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Kinematics of Exciton-Exciton Annihilation in Molecular Crystals

A. SUxA

Central Research Department, Experimental Station, E. I. du Pont de Xemours and Company,
8"ilmington, Delaware 198M
(Received 8 October 1969)

A theory is developed for calculating the kinematic part of the exciton-exciton annihilation rate in mo-

lecular crystals. The spatial and spin motion of the excitons, as well as the annihilation process itself, is
treated phenomenologically. Exciton propagation is assumed to take place as in the hopping model. The
importance of the dimensionality of the exciton motion is pointed out; in nearly one- or two-dimensional
cases, certain lifetime processes control the exciton collision rate, in contrast to the three-dimensional case.
These lifetime processes include motion out of the one- or two-dimensional subspace and, for excitons
with spin, spin relaxation. The theory leads to a description of magnetic field effects on the annihilation
rate of triplet excitons at room temperature. When applied to triplet excitons in anthracene, this description
gives a satsfactory fit to the observed effects and leads to the determination of the nearest-neighbor exciton
annihilation rate, the singlet-channel annihilation rate constant, and the exciton diffusion constant for
motion perpendicular to the ab plane of anthracene.

I. INTRODUCTION

'UTUAL annihilation of excitons in organic
~ crystals is a well-established phenomenon. Its

existence for singlet excitons was conjectured as early
as 1958 by Northrop and Simpson' in an attempt to
interpret photoconductivity in anthracene and has
been invoked for this purpose by many workers since
then. '3 Although the mechanism of exciton annihila-

tion as a means of charge carrier generation is open to
question, 4 the presence of the annihilation process for
singlet excitons in anthracene has been demonstrated. '
The evidence for the occurrence of mutual annihilation
of triplet excitons in naphthalene and phenanthrene, in
the form of observation of delayed fluorescence, dates
back equally far, ' although the interpretation in terms
of mutual annihilation was suggested later. Kepler
et 0/. presented conclusive evidence for explaining the
delayed fluorescence in anthracene crystals in terms of
triplet-triplet annihilation. Since then triplet-triplet
annihilation has been verified by others in anthracene"

'D. C. Nortbrop and O. Simpson, Proc. Roy. Soc. (London)
A244, 377 (1958).' S. I. Choi and S. A. Rice, Phys. Rev. Letters 8, 410 (1962);
J. Chem. Phys. 38, 366 (1963); D. R. Kearns, ibid. 39, 2697
(i963).' M. Silver, D. Olness, M. Swicord, and R. C. Jarnagin, Phys.
Rev. Letters 10, 12 (1963); K. Hasegawa and S. Yoshimura,
ibid. 14, 689 (1965).

4 R. G. Kepler and R. E. Merriaeld, J. Chem. Phys. 40, 1173
(1964);R. G. Kepler, Phys. Rev. Letters 18, 951 (1967).

'A. Bergman, M. Levine, and J. Jortner, Phys. Rev. Letters
18, 593 (1967); C. L. Braun, ibid. 21, 215 (1968).

6 H. Sponer, Y. Kanda, and L. A. Blackwell, J. Chem. Phys.
29, 721 (1958); N. W. Blake and D. S. McClure, ibid. 29, 722
(1958).' R. M. Hochstrasser, Rev. Mod. Phys. 34, 531 (1962).

8 G. C. ¹eman and G. W. Robinson, J. Chem. Phys. 3'7, 2150
(1962); H. Sternlicht, G. C. Nieman, and G. W. Robinson, ibid.
38, 1326 (1963).

9R. G. Kepler, J. C. Caris, P. Avakian, and E. Abramson,
Phys. Rev. Letters 10, 400 (1963); J. Chem. Phys. 39, 1127
(1963)."J.L. Hall, D. A. Jennings, and R. M. McClintock, Phys.
Rev. Letters ll, 364 (1963); S. Singh, W. J. Jones, W. Siebrand,
B. P. Stoichef'f, and W. G. Schneider, J. Chem. Phys. 42, 330
(1965).
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and has been observed in pyrene, " naphthalene, ""
and a number of mixed crystals. ' ""In recent years,
triplet-triplet annihilation has become a productive tool
for the study of the properties of triplet excitons,
mainly in anthracene. A comprehensive review of this
work may be found in the paper of Avakian and
Merrifield. '4

The annihilation process is conventionally described
by the equation

8
tt (r, t) =——ye(r, t)',

Bf

where e(r, t) is the exciton density at the point r at
time t. The pairwise annihilation mechanism implicit
in (1) is applicable so long as the exciton density is
small compared to the molecular density of the solid.

Two rate-determining processes govern the magni-
tude of y: (a) the migration of the two excitons toward
(as well as away from) one another, and (b) the anni-
hilation of the two excitons once they are sufficiently
close to interact.

In the present paper, we address ourselves only to
process (a), treating (b) phenomenologically by means
of an adjustable parameter. Theoretical efforts' ' ""
at calculating the rate of process (b) have not resulted
in reliable estimates of this rate, with perhaps the
greatest source of uncertainty being the final density of
states in this process.

Although expressions for y in the present theory will
involve the unknown ra, te constant of process (b), they
are not devoid of experimental testability. Process (a)
clearly determines an upper limit on p, which may even

"P. Avakian and E. Abramson, J. Chem. Phys. 43, 821 (1965)."T. N. Misra and S, P. McGlynn, J. Chem. Phys. 44, 3816
(1965)."H. Port and H. C. Wolf, Z. Naturforsch. 23a, 315 (1968)."P.Avakian and R. E. Merrifield, Mol. Cryst. 5, 37 (1968).' J. Jortner, S. I. Choi, J. L. Katz, and S. A. Rice, Phys. Rev.
Letters 11, 323 (1963);J. Chem. Phys. 42, 309 (1965)."C. E. Swenberg, &J. Chem. Phys. 51, 1753 (1969).
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be a good estimate of y if annihilation of two adjacent
excitons is sufficiently fast. For triplet excitons, it is
possible to vary rate (b) by means of a magnetic Geld. '7

The resulting magnetic field dependence of y depends
on both processes (a) and (b). Measurements of this
dependence can therefore be used to test any theory
describing process (a) as well as to determine the rate
constant of process (b). The present theory will be
irrelevant for situations in which process (a) is fast
compared to process (b), since y is then entirely de-
pendent on the latter process. This state of affairs has
been assumed, without justification, in the theories of
singlet-singlet annihilation. ' The measured value of y
for singlet-singlet annihilation in anthracene, however,
contradicts this assumption. 5 Measurements of y for
triplet-triplet annihilation indicate that processes (a)
and (b) occur at comparable rates. " Accordingly, it
appears that a theory of process (a) is relevant to all
known cases of exciton-exciton annihilation in organic
crystals.

The most primitive estimate of y for conditions such
that process (a) constitutes the rate-determining step
in the annihilation scheme was given by Jortner et al."
based on a hopping model of exciton motion and the
assumption that annihilation occurs whenever two
excitons are on nearest-neighbor lattice sites; it is

Z/re%,

where Z is the number of nearest neighbors, ~i is the
hopping time, and Ã is the number of molecules per
unit volume. Implicit in this estimate is the assumption
that excitons are distributed independently of one
another so that the probability that a given exciton
lands on a site neighboring another exciton after a
single jump is simply Ze/Ã, where I is the exciton
density. It is not hard to see that this assumption
cannot be correct when the near-neighbor annihilation
rate is fast compared to the jump rate. The annihila-
tion process must in the steady-state limit lead to a
correlation "hole" surrounding each exciton: The
probability that an exciton is found one lattice spacing
away from another exciton must be small compared to
the uncorrelated probability rl/E; for larger exciton
separations, this probability can approach the uncor-
related value only gradually. Another estimate of p,
which does take into account the exciton-exciton correla-
tion, has also been given by Jortner et al. ,

"
(3)

where D is the macroscopic exciton diffusion constant
and R is an average lattice spacing. As before, rapid
annihilation of excitons on nearest-neighbor sites has
been assumed. The assumption of a hopping model of
exciton motion is also implicit in (3), as pointed out by

' R. C. Johnson, R. E. Merrifield, P. Avakian, and R. B.
Flippen, Phys. Rev. Letters 19, 285 (1967)."R. E. Merriheld, J. Chem. Phys. 48, 4318 (1968).

Kepler and Switendick. "What has not been recognized
is that formula (3), taken from Smoluchowski's theory
of coagulation) is applicable only to three-dimensional
systems, and that a qualitatively different expression
results in systems where the exciton motion is essen-

tially two- or one-dimensional. The qualitative dif-
ference between three-dimensional motion on the one
hand and one- or two-dimensional motion on the other
is perhaps most dramatically illustrated by the follow-

ing result in the theory of the random walk ':A particle
executing a random walk in one or two dimensions
returns infinitely often to its initial position; in three
dimensions, the probability that it ever returns is only
about 0.35. Thus two excitons undergoing three-
dimensional motion in an in6nite crystal collide essen-

tially only once, but if their motion is one- or two-
dimensional, they collide repeatedly, the total number
of collisions being determined by the lifetime of the
excitons. We shall see that certain lifetime processes are
as important as the diGusion constant D in determining
the annihilation rate in one- or two-dimensional systems.
This fact is significant because in most of the systems
in which the annihilation process has been treated
theoretically, namely, for triplet excitons in anthra-
cene, "" naphthalene "" and tetracene " exciton
motion was predicted to be confined largely to the ab

plane. Recently, the nearly two-dimensional motion of
triplet excitons in anthracene has been verified experi-
mentally as well. "The usage of (3) in these systems,
using for D an average of the anisotropic diffusion
tensor, ""is simply incorrect.

To evaluate y in cases where the annihilation rate of
two nearby excitons is comparable in magnitude to
the rate at which excitons collide, the following scheme
has been used""

T+T (TT) ~ 5,

where T is an "isolated" triplet exciton, (TT) is a
pair of excitons sufficiently close that annihilation can
take place, and S is a state in which the pair has dis-

appeared. A modification of this scheme has been used

by Merrifield" + to explain some of the magnetic field

experiments. The expression for y becomes

'y=
1+0 g/k2

The parameter k~, defined as the rate of change of

' R. G. Kepler and A. C. Switendick, Phys. Rev. Letters 15,
56 (1965).

2'M. v. Smoluchowski, Z. Physik. Chem. (Leipzig) 92, 129
(1917).

"See, for example, W. Feller, An Introduction to Probability
Theory and its App/ications (John Wiley & Sons, Inc. , New York
1957), Vol. I, p. 327.

2' V. Ern, Phys. Rev. Letters 22, 343 (1969).
23 R. C. Johnson and R. E. Merrifield, Phys. Rev. 8 1, 896

(197O).
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density of close pairs per sqlared density of isolated
excitons, has dimensions of rate X volume.

In the above scheme, the detailed motion of the
annihilating exciton pair has been approximated by
two simple transition processes: the formation and
dissociation of a kind of compound exciton. To what
extent such an approximation can be made and how the
parameters k~ and k ~ depend on parameters character-
izing site-to-site exciton motion is the main subject of
the present paper. It will be shown that in many cases
an approximate expression for y can indeed be cast into
the form (5), so that in these cases more precise meaning
can be assigned to k~ and k ~. It will also be shown, for
certain aspects of the magnetic field dependence of
triplet-triplet annihilation, that the simple kinetic
scheme (4) must not be taken literally.

The present paper will endeavor to solve the kine-
matics of the annihilating exciton pair in detail, using
dynamical quantities such as the exciton propagation
and annihilation rates merely as known or adjustable
parameters. Evaluations will be performed both in a
continuum approximation, where excitons are treated
as point particles satisfying a diffusion equation, and
in the hopping model approximation for exciton motion.
The band model of exciton motion will be bypassed, as
it does not appear to be relevant to known cases of
exciton-exciton annihilation at room temperature,
while exhibiting considerably more complex kinematics.
For triplet excitons, kinematics includes the spin motion
in addition to spatial motion. Again, dynamical quanti-
ties such as the spin Hamiltonian will be used pheno-
menologically, with emphasis on the solution of the
equations of motion. The theory will be compared with
measurements of triplet-triplet annihilation in an-
thracene in the presence of a magnetic field.

II. CONTINUUM MODEL

We begin our treatment of exciton-exciton annihila-
tion with a simple classical model in which spin degrees
of freedom are ignored, and excitons are treated as
point particles obeying an isotropic diffusion equation.
This model enables us to obtain exact analytic results
and yet turns out to be a good approximation to a
more precise quantum-mechanical solution in many
cases.

