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Two-Electron F' Centers in the Alkaline-Earth Oxides and in the Alkali Halides
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The Hartree-Fock-Slater equations for the two-electron orbitals localized about an anion vacancy in
MgO, CaO, NaCl, and KCl have been solved numerically in the point-ion-lattice potential. The ionic polar-
ization of the nearest-neighbor ions is treated in a self-consistent manner. It is found that the low-lying
P-center states for MgO and CaO have the following order for increasing values of the energy: 'S(1s,1s),
'P (js,2p), 'P (1s,2p), and either 'S(1s,2s) or 'S(ls, 2s). The states 'S (ts, 2s) and 'S (1s,2s) both lie above the
other three states, but whether the 'S(1s,2s) state lies above or below the 'S(1s,2s) state depends upon the
ionic polarization of the crystal potential. The above ordering, the optical absorption and emission energies
between the states 'S(1s,ls) and 'E(1s,2p), and the spin-forbidden emission energy from the state 'P (1s,2p)
to the state 'S (1s,is) agree reasonably with the experimental ordering of the states and with the experimental
transition energy values for CaO, respectively. The same physical model gives very diBerent results for the 8
center in NaCl and in KCl. It is found that only the ground state S(1s,1s) contains spatially compact
(bound) electronic orbitals. The ground-state energies of the P center in NaCl and in KCl agree to within
20% of the experimental values. The existence of bound excited states for the F' center in these monovalent
crystals has been investigated. However, definitive statements on such states are not available at present.

I. INTRODUCTION

HE F' center in ionic crystals consists of two elec-
trons (the defect electrons) localized about a

vacant anion site, regardless of the missing anion va-
lence. ' This center has been known for some time. It
plays an important role in those processes which include
the creation, destruction, and transformation of F cen-
ters (one defect electron) s It has been studied much
more extensively in the alkali halides than in the alka-
line-earth oxides. The reasons for the emphasis on the
alkali halides are partly historical. In addition, the
impetus for research on the alkali halides has been aided
by the relative ease with which pure large single crystals
may be obtained. Only recently have experiments on
the F' center in the alkaline-earth oxides (CaO) been
successfully interpreted. ' Present experiments on the
intrinsic optical properties of the F center are pre-
liminary and are not definitive. This lack of extensive
study on the intrinsic optical properties of the F' center
applies to both the alkali halides and the alkaline-earth
oxides.

Practical difficulties account for this. There exist in
the alkali halides and perhaps even in MgO other cen-
ters, particularly the F center, whose absorption bands
are in the same region as the absorption band for the
F' center. The F' band in the alkali halides (NaC1 and

'B. Henderson and J. E. Wertz have introduced recently
LAdvan. Phys. 17, 749 (1968)g a notation which differs from the
notation used in the present paper. These authors denote one elec-
tron localized about an anion vacancy in the alkaline-earth oxides
by the F+ center and in the alkali halides by. the F center. They
also denote two electrons localized about an anion vacancy in the
alkaline-earth oxides by the F center and in the alkali halides by
the F' center. The author uses in this paper the more traditional
notation; namely, an F center contains one electron and an F'
center contains two electrons, independent of the valence associ-
ated with the missing anion.' W. B. Fowler, Physics of Color Centers (Academic Press Inc. ,
New York, 1968), pp. 119—121.

'B. Henderson et al., Phys. Rev. 183, 826 (1969); private
communication.

KCl) is usually very wide compared to the F band, and
it peaks at a somewhat lower energy than the energy
at which the F band peaks. This breadth of the F' band
may be interpreted as suggesting that one of the F'
electrons is excited directly from the ground state into
one of the conduction bands. The F' band resembles to
some extent the continuum absorption band of the H
ion. The stability of such ions as the H—ion occurs be-
cause the two electrons are on the average nearer to
the nucleus than they are to each other. Such ions have
very few bound states. Hence, it is reasonable for us to
expect that F' centers in monovalent crystals have sub-
stantially fewer bound states than F' centers in divalent
crystals and that monovalent F' centers may have only
one bound state, the ground state. But, there is neither
definitive experimental nor theoretical work on the
number of bound states which monovalent F' centers
may have.

