i.e., 0& point
group symmetry, and also, translational symmetry.
Instead of the 378 elements that a general (symmetric)
27)(27 matrix possesses, g' can be shown to have only
13 independent elements, as shown in Table II. (The
notation 0, 1, 2, . . ., 1, 2, . . ., etc., refers to the site
labels introduced in Fig. 5.) The real and imaginary
parts of the thirteen independent elements 3, 8, . . . ,
U, V of the 27&(27 matrix g'(&o+ie) in the XF8 defect
subspace have been computed numerically, as a func-
tion of frequency, and are shown in Fig. 9 in the
Appendix.

The defect matrix vo, and also vo[1+g'(o&+ie) voj ',
has the site symmetry of the XF'8 complex. There will

be one inass change, (ms, —mo, ), and three force con-
stant changes, bni, BPi, and Bo.3 involved in the defect
matrix vp, whose form is given in Table III. The change
in ni is calculated from Eqs. (18b) and (18c), using the
(assumed unchanged) value of Z'= 0.609 and the value~'
of coTo=225 cm ' for SrF2 (at O'K); the change in

Pi is obtained from Eq. (19b) using the experimental
valuei' of C»=4.75&&10"dyn/cm' for SrF& (at ~4'K);
and the change in n3 comes from Eq. (18a) using the
experimental value of xiii = 290 cm ' for SrF2 (at O'K).
The masses of Ca and Sr (relative to the fluorine mass)
are, respectively, 2.109 and 4.612, so that the change is
8m= 2.503. Since every nearest-neighbor F-F pair
shares the subspace for two possible impurity sites, the
average o,3 force constant is used for two F ions located
between a Sr++ defect and a Ca++ host atom. This is
equivalent to associating a change of —,'n3 in the F-F
matrix elements for the defect matrix vp that describes
a single Sr++ impurity. The "self-" force constant change
in Table III were determined from the translation
condition (8), which is valid for an arbitrary lattice.

Under each of the 48 operations of the Og point group,
a matrix T defined over the sites of the XFS impurity
subspace will be subjected to a 27-dimensional simi-
larity transformation 8: TESTS '. If T has the
symmetry of the XI'8 defect "molecule, " then it wi11

be invariant under all of these similarity transforma-
tions, and T will commute with each of the 48 27-
dimensional matrices S. The 27-dimensional (reducible)
representation formed by these similarity transforma-
tions can be shown to reduce to

I'(XI'8) =A ig+Eg+Fig+2Fgg+A2„+E„
+3Fi„+F2„. (66)

With some intuition, it is possible to construct 27-dimen-
sional column vectors with the appropriate symmetries
that can be used as "basis vectors" to reduce the matrix
T into block form, corresponding to the decomposition
(66) into orthogonal subspaces with A i„E„F„,. . .,

' D. T. Bosomworth, Phys. R,ev. 15'l, 709 (1967).
7~ D. Gerlich, Phys. Rev. 136, A1366 (1964).

etc. , symmetry. These (unnormalized) basis vectors are
displayed in Table IV, and are, of course, not unique;
all that is claimed for them is that they have the sym-

metry stated. They have been constructed so that
the equivalent polarizations (e.g., in a three-dimensional
representation such as F2,) are orthogonal. However,
since they were obtained purely by geometrical intui-
tion, it will only be accidental if they diagonalize any
given matrix T completely. All of the simplification that
group theory can provide is contained in the decomposi-
tion (66), and since some representations (e.g. , F2, and
Fi ) occur more than once, complete diagonalization
in those subspaces cannot be accomplished by 0&

symmetry considerations alone. Aside from the fact
that there are three equivalent polarizations, the reduc-
tion of a matrix T with the syinmetry of the XF'8 defect
molecule will lead to (three) 2)&2 F2, blocks, and (three)
3X3 F~„blocks. The diagonalization of these blocks
will determine the linear combinations of Ii~, and I'~

vectors (of Table IV) that diagonalize a given matrix T
completely. The elements of the unperturbed Green's-
function matrix g and of the defect matrix vp can be
calculated for each of the symmetry subspaces by using
Tables II—IV. These calculations are rather tedious,
and have been carried out for the Ii 2, and Fy„subspaces,
with the results shown in Table V. These matrices
(Table V) will be necessary later for the evaluation of

vof 1+go(oi+ie)voj ' (which occurs in the first-order
PSE) as a function of frequency in the F2, and Fi
subspaces. (The constants p, q in Tables IV and V are
related by p= 1/q, but are otherwise arbitrary; it shall

prove convenient for the later infrared calculations to
choose p= mo./mv. )