The model is similar to the model used by
Smoluchowski in his theory of coagulation. " Smolu-
chowski considered a function w(r, t) giving the prob-
ability density at time t, for a particle existing at a
separation r from another particle, assumed fixed in
space. He allowed w(r, t) to satisfy a time-dependent
diffusion equation with the boundary condition
w(r, t) =0 on the surface of a sphere of radius R, and
with the initial condition w(r, 0) =m. The rate of coagu-
lation was then computed from the net Qux of particles
into the sphere in the limit t —+~.

Smoluchoswki's procedure simply does not work in
a one- or two-dimensional system: The particle Qux

approaches zero as t —+~ for the conditions stated.
A further potential difFiculty in his method is that the
depletion of the diffusing particles due to coagulation
with other particles of the system is not taken into
account. Finally, we wish to improve on his boundary
condition by allowing particles to coagulate (annihilate)
at a finite rate.

Ke consider, instead of the function vv, the two-
particle distribution function f2(ri, r2, 3) giving the
probability density for finding a pair of excitons at r~
and r2. For a system with uniform exciton density e(t),
this function is only a function of r=r& —r&, and we
denote it by f(r, t). We allow the birnolecular annihila-
tion to proceed at a finite rate X(r) for two excitons
separated by r. We also include a unimolecular decay
term describing the decay of excitons at a rate p.
Finally, in order to achieve a steady-state solution, we
include a uniform source term which produces excitons
randomly at a rate o. per unit volume.

The complete equation for f(r, t) is derived in
Appendix A. For isotropic di6usion it is

—f(r, t) =2ug (t) 2pf(r—,t)+2DV'f (r,t) —X(r)f(r,t)
Bt

dr' P(r' —r)+X(r')]g(r, r', t), (6)

where D is the exciton diffusion constant and g(r, r', 3)

is a three-exciton distribution function giving the
probability density for finding three excitons, one at
some arbitrary point ro, the others at ro+r, ro+r'. The
term involving g describes the destruction of the
original pair by background particles and was omitted
by Smoluchowski. This term would lead to f(r, t) ~ 0
as t —+ ~ when sources are absent, even when there is no
unimolecular decay, and even in three dimensions.
With sources present, but without the unimolecular
decay term, the background term in fact determines the
annihilation rate in one- or two-dimensional systems,
even for arbitrarily dilute exciton concentrations. This
term can only be neglected when the steady-state
exciton concentration is determined by the unimolecular
decay rate, i.e., for exciton densities such that bimolecu-
lar annihilation is negligible compared to unimolecular
decay.

The time development of the exciton density is also
derived in Appendix A Lit is not directly derivable from
(6)j: k kIk-

(7)

We solve (6) and (7) in the steady-state limit. We
assume that the equilibrium density is indeed suK-
ciently low that bimolecular annihilation terms can be
neglected in comparison to the decay terms. If this is
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not the case, we are faced with the evaluation of the
three-particle function, whose equation of motion will
involve a four-particle distribution function, etc. Even
if we make a suitable approximation for g, we will find
that in general the bimolecular annihilation will not be
proportional to the square of the density. In the low-
density limit, however, we have simply (at equilibrium)
ot=pn The. n (6) reduces to

0= 2PLn' —f(r) j+2DV'f(r) —) (r)f(r) . (8)

The last equation implies that f(r) is proportional
to n' Lassuming )i(r) —+ 0 as r —+~ j if it is to remain
finite as r —+ eo. Thus with the aid of (6), we see that
the law (1) is obeyed, with y given by

Dimen-
sions g(r)

—fexpL —(P/D)' 2r j}/2(DP) ~&2

2 Kpf (p/D—)"rj/2rrD

3 —fexpL —(P/D) "rj}/4rrDr

4 (Dp) 1/2

—4s-D/(ln L-', (P/D) '"Rj
+0 577. )

8rrDRD + (p/D) "Rj

where

TAzr.E I. Maximum annihilation rates in continuum model.
Units of listed quantities depend on dimensionality; g(r) has
units of density times time, y has units of reciprocal density times
reciprocal time. The values for p„are valid only in the limit
(p/D)'"))R. Ko is the modified Bessel function for imaginary
argument.

y =n ' X(r)f (r) dr
= —2 1 dx'g r' —vgR I R 13

Next, we specialize the model further as follows:
We introduce the boundary r =R; for r) R, X(r)
vanishes, while for r(R it is uniform, )i(r) =)i. We
furthermore assume that the diffusion constant is
infinite for r&R. The last condition implies a uniform
density inside the boundary. Insofar as this continuum
model is to represent nearest-neighbor annihilation in
the hopping model of exciton motion, R is to be taken
as an average lattice spacing; the portion of the
distribution function contained inside r(R represents
excitons situated on nearest-neighbor sites. We can
even mock up the exclusion principle in this model by
excluding a volume r&R0 so as to represent the im-
possibility of two excitons occupying the same lattice
site. This is done via the boundary condition that the
gradient of f be zero at r=Rs and is equivalent to a
constant distribution function occupying the region
Rp - r &R. We shall denote by tt the volume (respec-
tively, area or length) of the appropriate region so
occupied.

The solution of (8) under the above conditions is,
for ~&R,

f(r) =n'+-,') v 'g(nr)

is the rate constant in the diffusion-controlled limit
X~~. The result (12) is indeed in the form (5), with
k, =y„, k i/k, =y„/)~n; there is no basis for assigning
separate values for k ~ and k~.

Table I suinmarizes the expressions for g(r) in various
dimensions. Also given are approximate expressions for

in the limit R&&L, where L is the diffusion length
I-= (D/p)'l'. It is clear from this table that p can be
ignored in a three-dimensional system (provided
R(&1.) but never in a one- or two-dimensional system.
The expressions for p„are valid only when unimolecular
decay dominates bimolecular annihilation Lotherwise
the basic law (1) fails and y becomes meaningless).

The results of the continuum model are meant
primarily to illustrate the effects of dimensionality.
We have not discussed intermediate cases of aniso-
tropic diffusion partly because they are not amenable
to simple solution (except for artificial boundary shapes)
and partly because such cases are best handled by the
theory of the next sections, in which exciton motion is
dealt with more rigorously.

III. SINGLET EXCITONS IN HOPPING MODEL

A. General Solution

1+p «' g(r') (p+s) )sg(R)—I (1o)
0

where g(r) is the Green's function for the diffusion
equation, i.e.,

S(r) =De g(r) pg(r). —

For r&R, the solution is the constant equal to f(R)
for the exterior solution. The rate constant y =n 'Xn f (R)
can be written in the form

In a quantum-mechanical treatment of exciton
motion the classical distribution functions are replaced
by density matrices. In the present paper, we confine
attention to systems in which exciton motion can be
described by means of the so-called hopping model.
In this model, valid whenever the exciton mean free
path is small compared to a lattice spacing, the exciton
density matrix is diagonal in the spatial indices'4 and
can be represented as a function of position p(R), where
R denotes a lattice point. We write the equation of
motion for this single-exciton density matrix in the

7=
1+y„/) n

(12) 24 P. Avakian, V. Ern, R. E. Merri6eld, and A. Suna, Phys. Rev.
165, 974 (1968).
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form

8—p(R, t) =Q +(R—R')p(R', t) —p(R, t) Q% (R')
dt R R'

—pp(R, t)+n, (14)

where %(R) is the incoherent jump rate for an exciton
hopping by a lattice vector R. The two-particle diagonal
density matrix will for a uniform system depend only on
the vector difference of the positions of the two excitons
and will be denoted by p2(R) where R is this vector
difference. It satisfies an equation analogous to (6),
derived in Appendix B.We pass directly to the steady-
state equation in the limit when bimolecular annihila-
tion is negligible compared to unimolecular decay, the
equation analogous to (8):

0=2PL(m)' —p2(R) j+2 P 4(R—R')p2(R')
R/

—2p2(R)LZ +(R') —+(R)3—~(R)p~(R) (15a)
R'

Here v denotes the average volume per molecule of
the crystal, i.e., m is just the probability that an
exciton is found on any given molecule. The quantity
X(R) is the phenomenological annihilation rate for a
pair of excitons separated by R. It has been assumed
that X(R) is small compared to the exciton scattering
rate, so that the annihilation process does not mix in
spatially off-diagonal elements of the density matrix.
Equation (15a) holds only for R&0. For R=O the
exclusion principle imposes the condition

p2(0) =0.
Equation (15a), together with the condition (15b),
is formally "solved" by the expression

pg(R) = (m)'+g(R)E p +(R')P2(R')+p(ni)'j

R' Rf

Solving for p&(B) we find that y may be cast into
precisely the form (12), where

7-= —»(1+pg(0) 3/g(B) (22)

and where v now stands for the volume per molecule
of the crystal.

This result is essentially the same as the continuum
result (13).Even the discrete Green's functions may be
approximated by the continuum Green's functions, as
follows. As is well known, the hopping equation
(Eq. (17)j may be approximated by a diffusion equa-
tion with a diffusion tensor given by

B. Smooth Approximation

In order to get explicit analytical results, we resort
to a procedure we henceforth call the "smooth approxi-
mation. "We assume that both g(R) and p~(R) do not
vary much over those values of R for which either X(R)
or 4(R) is nonvanishing and, in fact, replace them by
the constants g(B) and p2(B) for all such R. This
procedure is exact for the simple cubic, the square, and
the uniform one-dimensional lattices when X(R) and
%(R) are nonzero for one lattice spacing only. In
general, it is expected to be valid whenever nearest-
neighbor jump and annihilation rates dominate and
are nearly isotropic, while the diffusion length is large
compared to a lattice spacing. In the smooth approxi-
mation, Eqs. (16)—(18) become, for R=O,

0 = (n )'+g (0)L0', (8)+P(ni')']
+g(B)L2~P~(B)—+P2(B)j (19)

1=~Lg(B)-g(0)&-Pg(0), (20)

pn'=w 9p, (B)-, (21)

where
x=P x(R'), e=ge(R').

R'

+P g(R —R')L-', X(R')pg(R') —+(R')pg(R') j, (16)
R'

D,, =-', P +(R)B,B, , (23)

where g(R) is the Green's function satisfying

8 R,o =p 0' (R—R )g (R ) —
g (R) p 4 (R )—pg (R)

R' R'

7n'=n 'Q X(R')p~(R').
R'

(18)

(8R,0=0 for RWO Sp, p= 1) . (17)

The expression (16) is useful whenever the param-
eters +(R) and X(R) are nonzero for only a finite
number, say p, of lattice vectors. Then (16) reduces to
a finite set of p equations in the p unknowns p2(R) for
R such that either X(R)%0 or 0'(R)NO, provided, of
course, that g(R) is known. This is all the information
we need for determining the annihilation rate per unit
volume, given by (see Appendix 8)

provided the solution is smooth on the scale of a lattice
spacing. Then, for isotropic diffusion, Eq. (17) is the
same as Eq. (11), except for a factor v in the source
term (the Kronecker 5 function of (17) is equivalent
to v8(i') in the continuum limit). Whether or not the
discrete Green's function may be approximated by the
continuous one in the expression for y depends on
whether or not the smoothness criterion holds for g
evaluated at one lattice spacing. From Table I we see
that in both one and two dimensions g(r) may be made
arbitrarily smooth by making the diffusion length
(D/p)'I' sufficiently large compared to a lattice spacing.
In three dimensions, smoothness is achieved only for
large r, and the continuum approximation cannot be
expected to give p very accurately. Except for this
reservation, the expressions for y„given in Table I
will then be applicable in the discrete calculation as
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well, provided the assumptions of the "smooth approxi-
mation" are valid.

C. Nearly Two-Dimensional Case

As an important example for which the smooth
approximation fails we consider a model of nearly two-
dimensional exciton motion. We imagine the crystal in
this case as a stack of parallel planes such that exciton
motion within each plane is rapid compared to the rate
of transfer between planes. I.et us suppose that the
diffusion length for intraplanar motion is large com-
pared to a lattice spacing so that this motion can be
described by a continuum diffusion equation, with a
diffusion constant D. Interplanar motion will be
characterized via a jump rate 0' between neighboring
planes. The annihilation rate will depend on the Green's
function for diffusion in this system, whose equation is

8(r)b.a=De'g„(r)+Wag. +&(r)+g„&(r)]
(2++—P)g-(r) (24)

Here r is a continuous two-dimensional vector and
n labels the planes between which the hopping-type
motion is occurring. Equation (24), with the condition

g„(r) ~ 0 when r —+oo or n —+oo, is solved by

g-( ) = (2 D) '( —~)"&-{'L—(4+ID+-0/D)'"
+(OID)'"j)I-{l L(4~/D+~/D)'"

where E„and I„are Bessel functions as defined in
Watson's treatise. "

This solution tells us all we want to know about the
nearly two-dimensional motion; it is not necessary to
compute y, except to keep in mind that y is determined

by g„(r) evaluated at essentially one lattice parameter
from the origin. For small arguments we may expand
the Bessel functions in terms of their well-known series.
A sufFicient condition for the validity of this expansion
1s

rL(P+2+)/Dg't'« l. (26)

For r approximately equal to one lattice spacing this
criterion is essentially the requirement that the rate
of depletion of excitons from a given lattice site, due to
either decay or out-of-plane diffusion, be small com-
pared to the in-plane jump rate. When (26) holds, the
logarithmic dependence of Eo for small r leads to
go(r)))gt(r), so that the motion can be indeed approxi-
mated as being two-dimensional. To be sure, the
Green s function go(r) for in-plane diffusion is approxi-
mated by the true two-dimensional Green's function
(see Table I) only for small r {for large r it
approaches the three-dimensional behavior go(r)
~exp/ —r(P/D)'ted/r); but small r is all that matters
in the calculation of y.