The F band and the F' band in some alkaline-earth
oxides (CaO, for example) have widths which are com-
parable to one another and their respective band peaks
are well-resolved. The F'-band peak is on the low-
energy side of the F-band peak. Different difficulties
arise in research on the alkaline-earth oxides. Many of
the alkaline-earth oxides (e.g., CaO and MgO) are the
divalent structural analogs of the halides (NaC1 and
KCl). But large and pure single crystals of the alkaline-
earth oxides are not readily available. Large dislocation
densities and impurity concentrations occur in the sin-
gle crystals because these oxides have high melting
points and are prepared usually by the arc-fusion
method. Such imperfections hinder the study of the
alkaline-earth oxides. Only recently have researchers
understood the optical properties of the transition-
metal ion impurities well enough to improve their
knowledge about the F center and the F' center in the
alkaline-ea, rth oxides. '

There exist relatively few theoretical calculations on
the F' center in contrast to the many calculations on
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the Ii center. Most of the F' center investigations con-
sider only the alkali halides. The early work of Pekar4
treats the F' center by a continuum model. He uses a
linear combination of hydrogenic "1s"and "2s" wave
functions for the F' electron orbitals in the ground state.
Cheban' extends Pekar's treatment to include the
thermal ionization and photoionization of F' centers.
He concludes that the experimentally observed J' bands
in NaCl, KCl, and KBr are connected with the transi-
tion of an Ii' electron into one of the conduction bands.
Fekar's treatment also forms the basis for the calcula-
tions by Kachlishvili on the interaction of a nonlocal-
ized exciton with an F center. Using a simple varia-
tional wave function (a product of two hydrogenic "2s"
wave functions), Pincherler applies a semicontinuum
model to the E' center and estimates the binding energy
for XaCl, KCl, PbS, and BaO. Raveche' estimates the
binding energy for the Ii' center in NaCl and KCl. He
employs a point-ion model in which the polarization
eRects are neglected. He computes the electron-electron
interaction by a perturbation theory in which the
E&'-center wave function is a product of Gourary's and
Adrian's' F-center wave functions for the ground state.
His approach yields a binding energy of —1.16 eV

(—0.0426 a.u.) for KCl and this compares favorably
with the experimental value of —1.2 eV (—0.0441 a.u.).
Neeley and Kemp" use the point-ion lattice model with
a Gaussian variational wave function to investigate the
F' centers in the alkaline-earth oxides. Their estimated
energies for the transition from the 'S-like ground state
to the 'P-like excited state for MgO and CaO are 5.4
eV (0.199 a.u. ) and 4.4 eV (0.161 a.u.), respectively,
without lattice distortion and polarization corrections.

La and Bartram" proceed in a manner somewhat
similar to Raveche's approach. They employ the point-
ion lattice model with some features of a semicontinuum
model included as well. They obtain solutions for the
electrons in a square-well potential, compute the diRer-
ence between the point-ion potential and the square-
well potential by a perturbation theory, and consider
the effects of polarization by use of a semicontinuum
model. Their results for F' centers in the alkali halides
agree fairly well with the experimental results. Strozier
and Dick" carry out a more detailed calculation on the
F' center in KC1. They include polarization eRects
through the semicontinuum approach and estimate
correlation effects for the ground-state wave function.

'S. I. Pekar, Etectrort Theory of Crystals (GITTA, Moscow,
1951).' A. G. Chehan, Opt. Spectrosc. 14, 269 (1963).l:'

E. S. Kachlishvili, Fiz. Tverd Tela 4, 73.6 (1962) )English
transl. : Soviet Phys. —Solid State 4, 538 (1962)].' L. Pincherle, Proc. Phys. Soc. (London) A64, 648 (1951).' H. J. Raveche, J. Phys. Chem. Solids 26, 2088 (1965).' B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180 (1957).

"V. I. ¹eley and J. C. Kemp, Bull. Am. Phys. Soc. 8, 484
(1963).

» S. Y. La and R. H. Bartram, Phys. Rev. 144, 670 (1966)."J.A. Strozier, Ph.D. thesis, University of Utah, 1966 (un-
published); J. A. Strozier and G. B. Dick, Phys. Status Solidi 31,
203 (1969).