A. Raman Scattering

It may be reasonable to assume that the formation of
the mixed crystal Ca~,Sr,F2 from two similar iso-
morphs will not involve any appreciable changes in the
F p, „(~)ocoefficients that characterize the electronic
polarizability of CaF2. Evidence for this assumption
could be taken to be the fact that significant changes
in these quantities would most likely lead to induced
scattering from impurity modes, other than the k 0
excitation. Since this is contrary to our observations of a
single peak which shifts linearly, and broadens with
concentration, we shall assume that the dominant scat-
tering mechanism comes from the first term in (50),
which was expressed by Eq. (52). Using that result, we
can write the scattering intensity as

I((a) ImLoi' —((vie —il'ii/2) '+~a
+x(og[M 'i'F&'&(k=0, co+i&)M —"'(oii)j ' (67)

to lowest order in the PSE. We have phenomeno-
logically included a broadening to the k=0 mode of
pure CaF2 by adding a term —il'ii/2 to &oz, where I'ii
represents a full width. From Eqs. (16) and (41), it is
evident that, as k —+ 0 the PSE term in the denominator
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TABLE II. The unperturbed phonon Green s-function matrix (which contains 13 independent functions A, B, . . . , U, V) for the XYI
i~purity subspace shown in Fig. 5. The site labelsi, j=0, 1, 2, . . ., etc. , refer to the notation used in Fig. 5, and thematrixisparti-
tioned so that each small 3 X3 box represents a Cartesian dyad.

A C D-D C —D —D
A D C —D —D C D

A -D —D C —D D C

C D D C —D
D C D —D C —D
D D C D —D C

Go(0,$) =Go(0,z)

H P R S P
R P S

M —S —S Q

M K
H M

U V —V
U —V

U

P —S —R
S Q -S

—R 5 P

Q S —S
-S P -R

5 —R P

~ pp

CO

Symmetric block

P -R S
-R P —5
—5 5 Q

Symmetric

U —V -V
U V

U

Q —5 —S
5 P R
5 R P
U V V

U V
U

M H
H M

P —5 R
Q —5

R 5 P

Go(i,j) =Go(j i)T Go(~,~) =G U,~)'
U —V V

U —V
U

Ips

CO

ep
Same as upper right block Same as upper left block

IcpP

CP G'(l,j) =G'(',y) G'(~J) =G'(~,j)

TABLE IIl. The defect matrix vp in the XFs impurity subspace. The site labels
0, 1, 2, . . ., etc., refer to the notation used in Fig. 5.

0 Xo X1 X3 Xg

X1 —X1——,'sn3
0

-dna
0

0
0

0
—,'bn3

0
—,'bn3

0
—X2,bn3

gbn3
0

0

0
0
—,'bn3

X3

X4
-', bn3

0

—,'bn3
0

0
—X,——,'bn3

0
-', dna

0

0
-'Dna

0

—X4—-'dna

0
0

-',Bn3

0
0

X1

X3

X4

Same as upper right block
vp(p j)=vp(i j)

Same as upper left block
vp (Ig) =vp(i,j)

Bn1 F1 —F1
X1 ~p1 ~nl ~pl p—BP1 —BP1 Bn1~

bn1
X2 —— —bp1.—BP1

—F1 —BP1
Bn1 BP1

F1 Bn1

Bn1 BP1 8P1
X3— apl Bn1 8p1

,F1 BP1 Bn1.

Bn1 —SP1 BP1
X4= —8p1 Bn1 —Bp1

BP1 —BP1 8n1.