"G.
¹ Watson, A Treatise ol the Theory of Bessel Fttnetioms

{Cambridge University Press, New York, 1958).

We thus have the expected result that the exciton-
exciton annihilation rate for excitons undergoing
nearly tw'o-dimensional diffusion can indeed be calcu-
lated by means of a two-dimensional theory. The
result (25) shows, however, that out-of-plane diffusion
has a non-negligible effect on this two-dimensional
theory: Although for small r a two-dimensional dif-
fusion equation correctly describes the problem, the
exciton decay rate is altered. The effective decay rate
is now

~, ={!L(4~+~)' +~"3)'
=++'P+(+-P+.'P')'"-. (27)

The decay rate has become enhanced by the presence
of the out-of-plane motion, such motion in effect pro-
viding a sink for excitons. We expect a similar enhance-
ment of the decay rate in the case of nearly one-
dimensional motion, provided the excitons can move
out of the line of primary motion in two independent
directions. Although we do not have an explicit model
to back up this assertion, it is clear from the general
theorem on the probabilities of return to the origin that
only three-dimensional motion can act to effectively
remove particles from any given point.

IV. TRIPLET EXCITONS

A. General Remarks

(~l
P~(R) = —kP (R)P2(R)+t 2(R)~(R)j, (28)

&at &...
where h. (R) is a matrix in the spin indices.

It has been assumed as before that the annihilation
rate is slow compared to the exciton scattering rate, so
that the matrix A. is diagonal in the spatial indices. %e
expect the spin dependence of A for triplet excitons to
have the form

h. (R) =As(R)Ps+Xr(R)Ep+Xq(R)Pq, (29)

The theory of annihilation of triplet excitons in-
volves additional complexity because the annihilation
rate is expected to depend on the total spin angular
momentum of the annihilating pair. As a result, the
spin degrees of freedom of the annihilating exciton pair
must be explicitly taken into account. We shall restrict
our theory to cases where a hopping model of exciton
motion is applicable, and deal as before with the
spatially diagonal exciton pair density matrix p2(R)
where this quantity is now a matrix in the spin degrees
of freedom. As we shall see, the spin relaxation rate is
generally slow compared to hopping and annihilation
rates, so that we will have to deal with the full spin
matrix.

The rate of change of the pair density matrix due to
exciton-exciton annihilation will be given by a matrix
relation of the form (see Appendix 8)
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where I'z, I' T, and Pg are, respectively, projection
operators into the singlet, the triplet, and the quintet
manifolds of pair states; the scalar quantities Aq, 'AT,

and Xg are the corresponding rates of pair annihilation.
In practice, we shall always neglect X@, as there is no
known system where double the triplet exciton energy
even remotely approaches the estimated energy of the
lowest quintet state.

It now also becomes meaningful to speak of the
annihilation rate via, the singlet (triplet, quintet)
channel. To some extent, such a separation of annihila-
tion rates can be accomplished experimentally —e.g. ,
the delayed Quorescence observed in anthracene as a
result of exciton-exciton annihilations comes primarily
from the singlet channel, since the emission is from a
singlet state.

The annihilation rate in any given channel will now
also depend on the removal of excitons from that
channel via spin relaxation, which tends to equalize the
populations of all spin states. This fact will have a
profound effect on annihilation in one- and two-
dimensional systems if the spin relaxation rate is large
compared to the effective decay rate. In a three-dimen-
sional system spin relaxation will be important only
if its rate is comparable to the exciton hopping rate,
a case we do not consider in this paper.

R/ R'

—2P (R)P2(R)+&2(R)h. (R)7 (30)

where X(R) is the exciton spin Hamiltonian (we have
set 5=1).We have assumed that this Hamiltonian is
a function only of the exciton separation, i.e., that the
single-exciton spin Hamiltonian is spatially uniform.
This assumption should be valid whenever the exciton
hopping rate is rapid compared to the spin relaxation
rate, for then the moving exciton will experience the
average of the spin Hamiltonians associated with
possibly inequivalent crystal sites." We have also

I H. Sternlicht and H. M. McConnell, J. Chem. Phys. 35, 1793
(1961).

B. Annihilation Rate in Absence of Syin Relaxation

The calculation of the annihilation rate constant y
is considerably simpler in cases when spin relaxation
can be neglected. Such cases include all systems where
exciton diffusion is three dimensional and roughly
isotropic (with the usual proviso that spin relaxation
rates be slow compared to hopping rates). For one-
and two-dimensional systems, this theory will apply
only if the net effective decay rate is large compared to
the spin relaxation rate.

The matrix equation of motion for the pair density
matrix now has the form (in the steady-state limit)

0= —ZPX(R),p (R)7/2/I (—sv) 1—p (R)7

+2 p @(R—R')p2(R') —2p2(R) L p %(R')—4 (R)7

assumed that excitons are introduced in all possible
spin states with equal probability (source proportional
to the unit matrix 1). This assumption will be applic-
able only at temperatures such that at equilibrium all
spin states are essentially equally populated. Then the
only further requirement is that the spin relaxation
time be short compared to the lifetime of the excitons;
this will assure the smoothing out of nonuniformities
in spin state populations introduced by the exciton
creation process. We have ignored any dependence of
the hopping rates 4'(R) on the exciton separation, in
effect neglecting attractive or repulsive exciton-
exciton interactions. We shall see that this assumption
does not lead to serious errors in the theory, provided
only that the interaction is short range and small
compared to the annihilation rate, in appropriate units.

With spin relaxation neglected, the calculation of the
annihilation rate in the triplet channel can be neatly
separated out."This circumstance is due to the fact
that triplet total spin states of a pair of triplet excitons
are odd under exchange of particles, whereas the singlet
and quintet states are even. Any odd spin state must
be a triplet, so that the projection operator I'T is equal
to the projection operator into the manifold of odd
states; within this manifold A(R) is the constant matrix
Xr(R)1. Since X(R) must be even under interchange of
particles it does not mix even and odd states, either.
The result is that the odd-odd matrix elements of (30)
involve only the odd-odd matrix elements of p2(R).
The total annihilation rate of pairs in the triplet channel
will be (see Appendix B)

pre'= 2n 'P Xr-(R) Trfp, (R)7.gg, (31)

The separation of Eq. (30) into odd and even parts
also simplifies the calculation of the singlet-channel
annihilation rate. We can no longer eliminate the spin
degree of freedom, however, since the spin Hamiltonian
will provide for a mixing of singlet and quintet states,
whereas annihilation will be assumed to occur for
singlet states only.

where the trace is to be performed over only that part
of p2(R) which has matrix elements between odd spin
states. It has been assumed that each annihilation
event results in the destruction of only one triplet
exciton.

By performing the trace over the odd part of Eq. (30),
we observe that TrLp2(R)7, &z satisfies an equation of
precisely the same form as of that satisfied by p2(R)
in the spinless case LEq. (15a)7, except that the source
term is now xi(ev)'. The methods of solution of the
spinless case can then be applied; within the smooth
approximation, the annihilation rate constant yT is
given by

(32)
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Let us take a closer look at this spin Hamiltonian,
and write it in the form

K&R) =X+V(R), (33)

where BC is a matrix independent of R and consists of
the sum of the single-exciton Hamiltonians for the two
members of the exciton pair. V(R) represents the
exciton-exciton interaction term and is expected to be
essentially the dipole-dipole interaction between the
magnetic moments of the two triplet excitons.

We expect V(R), for R connecting nearest-neighbor
sites, to be at most comparable to X, since X, in the
absence of external magnetic fields, arises from a
similar dipolar interaction, though between electrons on
the same molecule. The increased size of the latter
interaction, due to smaller average separation between
the electrons, is balanced by the factor 4 due to the
smaller spin of the electrons. Since a dipolar interaction
decreases as E ', V(R) should be negligible compared to
3C except for E of the order of a lattice spacing or two.
This circumstance enables us to solve the equation of
motion for p2(R) in terms of a Green's function which
does not involve V(R). Let us express (30) in a basis
of even spin states

I l& which diagonalize X with
eigenvalues EE, then

-~«ll &,p (R)jlt'&= —~LEi—Ei 3«l P2(R) ll'& (34)

This choice of basis uncouples the equations for the
various matrix elements of p2(R), for large R, and
leads us to define the complex Green's function

g(R, P+iE) satisfying

S„,=P e(R—R )g(R', P+~E)—g(R, P+iE) P e(R )

where the function G is defined as

and where
G(P) =g(E,P)/u+e(0, P)j

A=+ A(R).

For A=Xsls&&sl, (37) takes the form of Johnson
and Merrifield's23 Eq. (10), where the function G is in
effect approximated via the relation

G(P+HE)IG(P) = (l+~E/k )-'- (39)

and where the. parameter k=k~/k i is to be identified
with the following combination of parameters in the
present theory:

(40)k= —gxsG(p)

spin interactions such as V(R) and X are an order of
magnitude smaller, in appropriate units, than the
exciton hopping rg, te. The near-neighbor annihilation
rate, on the other hand, must be comparable to or
greater than the hopping rate if the exciton motion is to
inhuence the annihilation rate in a nontrivial way.
Thus this annihilation rate will in interesting cases be
large compared to the spin-spin interaction, permitting
the neglect of the latter. Note that by contrast the
zero-field Hamiltonian X cannot be neglected com-
pared to A. (R), because X has infinite range. ln the
following, the interaction V (R) will be set equal to zero.

Within the smooth approximation, t and with
V(R)=0, Eq. (36) becomes

«IP2(E) ll'&=~«(l~~)'+-:GLP+~k(Ei —Ei )j
&«GAIA»(8)+»(E)Air&, (37)

RI Rl

(p+iE)a(—R, p+~E) (35)

Equation (30) is then formally solved as

«lp (R) IP) =hip(-,'m)'+g+, P+-', j(E —E.)j
X{&I +(R') «IP2(R') ll'&]+p(3i~~)'~ii'j

R'

+2 a%—R', P+l~(« —Ei )3{—+(R') «I P2(R')
I
~'&

R'

+« I
-,'LA(R') P2(R')+pg(R')h(R') j

—~-',
I V(R ),p, (R )jit &}. (36)

As in the spinless case, (36) reduces to a finite set of
equations when g(R, p+iE) is known and when the
number of lattice vectors R, such that. A (R)WO,
4 (R)&0, and now also V (R)&0, is finite.

The circumstance that both A(R) and V(R)
short range will permit us to neglect V(R) in most cases
of interest, when the effect of V(R) on the density
matrix will be negligible compared to that of A(R).
As will be seen when specific numerical estimates are
made of various quantities in the present theory, spin-

Equation (37), for even pair states Il&, represents a
set of 21 equatIions for the 21 unknown matrix elements.
lt is possible to simplify this system, for A. =As IS)&SI,
to a system of only six equations in the six unknowns'7:

s& Z &s ll &(i l„(R)li&, (4l)

in terms of whjich the annihilation rate constant can be
expressed as

ps=(gi's) P Ai. (42)

The equations satisfied by A& are

{~—:»2 I &SI ~'& I'GP+~l(Ei —Ei)3~i

=
I &S ll& I'{&+4&s 2 Gp+4 (Ei —Ei))~i *) (43)

Equation (43) can, in general, be solved only numeri-
cally. Certain special limits, as in the theory of Johnson
and Merrifield, "are, however, analytically soluble and
are of interest. One such limit occurs when all energy

"R. K. Merrifield (private communication).
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differences E&—E& are sufficiently large in magnitude
that

(44)

In a three-dimensional system sufficient conditions for
this to occur are that

I
Ei—Ei I»+ and

I
Ei Ei I»—p;

in one- or two-dimensional systems, however, because
of the sensitive dependence of g(R,P) on P, the condition

I
Ei—Ei l»P suffices.