In addition, their vacancy-centered wave functions are
orthogonal to the core orbitals of the nearest- and next-
nearest-neighbor ions. Their computation of the absorp-
tion band shape contains the continuum wave functions
for a square-well potential. The results for the Ii' ab-
sorption edge in KCl of 1 eV (0.0368 a.u.) and for the
half-width of the band of about 1 eV (0.0368 a.u.) agree
reasonably with experiment. They also And that the
ground state is the only bound state of their model.
Lynch and Robinson" use correlated Hylleraas wave
functions in a semicontinuum variational calculation.
Their resulting binding energies of the Ii' center in
several alkali halides are in fair agreement with the ob-
served optical-absorption edges. In addition, their ab-
sorption cross-section calculations, in which the anal
state consists of one s-like bound-electron wave function
and one free plane-wave electron wave function, repro-
duce the gross features of the experimental absorption
curves.

All theoretical treatments of the F' center consider
models with mathematical descriptions which are by
necessity much simpler than those of the real Ii ' center.
Most past treatments of the F and F' centers use trial
or variational wave functions. Thus, we usually have
approximate solutions to a model problem. Conse-
quently, two questions arise in such treatments, namely,
how well do the approximate solutions give the exact
properties of the model and how well does the model
represent the properties of the real system? Solving the
model exactly answers best the 6rst question. Compar-
ing the predictions made by such solutions to the model
with the experimental properties answers the second
question.

In this paper, the author reports his calculations on
several states of the F' center in MgO, CaO, NaCl, and
KCl. He uses a point-ion-lattice model which incor-
porates the Hartree-Fock-Slater (HFS) procedure to
compute the defect electron orbitals. In addition, the
model contains estimates for the correlation energy of
the defect electrons" and includes the ionic polarization
of the nearest-neighbor ions. These approximations con-
stitute the model and make it solvable on a computer.
The formalism which leads to an estimate for the corre-
lation energy is analogous to the formalism by which
Slater estimates the exchange energy for the free-elec-
tron gas. ' " The model also obeys completely the
Franck-Condon principle that the ionic polarization
does not respond to rapid changes in the electronic
state of the F' center when the F' center undergoes an
optical transition. This means that all low-lying E -cen-
ter states should have spatially compact electron orbit-
als if the model's predictions are to be internally con-
sistent with its assumptions.

~3D. W. Lynch and D. A. Robinson, Phys. Rev. 114, 1050
(1968).

~4 H. Mitler, Phys. Rev. 99, 1835 (1955)."J.C. Slater, Phys. Rev. 81, 385 (1951).
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In this paper, one removes the necessity for asking
the first question. The procedure is to solve numerically
the HFS equations for the F' center given by the model
outlined in the preceding paragraph. Since one does not
employ trial or variational wave functions, the first
question does not arise. The second question does re-
main, namely, how well does the model represent the
properties of the real system& The numerically com-
puted solutions give the exact properties of the above
model. If one has confidence that the above approxi-
mations contained in the model are physically rea-
sonable, then comparing the predictions made by such
solutions to the model with the experimental properties
answers the second question.

The model for the present calculations also includes
in a classical treatment the ionic polarization of the
nearest-neighbor ions. The researcher first specifies the
electronic configuration for the two defect electrons of
the initial and final states of an optical transition. The
computer finds the minimum value of the total energy
for the F' center in its initial state as a function of the
distance by which the nearest-neighbor ions move (ionic
polarization). It then determines the total energy for
the F' center in its final state of the optical transition
from the same crystal potential (ionic polarization) as
that for the initial state. This is in accordance with the
Franck-Condon principle for a lattice which behaves
classically.

We shall study here within the framework of the
above model the five lowest-lying F'-center states for
MgO and CaO. This model predicts the following order
for the J'-center energy levels: '$(is, is), 'P(is, 2p),
'P(is, 2p), and either '$(is, 2s) or '$(is, 2s). The states
'$(is, is) and '$(is, 2s) both lie above the other three
states but whether the '$(is, 2s) state lies below or above
the '$(is, 2s) state depends upon the ionic polarization
of the crystal potential from which these states are com-
puted. This ordering of the states for increasing values
of the total F'-center energy agrees with the ordering
determined from the experiments of B.Henderson et al.'
The F center in the alkaline-earth oxides is in some re-
spects similar to the helium atom. However, the order
of the energy levels is not the same for the F' center
and the helium atom. The helium atom energy levels
have the following order: '$(is, is), '$(is, 2s), '$(is, 2s),
'E(is, 2p), and 'P(is, 2p). We shall find that the model is
successful for CaO with some qualifications. It predicts
the correct ordering of the five lowest-lying states and it
predicts optical-absorption and emission energies be-
tween the '$(is, is) state and the 'P(is, 2p) state which
agree to within 2 and 20% of the respective experimen-
tal values. It also predicts the spin-forbidden emission
energy from the 'P(is, 2p) state to the '$(is, ls) state
to within 6% of the experimental value.