Xp=(ms —mc ) '—8& 1
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TABLE V. The unperturbed Green's-function matrix g' and the defect matrix vo in the F2, and FI„symmetry subspaces,
as determined from the mode vectors of Table IV.

B—II+F—U
F2v 1 V R Q+25 (V—R—H)42

2 (V R H—)V2— B—U 2M F—+2P—+Q

2

8(B+U+2M+F
+2P+Q+2p'A

+8PC)/I'

8(B+U+2M+F 4(H R V —4pD—)/u—
+2P+Q A-

+2C (2p —
g) )/uv

8(B+U+2M+F 4(2(B+U+2M+F 4(H —R—V+2qD)/v
+2I'+Q —A+ +2I'+Q)+q'A
+2 (2p —q) C)/uv —8qC)/v'

4 (H —R—V 4pD)/u —4(H R V+2qD—) /v —B+H F+U+ V—R Q+ 2S— —

F2v 1 —(bnz+bP&)

2 BpjV2

bPIV2

—(an +Sns)

Fg„ 1 (8/~. ) (—~2Sm
+()nj (4P —2q+7) )

(8/uv) (—(a'bm {4/v2) (gmco2bns

+bnz (4p —2g+ 7) ) 2bn& (2q+ 1)—2)

—(4/u)bPi(4P 1) —(4/v)bPi(1+2q)

(4/. )Sp, (1+2~)

—(8nI +8Pj+Bn3)

p mc~/m=F 1/q, b=m ms~ u=vcs, —u' =8 (1+2p'), v' = 4 (2+q')

of (67) is just the projection of vv[1+g (&a+is)vpg '
onto the mode defined by the second set of F&, vectors
listed in Table lV. Calculations have been carried out
for the 6rst-order PSE that occurs in expression (67)
for the Raman intensity, and the results are shown in
Fig. 6. These calculations have verified the validity of
the conjecture that ~v is negligible compared to unity
for the Raman mode, and leads to the "virtual-crystal
approximation" for the first-order Raman line, as ob-
served (this behavior is related to the real part of the
PSE). The linewidth, on the other hand, is related to the
imaginary part of the PSE, according to Eq. (67). One
of the necessary assumptions that this formalism makes
is that the contribution of disordering to the linewidth
of mixed crystals is additive with other effects, which
are included only phenomenologically by the addition
of the term —iTa/2 which characterizes the pure
crystal (x=0). The results of the linewidth calculation
that were carried out using Eq. (67) and the PSE func-
tion of Fig. 6 are shown by the dashed line in Fig. 2-

which also contained the experimental data. Note that
although the PSE contains considerable structure, the
only region where it makes a significant contribution to
the Raman intensity is near co& 326 cm ', because of
the nearly I,orentzian structure of Eq. (67). In that
region, there is a sharp peak in the (imaginary part) of
the PSE, and since the prediction of the linewidth is

320
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Fro. 6. The (k=0) PSE function that occurs in Eq. (67) for the
Raman scattering intensity.



B. LACINA AND P. S. PERSHAN

sensitive to the slope of this curve near cog, the agree-
ment of the calculation shown in Fig. 2 (by the dashed
line) is reasonably good.

B. Infrared Re6eetivity

A similar procedure was followed in an attempt to
explain the infrared reRectivity data obtained for the
Ca&,Sr,F2 system by Verleur and Barker. 2 It was as-
sumed that, with the introduction of a Sr++ impurity,
the first-order electric moment coe%cients do not
change appreciably from the values PP, „'(a) that
characterize the pure CaF2 host. That is, we shall again
assume that the dominant contribution to the mixed
crystal behavior [in this case, the far-infrared dielectric
function e(~)j comes from the (transverse, TO) k 0
excitations. Then, to lowest order in x for the PSE, the
expression (65) for s(&u) becomes

e(Q7)/e~= 1+(&TO —MLo )LCV
—(dTO +'LFMMTO

+x(aTo[Ms "'F&'l()r=0, a)+is)Ms '")oTo)g '
(68)