When (44) holds, the pair density matrix becomes
diagonal, and the theory of the annihilation rate con-
stant becomes identical in form to that originally given
by Merrifield. "The system of coupled equations, Eq.
(43), decouples into equations for the quantities Ai,
which now become real. From (42), the expression for
y is then found to be

»=(-;.~,) P l&sli&!2/[1+k!&sit&l ), (45)

where k is given in (40). For this case, the present theory
in effect represents a theory of the parameter k= k2/k i
as well as Merrifield's parameter ki, which in (45)
appears effectively as ki ——8.s/k= —2v/G(p).

The significance of (45) in interpreting the observed
magnetic field effects on the triplet-triplet annihilation
rate has been discussed in detail by Merrifield. "He
showed, among other things, that the directional
resonances, dips in the delayed fluorescence intensity
for special orientations of an externally applied mag-
netic field, are a consequence of degeneracies occurring
between two of the pair energy levels. The behavior of

p in the vicinity of one of these resonances can also be
estimated via an explicitly soluble limit of (43), namely,
one in which all but two pair energy levels, say, E&
and E2 are sufFiciently far apart that (44) holds.
The result for ys is a sum of the form (45), not including
/=1, 2, plus the term

I &1ls&l'+I &2ls)l'+2kl «Is&&2!s)l'[1—f(E))
"r12(E)

9, 1+k(l &1!s&l'+ I &2ls) I')+k'I &1
1
s) &2ls& I'[1—f(E))

where E=Ei E2 and the f—unction f(E) is defined as

f(E) =Re
G(p+iiE)L1+-:k(I &1I s& I'+1&2

I s& I')) q

G(P)+G(P+ilE) lk(l &11s) I'+
I

&2
1
s) I')&

(47)

This result is, of course, the same as in the theory
of Johnson and Merrifield" if the approximation (39)
is made. The function f(E) determines the way in which

y varies between the on-resonance condition [E=O,
f(E) = 1) and the off-resonance limit [f(E)~ 0). The
shape of the resonance, as a function of the direction of
the external magnetic field (which determines E), is in
the present theory predicted to be qualitatively dif-
ferent from the Lorentzian shape resulting from the
approximation (39). Unfortunately, however, the fine
details of the resonance shape may for a real crystal be
smeared out by crystal imperfections, such that a
Lorentzian shape may be a good approximation. In
principle, the observed resonance shapes for a good
crystal should yield information on exciton dynamics,
such as the hopping rate and the effective decay rate P.

The present theory of line shapes constitutes in effect
the theory of the pair dissociation rate parameter k ~

of the earlier theories, although, of course, an explicit
expression for k ~ is meaningless in view of the fact
that the resonance shapes as deduced from the diffu-
sional motion of the excitons cannot be everywhere
approximated by Lorentzians. One way of quantifying
the new resonance shapes is to determine the half-width
r of Re[G(P+ 2iE)); Eq. (39) then shows that r= k i
in the earlier theories, so that it may be regarded as an
approximation to k ~. Explicit expressions for F, in
systems of various dimensionalities, may be obtained
with the aid of the continuum Green's functions given

in Table I. Assuming P(&D/R', the half-width I' at
half-maximum of the function Re[g(P+2iE)), nearly
the same as the half-width of Re[G(p+-', iE)), is given
approximately by

r=5.08p,

r =2.24[pD/z')'~',

1 dimension

2 dimensions

(48a)

(48b)

C. Annihilation Rate, with Syin Relaxation

The calculation of p becomes considerably more
complex when spin relaxation is included, since relaxa-
tion causes incoherent transitions among the various
spin states which are stationary with respect to the
spin Hamiltonian K. The equation of motion for the
pair density matrix can then no longer be separated;
not even the separation between odd and even spin
states can be achieved in general. Approximate expres-
sions for effects of spin relaxation on the annihilation

r =1.17D/R', 3 dimensions. (48c)

If we regard I' as an effective dissociation rate of a
correlated exciton pair, we see that only in a three-
dimensional system is this dissociation rate essentially
equal to the exciton hopping rate. In a one-dimensional
system this rate is determined primarily by the effective
exciton decay rate p, and in a two-dimensional system
it depends on the geometric average of the decay and
hopping rates.
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rate are most easily obtained with the aid of the follow-
ing ansatz for the spin relaxation of the two-exciton
density matrix:

diagonal elements is, with V(R) =0,

«[p(R) [t) =g(R, p+f)p Q %(R') «l~(R') I»]

Es (R) —l T u (R)1]
at ),.i

= —2l pp2(R) —
9 Trp2(R)1]. (49)

According to (49), p, (R) is assumed to relax towards
its local equilibrium value, a matrix corresponding to
equal occupation of all pair spin states, which should be
appropriate to most physical systems at room tem-
perature. The relaxation rate is the same for all matrix
elements and is twice the average spin relaxation rate
g because we are dealing with the relaxation of the spin
of two excitons. The ansatz (49) not only assumes a
constant relaxation rate but also does not allow the
spin of each exciton to relax independently of the other,
since pair spin states are relaxing towards equilibrium.
These deficiencies are remedied in the calculation pre-
sented in Appendix C, where a more general relaxation
scheme is handled. The complexity of the calculation
of Appendix C tends to obscure certain simple features
of the effects of relaxation which are contained in the
results for the simpler relaxation scheme (49).Moreover,
an accurate treatment of the relaxation rates will often
not be necessary, e.g, in three-dimensional systems,
or in two-dimensional systems where the effective decay
rate is comparable to the spin relaxation rate.

To obtain the equation of motion of the density
matrix, including spin relaxation via the approximate
ansatz, we merely include the right-hand side of (49)
in the equation of motion for p2(R), Eq. (30). For the
off-diagonal matrix elements of (30), this amounts to
replacing p by p+p; the formal solution for the off-

diagonal elements of p~(R) is then the same as (36), but
with P+l replacing P. To handle the diagonal elements,
we first obtain the spin trace of the equation of motion.
Since the trace of (49) vanishes, the trace of (30) gives
the equation of motion for the spin trace of the pair
density matrix, which is just the total probability for
the occurrence of two excitons a given distance R
apart. The long-range part of the resulting equation
is simple and we immediately obtain the formal result

Trp2(R) =e'v'+g(R, P)P P 4(R') Trp~(R')
R'

+Pii'v']++ g(R —R', P)L—%(R') Trpb(R')
R'

+-,' P

(tlat(R')

p (R')+p (R')A(R')
l
t)]. (50)

Next, we And the equation of motion of the matrix
g(R)—=p2(R) —

9 Trp2(R)l; the formal solution for its

+2 g(&—&', p+f)E —+(R')«l~(R') lt)
R'

+-,'(t
i
A(R') p, (R')+p2(R')A. (R')

i t)

—(1/36) p «'~A(R')p 2(R') +p 2(R')A (R')
~

t')]. (51)

c—:1+~i(ni) 'LG(P) G(P—+l)]P (t"~M~t") (53)

M= ttp2(R)+—p2(B)h. (54)

The function G has been defined in (38). Equation
(52) is solved as when spin relaxation was absent,
treating c as a constant. The quantity c is then deter-
mined self-consistently. A is assumed to have the form
A=XsP8+X&Pz, where P8 and P& are, respectively,
projection operators into the singlet and the triplet
manifolds of pair states. It is clear from the form of
(52) that the resulting expressions for the annihilation
rates yi and ys are just c times those given in (32) and

(42), with the quantities 2 i of the latter formula being
determined by (43), provided the decay rate p is
everywhere replaced by P+f The qua. ntity c is most
easily expressed with the aid of the fact that in its
definition, Eq. (53), the total singlet- and triplet-
channel annihilation rates appear directly. These may
in turn be expressed in terms of the rate constants y~
and y~, and we find

c= 1+-',[G(P) G(P+ f)]—$2rr/e+ ys/ii] (55a)

or, since c is implicitly contained in pz and pz, in the
form y~= BIO, yq= cyq', we have

'=1 l [G(p) G—(p+l)]L2—7 '/ +7 '/ ], (55b)

where now pz' and pz' may be calculated from formulas
previously given.

It is seen that the main effects of spin relaxation are
an increase of the effective decay rate and an over-all
reduction in the annihilation rates via c Lc is less than 1,
since G(P) (G(P+l)(0]. The magnetic field depend-
ence of c, via y8', leads to some magnetic field depend-
ence of the triplet-channel annihilation and causes some
smoothing out of the magnetic field effects in the singlet-
channel annihilation rate. These latter effects will be

Equations (50), (51), and the equation for the off-

diagonal elements are all readily solved within the
smooth approximation; the result can be expressed as a
single formula for p2(B):

«l~ (~) lt')=lGDt+d+lt(& —& )]«I~It')
+ (-i3ev)'cBii, (52)

where
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weak if either yp' is large compared to yq' or if 1—c is
small.

V. TRIPLET EXCITONS IN ANTHRACENE

In this section, we relate our theory of exciton-
exciton annihilation to experimental observations on
triplet excitons in anthracene at room temperature.
The various approximations of the theory are checked
quantitatively and predictions of the theory are com-
pared with available data.

A. Exciton Motion

Both theoretical considerations"" and recent ex-
perimental findings" point to triplet exciton motion in
anthracene as being essentially two-dimensional, with
diffusion confined mainly to the ub plane and only weak
diffusion perpendicular to this plane. This circumstance
is of crucial importance in the theory of exciton anni-
hilation, as we have seen. The microscopic motion at
room temperature can be characterized in terms of a
hopping model, '4 with allowed hops occurring between
certain nearest neighbors only. We shall assume that
the only nonzero hopping rates are

+Ll(a~b) j=+(—-'(a~b)3=—+d,
@(ab)=0&,

@Lac~-', (a+b) $=+p,
where a, b, c are the lattice vectors of the anthracene
crystal. We also assume %&=24&, a relation which
yields isotropic diffusion in the ab plane and is con-
sistent with the experimental observations. " The
quantity +,+, even though it is small compared to 0'&

and could even be comparable to %(a), which has been
neglected, has been retained as characterizing out-of-
plane motion. We have seen that such out-of-plane
motion, though slow, contributes to the effective life-
time of an annihilating pair in a two-dimensional
system.

The values of the hopping parameters can be deduced
from the measured values of the diffusion tensor and
the lattice constants, via Eq. (23). Using Ern's" mea-
surements of the diffusion tensor, and the lattice struc-
ture of anthracene, "we have

'Irq=2D /a'=2(1. 5X10 4 cm' sec ')/
(8.56X10 ' cm)'=4. 1X10"sec '

Np=—Dpp/(c*)'=1. 2X10 ' cm' sec '/

(9.16X10 ' cm)'= 1 4X 10' sec ',
where c* is the vector parallel to a)(b, with magnitude
equal to the projection of c along this direction, i.e.,
c* is the distance between ab planes. For experimental
reasons, it is possible that the true%'p is considerably
smaller than the value given. In any event, the intrinsic

'8A. McL. Mathieson, J. M. Robertson, and V. C. Sinclair,
Acta Cryst. 3, 245 (1950);3, 251 (1950).

B. Spin Hamiltonian

As is well known, the spin Harniltonian for a triplet
state of the anthracene molecule can be well approxi-
mated by the expression

x=D(S ' ,'S')+E(S '——S-') (57)

where S is the spin operator for triplets, and where the
principal axes x, y, z are, respectively, the long, medium,
and normal axes of the anthracene molecule. For exci-
tons in the crystal, which contains two different orienta-
tions of anthracene molecules, "the Hamiltonian is the
average of (57) over the two orientations. ""This
average can also be cast into the form (57), and the
full single-exciton Hamiltonian, including an external
magnetic field H, has the form

~=gpgH ~ S+D+ (S lP —ts Ss)+g+ (S 4—S es) (58)

Values of the parameters D, E, D*, E* have been
determined from spin-resonance experiments. " For
purposes of comparing the theory with the magnetic
field experiments on exciton-exciton annihilation, it is
convenient to adopt units such that gyp=1. With
g=2.0," the zero-held parameters given in Ref. 29 are
then

D=737 Oe,
D*=—62 Oe,

E=—87 Oe,
E*=350 Oe.

The z* axis is along b, while x* lies in the ac plane, at an
angle of 27.4 deg from the a axis."

C. Spin Relaxation

The dominant mechanism of spin relaxation of triplet
excitons in anthracene is expected to arise from the
random motion of the excitons between the two dif-
ferently oriented molecules of the crystal. " Since the

"D. Haarer, D. Schmid, and H. C. Wolf, Phys. Status Solidi
23, 633 (1967).

exciton decay rate P= 50 sec ' is negligible compared to
4p, which therefore is just the effective decay rate
P ff [Eq. (27)j for this nearly two-dimensional system,
if spin relaxation can be neglected.