We shall study also with the same model the F' center
in NaCl and KCl. Drastically different results obtain
for the F' center in these two alkali halides. The model

has for the ground state '$(is, is) spatially compact
(bound) electronic orbitals. Using the same model to
compute the ground-state energy of the F center (one
electron) in the alkali halides, the author estimates bind-
ing energies of the F' center in NaC1 and KCl. The the-
oretical binding energy for KC1 agrees to within 12%
of the experimental value. ~ The binding energy pre-
dicted by the model for the F' center in NaCl is com-
parable to that in KCl. The existence of bound excited
states for the F' center in monovalent crystals remains
uncertain. Definite statements are not available. The
attempts to solve for the singlet excited state 'P(is, 2p)
of the model suggest that the 1s-like orbital is spatially
compact but that the 2p-like orbital is either spatially
very diffuse (but bound) or band like (not bound). The
uncertainty of the spatial extent of the second electron
orbital arises from two related and practical considera-
tions. The numerical integration procedure converges
more slowly the more diffuse the orbital becomes (or
equivalently, the smaller the magnitude of its energy
eigenvalue becomes). Checking the convergence for such
diffuse and perhaps unbound states requires excessive
computer times. "

II. PRELIMINARIES

The present model for the F' center contains the same
treatment of the lattice energy as that given in paper
I.' The author has given in Secs. II and III of paper I
a discussion of the total crystal Hamiltonian and of the
classical ionic lattice. Because we shall apply here the
results contained in Secs. II and III of Paper I, we sum-
marize below the contents of those two sections in terms
of the F' center. We shall view the entire lattice
classically.

U sing the Born-Oppenheimer approximation, we
write the two-electron Hamiltonian for the F' center as
the sum of two terms,

Kp(x)y) R) =Rp. (x,y) R)+Xz, (R) . (1)

The expectation value of the operator BC~ gives us the
electronic energy of the two defect electrons while the
expectation value of Xg, which contains no operators
for the two F' electrons (defect electrons), gives us the
lattice energy of the crystal. The vectors x and y are
position vectors for the defect electrons and the vector
R is a generic vector which represents the lattice
configuration.

We shall study the optical absorption and emission
which the defect electrons may undergo. We denote the
state (defect electrons and lattice) of the F' center by

"Whenever the computer requires more than 10 min to com-
pute one state for one value of the nearest-neighbor ionic polariza-
tion, then the author considers this as an excessive amount of time.
He estimates that the computer would require at least an order of
magnitude increase in time to locate the minimum of the total
energy as a function of the nearest-neighbor ionic polarization.

'7 H. S. Bennett, Phys. Rev. 169, 729 (1968). Hereafter, we
shall refer to this paper as Paper I.We shall use, whenever possible,
the notation of this reference.
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~
r); o). The quantity o, which plays the role of a quan-

tum number, parametrizes the breathing mode in the
lattice vibration. The distance which the nearest-neigh-
bor ions move in a breathing mode from their sites in a
perfect lattice is err~, where r~ is the nearest-neighbor
distance. The symbol g represents the electronic con-
figuration. We shall consider here the five lowest-lying
states. Hence, the symbol p denotes an electronic con-
figuration of the two defect electrons which transforms
as one of the following states, 'S(1s,1s), sP(1s,2p),
'P(1s,2P), sS(1s,2s), and 'S(1s,2s), transforms. We shall
refer to a state as being relaxed whenever the electronic
configuration exists for such a long time that the nearest
neighbors move to accommodate the charge density
associated with the defect electrons. We also shall refer
to a state as being unrelaxed whenever the electronic
configuration exists for such a short time that the
nearest-neighbor ions cannot move to accommodate
the new charge density associated with the defect elec-
trons. The final state of an optical transition which
obeys completely the Franck-Condon principle is an
unrelaxed state. We illustrate the above by the following
process. The Ii' center which is initially in its relaxed
ground state ~'S(1s,1s); os) becomes excited (absorp-
tion) in accordance with the Franck-Condon principle
into the excited unrelaxed state ~tP(1s,2p); oo). The
excited unrelaxed state