where we have, once again, included a phenomenological
term iF&ucvTo (conforming to the notation of Verleur
and Barker') to account for the damping of the TO
frequency of the pure CaF2 lattice. Thus, we take'
I'=0.025. The value of e„ for pure SrF2 is'0 2.07, com-
pared to 2.047 for CaF2, so it is a good approximation to
regard e„as a constant in (68). Again, if we appeal to
(16) and (41), it is possible to show that, as k-+0,
the PSE in the denominator of Eq. (68) will be the

projection of vsL1+gs(co+is)vs' ' onto the mode de-
fined by the second set of I'~„vectors listed in Table IV.
(This is a consequence of the convenient choice of
P= mes/mr, ——1/q. ) The results of the calculation for the
PSE that occurs in Eq. (68) are shown in Fig. 7.
Equation (68) was used in conjunction with

e((g) —1 '

Qe(ra)+1
(69)

LC

to calculate the far-infrared reflectivity spectrum (at
normal incidence) for pure CaFs and for Cas 75Srs ssFs,
since these cases can be compared with the experimental
observations of Verleur and Barker. ' The results are
displayed in Fig. 8, and although the quantitative agree-
ment is not perfect, there are many qualitative similari-
ties between the theoretical and experimental reflectivi-
ties. Note 6rstly that even for the pure crystal, the
present formalism does not describe the reAectivity
well (a purely harmonic crystal would have to be 100%
reflecting in the reststrahlen region). The inability of a
single (damped) mode to adequately describe the pure
CaF2 crystal is an indication of the fact that the crystal
may not be well-approximated by a purely harmonic
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reasonably realistic model, the Green's-function formal-
ism does predict the qualitative features that have been
observed in the mixed CaF2-SrF2 system. Clearly, the
present model has not been sufficiently sophisticated to
obtain precise quantitative agreement; however, the
calculations given here have provided some indication
of the difficulties that are involved in describing the
phonon optical properties of even reasonably simple
disordered systems. It should be clear that significant
improvement would be a rather formidable exercise,
since realsitic calculations for RS and IR absorption
depend upon rn.any different approximations and
assumptions.
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structure at 210 cm ' which corresponds to the sharp
peak in the PSE shown in Fig. 7. This coincides with a
minimum in the (calculated) density of states for pure
CaFu (cf. Fig. 4), and is probably an accidental anomayl
of the host model. In addition to the fact that anhar-
monic effects are completely neglected (which is prob-
ably the most serious deficiency), it is also possible that
the models of the defect or the host are not suKciently
sophisticated. Finally, the assumption that the K'
coefficients do not change may be inaccurate, and in
that case, there could be a more complicated absorption
structure throughout the band.

V. CONCLUSION

In spite of the several quantitative failures of the
present calculation, we have demonstrated that, for a

The 13 independent Green's functions g 0'(lie, f'II',

c0+ie) that arise in the XPa defect subspace (denoted
by A, 8, . . . , U, V in Table Il) have been calculated

by a histogram technique, using Eqs. (30) and (31).
The band of (squared) frequencies was divided into 200
equally spaced intervals, or "bins. "It is convenient to
calculate the imaginary parts first, using the spectral
representation (31), which contains a sum over all k in
the first Brillouin zone (BZ). (The 8 functions can be
regarded as contributing only to the "bin" in mhich the
frequency oII, lies. ) The summation was carried out
with a mesh in k space that included 64 000 points in
the first BZ, although exploitation of synn~etry made
it possible to reduce this sum to 1686 points that lie in
the "irreducible" 1/48 zone. After the imaginary parts
mere calculated as a function of frequency, the real parts
were obtained using the Hilbert transform relation (30).
zoRTRAN Iv programs for the IBM 7094 are available"
for calculation of phonon dispersion curves and Green's
functions (based on the rigid-ion model) for the Quorite
lattice. For the 1686 point BZ mesh, computation time
for the real and imaginary parts of the 13 Green's
functions on the IBM 7094 was about 4 h.

"W. B.Lacina, thesis, Harvard University, Technical Report,
Gordon McKay Laboratory, No. ARPA-36 {unpublished).