The Green's function g(R,P) will for EWO be approxi-
mated by

a(R,P) = —("s/2~D)&o[(PID)'"&j (56)

where D= D, and n ~ is the area per molecule in the ab

plane, v,s=25.8X10 "cm' For P=1.4X10' sec ' the
quantities g(b,P) and gL-', (a+b), g differ by about 8%.
The smooth approximation, where E. will be replaced
by the average length of the six lattice vectors ~b,
&-', (a&b), 8= 5 5X10 ' cm, should not lead to errors
of more than 5% although the error may increase when

spin relaxation is added. The smooth approximation is
also used to obtain g(O,P), needed in Eq. (38), by
relating it to g(R,P) with the aid of Eq. (20).



KINEMATICS OF EXC I TON —EXC I TON ANN I H I LATION . ~ ~ 1727

Pro. 1. Comparison of experimental
and theoretical resonance shape. The
wiggly curve is a reproduction of the
high-Geld resonance shape observed by
Johnson (Ref. 23), for delayed fluorescence
from anthracene in the presence of a
magnetic 6eld of 4000 Oe, oriented
parallel to the ac plane of anthracene.
Points are theoretical results, for values
of the parameters stated in the text.
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orientations of these molecules, their spin Hamiltonians,
as well as the exciton hopping rates at room temperature
are all known quantities, it is possible to obtain an
accurate evaluation of the spin relaxation rate. Recent
theories of this relaxation rate" do not treat the exciton
motion accurately. A more complete theory of spin
relaxation via exciton hopping is presented in Appendix
D. For purposes of comparing the present theory with
the magnetic field experiments on delayed fluorescence,
it turns out that the knowledge of an average relaxa-
tion rate f is sufhcient. As shown in Appendix D, for
magnetic helds small compared to about 20 kOe this
rate is independent of the 6eld and is given by an expres-
sion of the form

(59)

where E' depends on the spin Hamiltonian and molecu-
lar orientations and has for anthracene the value
255 Oe. Using Cd=4. 1)&10" sec ', the value of f is
8.2)&10' sec ', or kf/gpii=4 65 Oe. Alt. hough this value
is an order of magnitude less than the hopping rate
4,+ implied by Ern's measurements, we must not con-
clude that spin relaxation gives a negligible contribu-
tion to the effective pair decay rate. As pointed out by
Krn, " the measured value of Dp, +, and hence of 0'p,
is only an upper limit to the intrinsic value, since
crystal imperfections tend to increase the measured
value. It is possible to resolve this question experi-
mentally by studying delayed fluorescence in the pres-
ence of high magnetic fields. At helds in excess of about
20 kOe, the spin relaxation rate becomes small and
any observed changes in the effective decay rate at
such fields would attest to the relative importance of
spin relaxation and out-of-plane diffusion.

D. Comparison with Experiment

Granting the validity of various approximations made
in the present theory, there remain essentially three

"H. C. Wolf (private communication); Z. G. Soos, J. Chem.
Phys. 51, 2107 (1969).

unknown parameters in the description of triplet exci-
ton annihilation in anthracene at room temperature:
the total ab-plane nearest-neighbor annihilation-rate
constants in the singlet and triplet channels, XB and
Xp, and the out-of-plane hopping rate %,~, for which we
at least have an upper limit.

We now present an approximate fit of the present
theory to the observed magnetic field dependence of
delayed fluorescence from anthracene crystals at room
temperature. " In this fit the parameters Xq and +,+
are treated as adjustable; the parameter 'A~ can be
neglected provided it is of the same order of magnitude
as Xq. We ignore differences between the various spin
relaxation rates, using a single average rate f We als. o

neglect deviations from unity of the coeKcient c,
Eq. (53) or (55), an assumption that will be justified
after the values of the various parameters have been
determined. The theory then becomes the same as for
the case of negligible spin relaxation, the decay rate p
being replaced by 4,++) In fitting . to experiment, we
solve Eq. (43) numerically for variable values of P
and XB, using the approximation (56) and the value
a=1.5&(10 ' cm' sec ' for the diffusion constant.

We find that it is not possible to achieve a perfect
fit to all available data for any choice of p and Xz. A
reasonable fit can, however, be obtained for a fairly
wide range of these parameters. The fit judged as best
is illustrated in Figs. 1—3, for what is believed to be a
representative sampling of the observed dependence of
delayed Quorescence from anthracene on both the direc-
tion and magnitude of the applied magnetic field. Of
these, Fig. 1 shows a particularly careful experimental
determination of the resonance line shape, a quantity
that is of central importance in the present theory.
A very good fit to this resonance shape has been,"found.
The values of the parameters for which the ht is shown
are P/2pii=16 Oe and k=1.0, where the parameter k
is related to Xz via (43). The quality of the fit is not
too sensitive to changes in p and Xa, and values of these
parameters in the ranges 5 Oe(p/2@ii(25 Oe, 0.8(k
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(1.2 cannot be ruled out. We have attempted to
improve the fit by performing the calculation for
several other values of the diffusion constant D, but
found that no significant improvement could be
achieved. We have also made calculations in which
variations in the spin relaxation rate, according to the
theory given in Appendices C and D, were explicitly
included. The results differ from those of the constant-

relaxation-rate theory only when P/2p& is close to 5 Oe,
when out-of-plane diffusion effects are relatively unim-
portant (since 1/2p~ ——4.65 Oe); a fit as good as the
one shown could not be obtained in this limit. The
slight disagreement between theory and experiment
may thus be attributable to errors due to approxi-
mations made in the theory. The parameters deter-
mined in the fit in effect determine the total nearest-
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pared with the present theory
(points) for magnetic fields as
follows. Curve A: IX=400 Oe,
field in ac plane; curve B:
B=600 Oe, field in gb plane;
curve C: H=4000 Oe, field in
gb plane. For curves B and C,
the angle is chosen to be zero
along the b axis; for curve A,
the zero angle is taken along
the y* axis of the zero-field
Hamiltonian.
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neighbor singlet-channel annihilation rate X~ and the
out-of-plane component of the diffusion tensor D.+,+.

We find
Xs= (3~0.5)X10"sec ',

%,*=P f—= (2~1)X10' sec '

D,~,*= (1.7&0.8)X 10 ' cm' sec '.
With these values, the error introduced by approxi-

mating the quantity c by unity is less than about

l LG(P+f') —G(P)j/[18(1+k)j=0 5% (6o)

If the triplet-channel annihilation rate is large com-
pared to the singlet-channel rate, the error introduced
in the relative variations in yq will be further decreased;
since only such relative variations were used in obtain-
ing the fit to experiment, the corrections due to c/1.
can indeed be ignored. The actual value of yq will,
however, be in error in this case Lsee Eq. (55)j. If this
error is neglected, the predicted zero-field value of the
annihilation rate constant yq is calculated to be

ps= (—'~As)X (0 62~0 04)
= (5&1)X 10 "crn' sec '.

This value will be reduced if yp is large compared to
ys, with the aid of (55) and (60), the error introduced
by neglecting p& becomes comparable to the uncer-
tainty in the above value only when pz/&8&20. There
is no direct measurement of y~ available for comparison.
The rate constant usually measured is" f 'yt, ,t, where f
is the fraction of triplet-triplet annihilations which
lead to delayed fluorescence, and y&,& yz+&T. The-—
value for f 'y~, t, is about" 5X10 " cm' sec ', with an
error of at least 50%. If we assume that all singlet-
channel annihilations lead to delayed Quorescence, then
the experimental value of y8 is about f' X5X10 "
cm' sec '. Recent measurements, " as well as the
estimate of Helfrich and Schneider, " but the value
of f at around 0.4, giving a value of (8&4)X10 "
cm' sec ' for the value of y8, in agreement with the
quasiexperimental value we have found. This value of

f also justiffes the neglect of p& in the calculation of pz.

VI. DISCUSSION

We have endeavored to present a fairly general
picture of the kinematics of exciton-exciton annihila-
tion, although we have leaned towards features
characteristic of triplet excitons in anthracene. In
particular, we have tried to emphasize the importance
of the fact that two-dimensional exciton motion leads
to qualitatively different results from those of the three-
dimensional theory used heretofore. If triplet-exciton
motion in anthracene were three-dimensional, with the

"J. Fourny and G. Delacote (unpublished); R. P. GroG,
R. E. Merri6eld, and P. Avakian, Chem. Phys. Letters (to be
published).

"W. Helfrich and W. G. Schneider, J. Chem. Phys. 44, 2902
(1966).

V vL/R,

(L/&)
V

ln(L/R)

1 dimension

2 dimensions

3 dimensions

where v is the volume per molecule of the crystal, I.
is the healing length (D/p)'", with p the total effective

3'M. Levine, J. Jortner, and A. Szoke, J. Chem. Phys. 45,
1591 (1966); G. Durocher and D. F. Williams, ibid. 51, 1675
l1969l.

same diffusion constant and spin Hamiltonian, most of
the magnetic field effects on the annihilation rate would
become essentially unobservable, because of the great
broadening of the shape function )see Eq. (48)j. The
observation of these effects therefore provides strong
evidence for the nearly two-dimensional nature of
triplet excitons in anthracene, in support of theory" "
and of Ern's" observations, but in disagreement with
reported nearly isotropic diffusion. '3

The theory should also improve our insight into the
physical origin of the magnetic field effects. These
effects arise because excitons can collide repeatedly,
while their spin wave functions evolve as a function of
time between each collision. We have shown that the
detailed time dependence of the collision and recollision
process is contained in the shapes of the directional
resonances and have developed a quantitative theory
of such shapes, thus placing this intuitive picture on a
somewhat firmer basis. The importance of repeated
collisions also accounts for the requirement that a
system be one- or two-dimensional if magnetic field
effects are to be significant: In a three-dimensional
system, as we have seen in the Introduction, the prob-
ability of recollision is rather small.

It is perhaps worthwhile to attempt an interpretation
of the crude, but much simpler kinetic scheme (4) for
describing exciton annihilation, used in previous
treatments. """"In terms of the present theory, this
scheme can be understood as follows: Suppose we con-
sider a pair of excitons as being in the compound state
(TT) whenever they are less than some distance E,
apart, and consider them isolated when their separation
exceeds E.. I.et us at first turn off exciton-exciton
annihilation; at equilibrium, the density of compound
pairs is then given by (k&/k &)e, where e is the exciton
density. But in the absence of annihilation this density
must equal the density of random coincidences of two
excitons happening to be less than R, apart, which is
just e'V, where V is the volume (respectively area or
length) of the region r=.E,. Therefore, k~/k q= V.
Insofar as we may estimate k & by means of the expres-
sions (48) for the half-widths I', we may obtain an idea
of the size of the volume U in various dimensions, using
for k~ the expressions for y„given in Table I.The results,
omitting factors of the order of unity, are as follows:
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decay rate (including spin relaxation for triplets), and
R is an average lattice spacing. It has been assumed that
E&)I.. We see that only in three dimensions is it legiti-
mate to think of the state (TT) as consisting of a
nearest-neighbor pair. In one dimension, excitons must
be considered as correlated in this model whenever they
are less than a healing length apart, i.e., whenever the
exciton pair distribution function differs appreciably
from its uncorrelated value. As usual, the two-dimen-
sional case lies somewhere between these two extremes.
The annihilation rate constant k2 represents the average
annihilation rate of all pairs whose separation is less
than E.„' since only nearest-neighbor pairs actually
annihilate (let us so assume), this average rate is

roughly k2 Xe/V.
The quantitative agreement of theory and experi-

ment, for triplets in anthracene, seems to be satisfactory,
but not perfect. The exact source of the slight disagree-
ments is not certain, and could be a combination of the
simplifying assumptions of the theory and possible
systematic experimental errors. A perhaps more severe
source of error, and one that could not be dismissed

easily, would be present if there exists an exciton-
exciton interaction which is comparable, in appro-
priate units, to the nearest-neighbor annihilation rate.
Such an interaction could conceivably arise via induced
lattice distortions and, be it attractive or repulsive,
could inhuence the detailed kinematics of the collision

process.
It should be emphasized that the present theory is

applicable only at large temperatures, such that exci-
tons satisfy a hopping equation of motion and have
uniformly populated spin states. Both of these condi-
tions are expected to be violated at low temperatures.
Although it is relatively simple to modify the present
theory so as to include a nonrandom distribution of

spin states, the inclusion of band effects would necessi-

tate a new theory, since the exciton pair density matrix
can no longer be assumed to be spatially diagonal when

coherent intramolecular exciton motion occurs.
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APPENDIX A: EQUATION FOR CONTINUUM
CORRELATION FUNCTION

We describe the exciton system by a set of distribu-
tion functions fz(1V; r&,r2, . . .,r&), giving the probability
that there are E excitons in the system times the prob-
ability density for these excitons being at r&,r2, . . . ,r&.
From these, the average j-particle distribution func-
tions are obtained as

f, (r&,r ,2. . . ,r,)—= Q (N —j)! ' dr, +& dr, +2
N=j

X dr~ f~(N; r~, . . . ,rN). (A1)

For a noninteracting system, and one in which the
particle number is random with expectation value No,
these distribution functions become

j(rlq ~ ~ ~ p j)nonynt (A2)

where e= No/V is the particle density, with V the total
volume of the system,

The equations of motion are clear-cut for the func-
tions f~(N; ). Suppressing the implicit time variable,
we have

8 N

fN(N rl, ~ ~ ~ rN) D 2 V' fÃ(N rj, ~ ~ ~ rN) NPfN(N rl ~ ~ ~ rN)+P dr fNyl(N+1 rl ~ ~ ~ rN r)
83 i=1

N

+a g fN, (1V 1;r&, . . , r; —t,.r,+&, . . . , r~) nV f~(N; r~, . .—. , r~) —P X(r; r;)f N(N; r~, .—. . , r~)

+-,' dr dr'1t(r —r')f~+2(N+2;rt, . . . , r~, r, r'). (A3)

In writing the above equation, we simply have to keep
in mind conservation of probability —e.g. , a two-

exciton decay process transfers probability from

(1V+2)-exciton states to ¹xciton states, for all N.
The equations of motion for the one- and two-particle

distribution functions are obtained from (A3) by
straightforward integrations and summations. To avoid

spurious boundary terms, it is convenient to assume that
all particles move in a large region with periodic bound-

ary conditions. The equations for fm and f& are

8—f2(rt, r,) =D(V'~'+V2') fm(rg, r2)
8$

2Pf2(rl r2)+tt'Lfi(r't)+f2(r2) j
—1t(r&—rm) f2(r&,r2) — dr&p, (r&—rl)

+1t(r,—r,))f,(r„r„r,) (A4)
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and

8—f2(r2) =DV2 fr(ri) —Pfi(ri)+n
Bt

drs X(r&—r2) f2(r»r2) . (A5)

Equations (6) and (7) result from these, when f&(r&)
is equal to the uniform density 22(t), and with f(r, t)

f2(IO+r, r,), g(r, r', t) = f,(rs+r, r,+r', rs), for arbi-
trary ro.

APPENDIX B: QUANTUM-MECHANICAL
DESCRIPTION OF ANNIHILATION

The aim here will be to derive equations analogous
to those of Appendix A but taking into account both
the quantum-mechanical nature of the excitons and the
discreteness of the lattice in mhich they move. Since a
quantum-mechanical description of the spatial motion
has been given elsewhere'4 and since the treatment of
the spin time development is elementary, we concen-
trate on the derivation of the general form of exciton
nonconserving parts of the equation of motion of the
exciton derisity matrix, particularly the term describing
exciton annihilation.

We introduce the exciton annihilation and creation
operators a„(R) and a„t(R) which, respectively, anni-
hilate and create an exciton on the lattice point R in
a spin state I 22). These operators satisfy the relations

L~.(R),~-'(R')]-= L~-(R) ~-(R')]-=0
when RW R',

(31)t:~-(R),~-'(R)]6= 1

g„(R)g„(R)=u„(R)a t(R)=0,

where excitons have been constrained such that two
excitons cannot occupy the same lattice site, regardless
of spin.

Let p be the complete density matrix of the many-
exciton system, including nonexcitonic degrees of
freedom such as lattice vibrations. This density matrix
is the equivalent of the classical set of distribution
functions f& The j-excit.on density matrix p; is a
partial trace of p, such that j excitons are fixed in
definite states; it is analogous to (A1). The creation and
annihilation operators just introduced help us express

p, in the form

(22', m2, . . .,22il pi(R& R2 .. R~) lm»m» ~ mi)
=TrLpu„, t(R2)a„,t(R2) a„,t(R,)a,

X (Rx)a, (R ) a,.(R,)], (32)

where me have defined only the spatially diagonal part
of p, , the only part with which we need to concern
ourselves within the hopping model.

Suppose nom the system Hamiltonian contains small
exciton nonconserving terms. We wish to describe the

time development of p, treating these terms as a per-
turbation. The difIiculty in doing this is that the changes
in p introduced by such terms cannot be kept arbitrarily
small, since they grow in time. A may to handle such
a problem has been described by Lax.'4 The presence
of exciton-nonconserving terms in the Hamiltonian leads
to matrix elements of p between states of different
exciton number; these matrix elements can be made
arbitrarily small compared to the exciton-conserving
matrix elements and thus serve as a basis for perturba-
tion. Adapting Lax's technique to the present problem,
we write p= p,+5p, where p, is the exciton-conserving
part. The Hamiltonian is written as %+V, where V
is the small nonconserving interaction. To lowest order
in the nonconserving terms, the equations for p, and
bp then have the form

Equation (34) may be integrated for 8p in terms of
p, if me switch V off adiabatically as t~ —~, i.e.,
replace V by Ves+'. lf the result is substituted in (33),
one obtains

The crucial step in simplifying (35) consists in
arguing that the integrand in (35) will be important
only for small t', such that exp( —iXt') p(t —t') exp(iBCt')
=p, (t). To make this argument we must first of all
keep in mind the fact that (35) will always be used in
conjunction with a trace. We mill be interested in
quantities of the form TrLpM], where M is an exciton
operator and conserves exciton number. Thus M mill
not have significant matrix elements between states
having the same exciton occupations but differing
greatly in their nonexcitonic parts. As a consequence,
the important matrix elements of p in the trace will
be those between states having nearly the same non-
excitonic configurations. Such matrix elements arise
in Eq. (B5) only from small t', since the operator
exp( —iÃt')V exp(iKt') describes the time evolution
of the state produced upon creation or annihilation of
appropriate excitons. This state, after times of the order
of an exciton scattering time ( 10 ' sec in anthra-
cene'4), will bear little resemblance to the initial state.
In other words, the approximation of neglecting con-
tributions to (35) from times t' comparable to and

2~ M. Laze Phys Rev 145e 11..0 (19.66).
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greater than the decay time determined by U will be
valid whenever the lattice scattering time is short
compared to this decay time.

A further simplification can be made if we write the
interaction U in the general form

diately upon an exciton annihilation event described
by AI, . Such states must be nonequilibrium states if
exciton destruction is to take place. Similarly,
(B,BI,t(t') ) vanishes for production processes.

The equation describing destruction processes then
takes the form

V=K AA'+A~'» (36)

where A, are exciton operators which destroy excitons
while B, refer only to nonexcitonic degrees of freedom.
The simplification consists in"approximating the time
development of V, for small times, by

8—(M) = —«(LM,K$)—P (««; MA, tA
l9$ j,j

+««; a*A I,"A,M p;sA—,tMA ~ ««, k*A—gtMA; ), (38)

where p;I, is the complex quantity

+A, tB,(t') exp(iE, «'), (87)
d(1 e 0+t' iEk—t~(B—.B $(«r)) (89)

where we have abbreviated V (t') =—exp (—iX&') V
exp(iXt'), and where E; is an average energy of the
excitons destroyed by A;. For spinless excitons whose
motion can be described in the hopping model, the
approximation (37) will be applicable provided A;
destroys excitons in localized states, since the latter
are nearly stationary and vary slowly compared to the
exciton scattering rate, a rate characteristic of the
changes in the nonexcitonic variables. When spin is
included we also require that the latter rate be large
compared to the rate of spin motion, or, equivalently,
that the spin Hamiltonian be small compared to the
Harniltonian describing motion of the nonexcitonic
degrees of freedom. We expect this relation to hold
even in the presence of large magnetic fields, e.g. , in
anthracene, where the exciton scattering time is less
than 10 "sec at room temperature, fields of the order of
5)(10' 6 would be needed to make the spin motion as
rapid as the scattering.

In describing exciton decay and production processes,
we will need the equation of motion for the expectation
value (M) =Tr(pM) of certain exciton-conserving exci-
ton operators M. We will be interested in this equation
of motion only on a time scale characteristic of the
exciton spatial and spin motion and of changes in the
exciton population. As we have pointed out, this time
scale will be large compared to the time scale in which
changes in the nonexcitonic variables take place.
Accordingly, we may average over the latter degrees of
freedom. Before performing this average, we observe
that only exciton-conserving terms survive the trace
involved in the equation of motion for (M). That means
that in Eq. (35), upon substitution of (37), we need
keep only those terms which involve the exciton-
conserving combinations A, tA~ or A,AI, t. If we now
perform the average, over the nonexcitonic variables,
of the exciton-conserving part of (85), we encounter
averages of the form (B;Bqt (t') ) and (B,«BI, (t') ), as well
as their complex conjugates. The second of these
vanishes if we are dealing with exciton-destroying
processes, for BI, destroys states which result imme-

For production processes, the roles of A and A~ and
of B and Bt are interchanged in the above. In all the
cases we shall consider, it will be possible to make a
choice of the combinations of operators A, , B; such
that (89) vanishes when j/k. ff for j/k, A, and A&
destroy localized excitons on different sets of lattice
sites, for example, then the corresponding operators
B,.'t and Bl,t also produce differently located localized
states. Insofar as these states have neligible overlap,
(39) will then be negligible. lf A, and Az destroy
excitons on the same set of lattice sites, but with dif-
ferent spin quantum numbers, (89) will vanish for
j~k if these spin quantum numbers are conserved in
the annihilation process.

When (39) is nonzero only if j=k, it is easy to see
from (38) that the imaginary part of ««;, gives a correc-
tion to the total Hamiltonian, and so is of no further
interest. The decay is governed by the real part of
p,;;, which may be rewritten in the form of Fermi's
golden rule

Repj~ =Re dte''

XQ (sl pB, s')(s'lB; ls)e '&e e"+~~~'— —
S, S'

=2 ~'1(slB ls') ' ~(E. E;+E,), —
S, S

(810)

where ls) are stationary states of the unperturbed
Hamiltonian, having energies E, and statistical weight
factors LV,.

We now apply (38) to speci6c cases.
(a) Mor«orr«olec«dar excitor«decay. We can readily

calculate the equation for the general j-exciton density
matrix, choosing

M=a-~'(R«). a., (»)a-, (R«) . a;(»).
The operators A, are given by a„(R) in this case, and
p,;; is independent of j if the decay is to be spin inde-
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pendent and spatially uniform. We obtain, with the
aid of the relations (81),

(
8

(n, , . . ,n. , Ip, (R„... ,R;) Im, , . . ,m., )
decay

jP—&n„. . ,.n, I p;(Ri, . . . ,R,) Imi, . . . ,m, ), (811)

where P=2 Re+, and where only the decay part of the
time derivative has been displayed.

(b) Pairioise annihilation of spinless excitons. The
operators A, now have the form a(R)a(R'); the quan-

tity p,, depends only on R—R'. For the one-particle
density matrix we have

~= at(R)a(R),

and the annihilative part of the equation of motion
becomes

tt' cj

pi(R) = —P 2 Rep(R —R')
R

X(at(R)at(R')a(R)a(R') &—= —P X(R')p2(R'). (812)
R'

For the two-particle density matrix we have

M =at(R') at (R'+R) a(R') a(R'+R),

and we obtain

(8
p, (R) = —X(R)p, (R)

&at .„„
—P P.(R' —R")+X(R'+R—R"))

X (at (R')at (R'+R)at (R")a (R')a (R'+R)a (R")) .
(813)

density matrix to be

(nI pi(R) Im) = ——,
' P X,(R')

Bt

X(n, lIp (R') In', m')(n', m'Is)(sIm, l)

+(n, lIs)&sIn'm')&n', m'Ip2(R')Iml) (81&)

The equation for the two-particle matrix contans terms
involving three-particle density matrices, as in Eq.
(813); the term important in the low-density limit is
the remaining term which involves only the two-
particle density matrix. This term is given by

&n,n I p, (R) Im, m &= —-,'~, (R) P
R),„„ l, l'

X(nn'Is)(sIl, l')(l, l'lp2(R) m, m')

y&nn'Ip2(R) Il l')(l l'Is)(sImm'). (816)

In the triplet channel we suppose that only one of the
two triplets is annihilated in any given annihilation
event. The interaction V then has the form

V= P Bzt(R —R')(n, mIj)2 't'
n, m, Z, R, Rr

XLa,t (R)+a,t (R') )a„(R)a (R')+H.c. , (81l)

where
I j) is the pair spin state having total spin 1 and

quantum number m, equal to m, of the single-particle
triplet spin state j of the surviving exciton. The surviv-

ing exciton is left on either R or R with equal prob-
ability. The one-particle density matrix annihilates for
this interaction according to the scheme

8)
(nIp, (R) Im) = ——', P Xz(R'){

gati... R' n', m', l,j

XI &nlIp, (R') In', m')(n', m'I j)(jIm, l)

+&n ll j&&jln'~m'&&n'~m'I p2(R) 1m~i&3

(c) Pairwise annihilution of triplet excitons To.
describe annihilation in the singlet channel, the inter-
action V must have the form

nl ml nil mall 1 l

(nIn', m')(n', m'Ip2(R) In",m"&

X(n",m" Im&), (818)
V= P B,t(R —R')(n, m Is)a„(R)a (R')+H.c. ,

n, m, R, Rr

(814)

where
I s) is the singlet pair spin state and H.c. denotes

that the Hermitian conjugate of the first term is to be
added. Accordingly, A, is to be identified with the
combination

P (n, m
I
s)a„(R)u„(R') .

'n~ m

Calling Rep, ,=i2X, (R—R'), we find the annihilative
part of the equation of motion for the one-particle

while the leading term in the annihilation scheme for
the two-particle density matrix is

cj)
(nn'I pa(R) Imm') = —2Xr(R)

gati.„„ l, l', j

XI &nn'Ip2(R)ll l'&&ll'I j) &jlmm'&

+&n~n'I j&&jll t') &l l'I p2(R) Im m'&j (819)

Equations (816) and (819) are precisely of the form
(28) of. the text, since the projection operators into the
singlet and the triplet manifolds of pair spin states are
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given by, respectively, P,= Is&&sI and Pr =p;I j)(jI.
The triplet annihilation rate (-,yn2) is obtained as the
spin trace of Eqs. (315) and (818) and leads to form-
ulas (31) and (42) of the text. Note the appearance of
the factor ~ in the triplet annihilation rate via the
triplet channel, resulting from the fact that only one
exciton is destroyed in each annihilation event.

APPENDIX C: ANNIHILATION WITH DETAILED
SPIN RELAXATION

In this Appendix we examine triplet exciton mutual
annihilation in the presence of relaxation which for the
one-exciton density matrix takes the form

(8
(nI p I ~&= —(1—&-)l -"'&nI p I ~&

~~ hei

—~..I (E f;.&'&)(nlpln)-g8. , & &&jIpI j&)q. (C1)

Here In) is a single-exciton spin state which is an
eigenstate of the spin Hamiltonian 3'., with eigenvalue
E„. The scheme (C1) is expected to be applicable
whenever all energy diGerences E„—E are large com-

pared to all relaxation rates.

This scheme must be used whenever the annihilation
rate is sensitive to the effective exciton decay rate, e.g. ,
in one-dimensional systems or in two-dimensional
systems where spin relaxation is faster than the e8ec-
tive decay rate due to out-of-plane diffusion. Although
a framework is established below in terms of which the
general problem arising from (C1) could in principle be
solved, actual evaluations are performed only when
results are relatively insensitive to the spin relaxation
rates, so that deviations of such rates from their
average can be treated as a perturbation. A further
approximation is made by assuming that single-exciton
spin state occupation probabilities are nearly equal,
even when a nearby exciton is inQuencing the relative
occupation probabilities of the spin states of the pair.
The error introduced via this assumption is, however,
estimated to be small for most conditions.

In order to generalize (C1) for a pair density matrix,
we have to choose a basis of pair states

I n,n') =—
I n) I

n')
which consists of products of single-particle stationary
states. If we furthermore ignore correlated spin relaxa-
tion, i.e., relaxation of the spin of one exciton induced
by the presence of another nearby exciton, then the
relaxation of the pair density matrix p2 can be char-
acterized by

(8
&nn'I p2I~ ~'&= —I:(1—~-)l-"'+(1—~- -)l- - "'3&nn'I p2I~ ~'& —~-I Z f~-"'(nn'Ip2In~'&

—g f„;"(j,n'I p2I j,m'&] —B„ I g f;„."'& nnI p[e2, '&nQ f„—,"'&njfp2Im, j)j. (C2)

Expression (C2) is almost certainly incorrect for exciton separations of the order of a lattice spacing, where corre-
lated relaxation can become important. The neglect of such correlated relaxation terms can, however, be justided
by an argument similar to that used for neglecting the exciton-exciton interaction V(R). Like that interaction,
the correlated relaxation terms are also short range. All we need is that these terms be small compared to the
annihilation rate h. (R).

Let us add the terms (C2) to the appropriate matrix element of the equation of motion, Eq. (30). We neglect the
interaction V(R) at the outset. The procedure for solving the resulting equation involves, as before, the solution of
the long-range problem via a Green's function analogous to (35), expressing each matrix element formally in terms
of short-range terms, as in Eq. (36), and some sort of approximate solution of the finite number of equations
involving the short-range quantities. In order to follow this procedure, it is essential that the equation of motion
can be separated into equations whose long-range behavior has the form of the right-hand member of Eq. (35).
The separation is automatic for the oG-diagonal terms num, n'&m'. The formal solution analogous to (36) is

&nn I»(R) I~,~ & =,I R, Py-;O„&»+f...&»)+~2i(Z.+Z..-Z„-Z.,)jg e(R)(nn I»(R) I~,~ &
R'

+g gI R—R', P+-', (f„&"+f ~ &")+-',i(E +8 —E —E )$I —4'(R')(nn'I p2(R')
I
mm'&

+~ (n n'I A(R') p2(R')+p2(R')h (R')
I
~ ~')3 (C3)

The terms diagonal in one particle (n=m or n'=m') or in both particles must be dealt with in several steps.
First, we consider the spin trace of the equation of motion. This is the same as the spin trace of (30), since the trace
of (C2) vanishes; the result is given in Eq. (50). Next, we find the equation of motion for the partial spin trace of
the pair density matrix, with respect to spin variables of only one member of the exciton pair. The spin relaxation
part of this equation has the form (C1), with the symbol p replaced by an appropriate one-particle trace of p2. The
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off-diagonal terms each decay at their individual rates, and we have (for n&m)

g (n,n'~ p2(R') ~m, n') =gLR, P+ ', 1„-&»+', i(E-„—E )jP P+(R')(nn'( p2(R')
~

mn')
R'

+P gt'R —R', P+-',i. &»+-,'i(E„—E„)jL—O(R') P (nn'~ p, (R')mn, ')
R'

+~ P (en'~A. (R')pn(R')+p2(R')A(R') ~mn')]. (C4)

The equations for the diagonal terms of the partial trace are coupled and have the constraint that their sum (the
complete trace) must satisfy (50). The latter difficulty is removed by considering instead the equations for the
correlation functions

f (R)=2 (n 'I p (R) I
me') —3»»(R)& (C5)

The equations for f„„are still coupled, but can in principle be uncoupled by choosing linear combinations of the
diagonal terms which relax independeritly of one another. The long-range behavior for each such linear cornbina-
tion can then be solved for. If the decay rates f,&'~ of these linear combinations are all nearly equal, such that at
least the quant. ities g(R, P+—,f,"') can be approximated as being equal, the result is the same as would have been
obtained had we initially replaced all f„"'by an average value, conveniently called 3t «' —We h. enceforth consider
only cases where such an approximation is applicable. The expression for f„„(R)is then

f-(R) =g(R, V+lt &") 2 +(R')f-(R')+2 g(R —R', a+it"')L —+(R')f-(R')
R'

+-,' P (nn'~ A(R') pp(R')+p2(R')h (R')
~

en') ——,', P (ln')A(R') pg(R')+p2(R')A(R') (
le')j. (C6)

n' l n'

Ke are at last in a position to find an expression for the remaining matrix elements of the pair density matrix,
which now have the constraints (C6), (50), and (C4) imposed upon certain of their sums. The constraints are
eliminated by considering the two-particle correlation function

f„~,„~&»(R) —= (nn'~ p2(R) ~mm') —35„ f„(R)—x38 ~ f (R) —98„8„~Trp2(R) .

%e find, with the assumption of nearly equal diagonal relaxation rates,

f„„,.„.„.&'&(R) =g(R, P+t &'&) Q +(R')f„„,. ~ &2'(R')+Q g(R —R', P+1 &")f—4'(R') f„„,.„„&2&(R')

(C7)

+-,'(nn'
~

A(R') pg(R')+p2(R')h (R')
~

ne') —,', P (nl
~
h (R')pg(R')+ps(R')A (R')

~
nl)

——„P(ln'(g(R')p2(R')+p2(R')h(R')~ln')+(1/36) P (li'(A(R')pu(R')yp2(R')h(R')(ll')g, (C8)
l

and, for e/ns,

f„.,„,„,(R) =gLR, P+-;(i &'~+1 „„&@)+-;i(E„—E„)$Q~(R )f„„,.„,„,(R )
R'

+Q Lg(R —R', P+2 (t'&''+i „&'')+~i(E„—E )jL—4'(R') f„,.„(R')+4(nn'( A(R') p2(R')+pa(R')A (R')
~

mn')

—~2 Q (nl j A.(R')p2(R')+p2(R')A (R')
~
ml) j. (C9)

In order to calculate the annihilation rate, one would have to solve the simultaneous equations (C3), (50),
(C4), (C6), (C8), and (C9) for as many R s as either 4'(R) or A. (R) is nonvanishing. This task is diKcult even
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within the smooth approximation. The solution in the smooth approximation can be expressed in the form

(n n'I p2(R) Im m') =&GPP j&({ jf ~ )j-'i(E +E E—E—)g(nn'IMImm'&

+„t—'..{GEO+it-- jl (E- E—-)3 G—CPjl({-"jf"-)jl (E- —E-)j&Z «, 'IMli, ')

+„a„..—.{GPPj2t„.j', i(E„-E„)—j Gg—j,'(f„„j-{„„)j-;i(E„—E„)j&g (n MIMI ml&

j~-~- - {(l»)'j(1/36)(G(P) jG(Pj{-) 2G—(Pjl{-)3Z (O'IMlf, i'&, (C»)

where we have deiined t „„—={„-"&for num, {„„—=t &", M= Ap2(—B)jp2(B)A, and where the function G has been
defined in (38).

The expression becomes considerably more manageable if all single-exciton spin states are equally probable,
so that

P (n, ll p2(B) Im, l) =-',8„„P(l, l'I p, (R) I i,t') (C11)

We expect (C11) to hold at least approximately, since only relative spin orientations of the annihilating exciton pair
affect the annihilation process. We proceed by assuming (C11); an estimate of the error introduced thereby will

be made subsequently. The condition (C11) implies, via (C4) and (C6), the relation

P (i,nlMlrm)=-', a„.P (i,VIMlr, f ), (C12)

which eliminates the most troublesome terms in (C10); the expression for the density matrix becomes

(nn'Ip2(R)lmm')=lGIPj-', ({ j| )jgi(E +E —E —E )j(nn'IMlmm'&

j&-&"-{(an~)' j(1/36)LG(P) —G(Pj{'-)j 2 (O'IM
I 9'&}

—=—,'G„„„m (n, n'I M
I m, m')+(-', nv)'cb„-b„.„. (C13)

With the aid of (C17), the odd matrix elements can be
eliminated from (C16).Let us abbreviate

I n, n', +):—I f»
and write, e.g. , G„„, , =Ggg, The resulting equation
then isl,nm&)= 2''I(lnm&+ lmn&) for mNn,

Spry S)S

ln, n, —) =0,
Gee'mm' =

2 (Gem'mm'~Ge'emm')
&

I+ G I

(C14) (lip (B)ll')=8„(-,'n ) cP„,

j~"sE2«2 I (EIS&(Sli"&(f"
I p2(B) If'&

Let us express (C13) in terms of either even or odd spin
states. We define

and make use of the property

(n,n'I p2(R) I m, m') =(n', nl p2( —R) I
m', m)

=(n', nl p, (R) lm', m), (C1S)

where
j(ll p (B)II")(i"IS)(sll'&j, (c18)

Ei«=1j2~rR~ /(1 ——,'&rG«+),

E2« =%~+j2~r(Ri )'/(1 ——,'l rGg+).
where the erst equality arises from the indistinguish-

ability of the two excitons of the pair, while the second
holds only if all terms in the equation of motion are
invariant under spatial inversion, a property we shall
assume. Equation (C13) becomes

(n)n')&
I p2(R) I m, m, a)= (3m)'c5nm5-1m~

j-', LG„„.„+(n,n', a I M
I m, m', ~ &

jG... „.- (n, n, ~ IMlm, m, ~g. (C16)

It will be recalled that the matrix A, when operating
on odd spin states, is equal to the constant P z, so that

(n,n', —IMIm, m', )=Xr(n, n',——Ip2(B)lm, m', )~-
(C17)

The simultaneous equations (C18) have essentially
the same form as Eq. (41), except for the fact that the
quantity c depends on the solution. The equation can
be simplified by the same trick used in simplifying (41),
provided we eliminate c from the equations. To do so,
we define

~~=(-'n~) '~ '(ilS) 2 (Sli'&(~'Ip2(B) li) (C19)

and obtain the equation

I1—-'l'82 l(Sli'&I'P2gijAi

=I(SIi&l'IE «j-.'& gals, A)*j. (C20)



K I NEMATI CS OF EXC I TON —EXC I TON ANN I H ILATION ~ - ~ 1737

Define the quantities

As=+ Ai
l

and
1+gGii Ai

(&) 1—gh. zG))+

(C21)

(C22)

This identity is easily proved by noting that the left-
hand side of (C29) is basis independent. Evaluating it
in a convenient basis of triplet states gives —,~ Subject
to (C29), the quantities 8„have the permissible range

k/(3+2k) &8„&2k/(6+0) . (C30)

The range (C30) determines an upper limit on (C28),
which is found to be

78——(A8/9) cA 8, Vz ——(Az/18)cA r. (C,'24)

Finally, we estimate the error introduced by the
approximation (C11).For this purpose, we may use the
results of the text for a constant spin relaxation rate
and look only at the soluble limit of large pair energy
separations. In this limit the pair density matrix is
given for even states by

«I p2(@li&=c(3»~)'/El+&I &Sli)12] (C;'.Sa)

&n, m, + i p2(R) i
e,nz, +)

=c(l~~)'/El+&I &SIN ~) I'(2 —&-.)], (C25b)

where
5~8—G(P+t ),

and for the odd states by

&n,m, i p2(R) i N, m —)= c(-',ei)'/
I 1—2~r~(P+{)] (C'26)

The quantities f„„are then calculated via (C14) and
the definition (CS). The result is

f„„=—(-',Nv)'c(8„—-,'Q 8„),
where

uf &S[~,m) f2

1+k' &Six,m)i'(2 —6„„)
(C27)

The relative error in the singlet part of 'r, »8/'Ys, due
to nonvanishing f„„,is calculated to be

XQ (8 ——,
' Q 8 )'/g 8 . (C28)

We get an upper limit on (C28) as follows. The singlet
amplitudes &S~ e,m) are restricted by the identity

where (i) indicates that the sum is restricted to pair
states / which are products of two distinct single-
particles states.

In terms of these quantities, the coefficient c is
given by

c=1/{1——LG(P) —G(8+t „)]P.A +X A ]) (C,'23)

and the annihilation rate constants in the singlet and
triplet channels are

l»s/'rBI & (1/81){1—LG(P+|)/G(P+lt)])
Xk'(1+-'k) —'(1+-'k) '. (C31)

The factor in curly brackets will be small whenever t'

is small compared to P. Moreover, it will generally be
small in three- and two-dimensional systems where the
dependence of G on the total effective lifetime is weak. .
The remaining multiplicand will a,iso be small com-
pared to unity whenever k& I.

APPENDIX D: THEORY OF SPIN RELAXATION
VIA EXCITON HOPPING BETWEEN

INEQUIVALENT SITES

In this Appendix we compute the spin relaxation
rates of triplet excitons in anthracene at room tem-
perature with the aid of the known crystal structure,
spin Hamiltonian, and exci ton hopping rates. The
general theory is applicable to triplet excitons in any
molecular crystal with two molecules per unit cell,
provided exciton motion can be described by means
of a, hopping model.

We denote by 3C~ and BC~ the Hamiltonians asso-
ciated with each of the two inequivalent molecules of
the anthracene lattice. The actual spin Hamiltonian at
the lattice point R can then be expressed as

X(R) =—', (X~+Xii)+2(X~—Xii) exp( ', iG R)—
—=X+A exp(-,'iG R), (D1)

where G is the reciprocal lattice vector G=4~1/b'.
Equation (D1) reduces to Xg at lattice points equiva-
lent to R=O, and to X~ otherwise. X is the Hamil-
tonian used in (58). The equation of motion for the
one-exciton density matrix p(R) is, in the hopping
model,

8—p(R) =iLX(R),p(R)]++ +(R—R')p(R')
Bt R'

—2 +(R')p(R) (D2)
RI

We seek approximations which reduce Eq. (D2) to a
form containing only 3C and a relaxation term in the
form (Ci). The procedure is essentially the same as
that employed by Kubo and Tomitaa' in calculating
motional relaxa, tion, the only difference being the fact
that the fields inducing the relaxation now have definite
orientations in space. The reduction is effected by

S (C29) "R. Kubo and K. Tomita, J. Phys. Soc. Japan 9, 888 (1954).
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means of the matrix quantities

g(kco)= dre'"'P e' "e 'p(R t)e
—' ', (D3)

R

where

and

h((o) —= dt e'"'e~'he '+'

which satisfy the equation

I
—i(v+ f(k)7g(k, cu) = —i(2tr) '

X d(u'
I h(o)'), g(k+-', G, a) —(o')j, (D4)

f(k)—=P %(R)(1—e '"' ).

If we iterate Eq. (D4) once and evaluate the matrix
elements of the result in a basis which diagonalizes the
average Hamiltonian X, such that (e[K[m)=E 8

we obtain

[—i~+f(k)](&In(k, ~)[m)

(e[h[tt')I (tt'[him')(m'lg(k, co+E —E )Im) (tt—'Iq(k, &u+E„—E„+E —E )I m')( m'I h[ m)g

i ((v+E—„E„„.)+f—(k+ ,'G)-
I (ttlg(k, co/E —E ) ltl')(tt'I him') —(n [hltL')(B'Ig(k, co+E —E„/E —E ) Im')](m'Ih[m)

(DS)
i (ur+E„—. E)+f—(k+-,'G)

where we have used the property that k+G is equiva-
lent to k Equation (DS) is still exact. Let us look at
this equation in the small-k limit. The justification for
so doing is that we are primarily interested in the long-

range spatial behavior of the density matrix, for we

have seen that most of the essential features of exciton-
exciton annihilation are governed by the long-range
behavior. . For k near the center of the Brillouin zone,

f(k) =Dh2 and can be made arbitrarily small. Now

q( k~) becomes small for large &v, with a half-width

roughly f(k)+f, where f is an average relaxation rate
as yet to be computed. Let us look at (DS) for
co& f(k)+f, and let us suppose that f(k)+f« f(k+-', G)
=f(~G). If we can arrange it that all nonzero energy
differences occurring in (DS) are large compared to
f(k)+f, we can neglect all those terms in which

q(k, a&) has as its argument a nonzero energy difference.
If furthermore there are no energy degeneracies as well

as no pair energy degeneracies, then (D5) simplifies to
the approximate form

ia&+ f—(k)g(el g(k,co) I m)

= —i(E'„—E„)(ttlq(k, co)
I m)

—(1—8„„)f'„ i'i (tt I q (k,(o) I m)

f(lG) I( Ihl '&I'
f-"i=Z

"' f(-'G)'+(E —E )'

f(gG) I
(mlhlm') ['

+g"' f(2G)'+(E- E-—)'

2(ttlhln)(mlhlm)
(D6c)

f(l G)

2f(lG) I (~[hi J) I'
.(ii-

f(2G)'+ (E. E)'—
(D6d)

It is not hard to see that, upon substitution of (D3)
into (D6a), an equation for p(R, t) results which ex-

hibits a relaxation term of precisely the type (C1),
with relaxation rates given by (D6c) and (D6d). There
are also corrections to the Hamiltonian, resulting in
the change of each energy level by an amount c„.These
corrections must be small compared to all zero-order

energy differences if the assumptions made in deriving

(D6a) are to be valid.
For anthracene, assuming 4& and %z are the only

significant hopping rates, the quantity f(-,G) is just
8%'~. The matrix h can be put into the form

h=E'(S '—S ') (D7)
—8„„L(Pf'; i")(ttlg(k, o))ltt)

where for anthracene we find E'/gee =255 Oe, while the
principal axes x', y', s' have the direction cosines, with

respect to the axes a, b, and c*, as follows:

where

(E„—E..) I (~[hi ~ ) I

e.=P
"' f(2G)'+(E- E")'— (D6b)

x'. 0.656 0.707

y': —0.656 0.707

s'.—0.372 0

0.263,
—0.263,

0.928.
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An upper limit on all relaxation rates is obtained by
setting all energy differences in (D6c) and (D6d)
equal to zero. This limit is even realizable in practice,
since 8%'~, converted to units of Oe, using g=2.0,"has
the value

8%'ah/(2tsti) = 18 600 Oe, (D8)

|- "'=2I (~lhl J) Is/8+' (D9b)

The relaxation rates l „&'& as well as the total dia-
gonal relaxation rates P; f„,t'& are all seen to be bounded
from above by the maximum value attainable by the
quantity (n lb'l m)/4@a. since It'= (E')'5, s, this rnaxi-
mum value is (E )'/4+@, which in units of Oe is about
6 Oe. Except near degeneracies, this value is indeed
well below all finite energy differences. Similarly, the
energy corrections e are smaller than typical energy
differences by at least a factor (E'/8%'a)'=2&&10
Thus the assumptions leading to (D6a) are justified,
provided there are no near degeneracies and provided

which not only is well above the energy level differences
at zero external field, but is even large compared to
typical values of the external field in actual experi-
ments. ""In the limit where all energy differences are
small compared to (D8), we have

&'&=L(stl Jt'll)+(milt'lm) —2(stl Jtln)
X(ml~lm)~/8~. , (D9.)

Bk' is small compared to all 6nite energy differences.
The k's of interest will necessarily correspond to dis-
tances of the order of a diffusion length, (D/l )'ts, where

l is a typical relaxation rate. Thus Dk' is of the order of
f and is sufficiently small. Finally, the small magni-
tude of the relaxation rates allows us to ignore near
degeneracies: Such degeneracies will modify the relaxa-
tion rates at worst only when the corresponding
energy difference becomes comparable to 6 Oe, in
appropriate units, a very narrow energy range com-
pared to the full range. Nor do such modifications
signi6cantly affect the resonance shapes; the resonance
shapes will be affected only in a range of at most 6 Oe
about the center of the resonance; by contrast, the
resonance width will be of the order of 2.24(~a)'ts
=

l
E'l 250 Oe, even when relaxation is the only decay

mechanism.
For external fields well below the value (D8), the

average diagonal relaxation rate is given by

i =l E(Z l- "')=(E')'/6+.

=8.2)&10r sec ' (I'tt/2tsts 4 65 O——e).. (D10)

This is also approximately the average of the off-
diagonal relaxation rates. If the expression (D9a) is
averaged over all e, m, ignoring the restriction e&m,
the result is precisely (D10).
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Optical Nonlinear Susceptibilities: Accurate Relative Values for Quartz, Ammonium
Dihydrogen Phosphate, and Potassium Dihydrogen Phosphate
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A complete theoretical and experimental analysis of the Maker fringes leads to the determination of
accurate relative nonlinear optical susceptibilities in SiOe, NH4HsPO4, and KHsPO4. dqP" (SiOe)
= (0.77+0.04) tfses" (KHsPO4); dse'"(NH4HsPO4) = (1.21+0.05)dee'"(KHePOe), for a fundamental wave-
length 1.064 pm. Application of this analysis to earlier data leads to corrected values in good agreement with
the present study, thereby establishing these materials as accurate and reliable standards for measurement
of nonlinear optical susceptibilities.
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INCR it is extremely dificult to make accurate
absolute-intensity measurements, the components

of the tensor describing optical second-harmonic
generation or parametric processes have with few excep-
tions been determined by relative measurements: the
elements of the unknown tensor being compared to those
of a well-known "standard" material, such as KH2PO4
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(KDP). Accurate absolute values can then be easily
deduced from relative data, provided the standard has
been carefully calibrated.

A survey of all the published measurements' indicates,
however, a complex and quite paradoxical situation.
Most importantly, no one material has been chosen as a
common standard. Depending on the spectral range
(visible, infrared, ultraviolet) and on the techniques

' R. Bechmann and S. K. Kurtz, Landolt-Bornstezn: Numerical
Data and tiunctional Eelastionships, Group III. Crystal and Solid
State Physics (Springer-Verlag, Berlin, 1969), Vol. 2.