~
'P(1s,2p);o s) is assumed to be

a quasistationary state with an electronic wave func-
tion calculated from the same crystal potential (ionic
polarization) as that for the initial-relaxed state
~'S(1s,1s); trp). The lattice then relaxes and thereby
the crystal potential, which the defect electrons experi-
ence, changes. The excited-relaxed state

~

'P(1s,2p) o.i)
calculated from the relaxed crystal potential may differ
from the excited-unrelaxed state in both radial and
angular properties, even though our notation does not
explicitly indicate a change in the angular properties.
That is, the spatial extent of the defect electron orbitals
may change substantially and higher and lower angular
momentum states may be admixed into the excited-
relaxed state. The Ii' center may undergo a transi-
tion (emission) to a lower-lying unrelaxed state
)'S(1s,1s); oi) with an electronic wave function calcu-
lated from the same crystal potential (ionic polarization)
as that for the excited relaxed state

~

'P(1s,2p); or). We
present in Fig. 1 a simple-schematic configuration dia-
gram which illustrates some of the P-center states dis-
cussed above.

We want to compute the change in the lattice energy
due to replacing an anion with the two defect electrons
of the F' center. We first create a vacancy at the anion
site rp=0 of charge Zo by adding an effective vacancy
charge Z, = —Zo at ro ——0 and permit no lattice relaxa-
tion. This 6ctitious lattice state will serve as the refer-
ence energy for the lattice part of the total J'-center
Hamiltonian. We compute the change in the lattice
energy DEr, (vacancy, distortion) due to replacing an

ET

O. I I4 Q.U.

0.097 a.u.

0.075a.u.

FIG. 1. Schematic configuration-coordinate diagram. The quan-
tity Fz is the total energy of the F' center and 0- gives the nearest-
neighbor-radial motion (ionic polarization) ri' = ri (1—~), where ri
is the nearest-neighbor distance of the perfect lattice. The F' center
has the configuration 'S(1s/, 1sg) for the bottom solid curve, the
configuration 'P (1s/, 2pg) for the middle solid curve, and the con-
figuration 'P (ts/, 2p)) for the upper solid curve. The experimental
values of the F' center in CaO are given for the optical absorption
(0.114 a.u.), the emission (0.092 a.u.), and the spin-forbidden
transition (0.075 a.u.).

(3)

where d'y means an integration over only the spatial
coordinate part r of the generic coordinate r throughout
the entire crystal volume. The generic coordinate r also
includes the spin coordinate. We also specify in Eq. (3)
that the wave function is normalized to unity. That is,

anion with two F -center electrons by classical ionic-
lattice theory. We allow the nearest neighbors to move
radially from ri to ri' ——ri(1 —a) in order to accommo-
date the j'-center charge density.

Before presenting an expression for the total F'-center
charge density, we introduce some notation and defini-
tions. The F'-center electronic wave function iP„(x,y)
has the representation,

(2)

The spatial charge density due to the two defect elec-
trons in the configuration q is
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we have the condition

dy dx&,*(x,y)P„(x,y) =1, (4)

We define for future use Zp ———e, where the magnitude
of the electronic charge is e. The total F'-center charge
density becomes the sum of the above charge densities,

where the integrations over the dx and dy are inter-
preted to include integration over the entire crystal
volume and summation over the spin coordinate. The
effective vacancy charge is Z, . We treat the effective
vacancy charge as a point charge and write the charge
density P„(r) due to the vacancy in terms of a three
dimensional delta function 6'(g);

formation energy by S%%uq and decrease the distortion by
about 4%%u~ and because we do not expect the J'-center
electronic part of the Hamiltonian to be accurate to
within 5%% of the experimental results, we do not include
the van der Waals terms in our expression for the co-
hesive energy from which we compute the lattice
energy. " In addition, we have found previously that
unless we include next-nearest-neighbor repulsions for
the F-center core electrons in the alkaline-earth oxides
and for the j'-center core electrons in the alkali halides,
the distortions for compact electronic states will be
excessive. We include, therefore, both erst- and second-
nearest-neighbor repulsive terms in the cohesive energy.
We express the repulsive energy contribution to the co-
hesive energy by means of the empirically determined
Born-Mayer exponential form. Again, we refer the
reader to Sec. III of Paper I for the details and to Table
I of the present paper for a list of the input data.

The change in the lattice energy is written as the
sum of many terms. Each researcher has his own way
to carry out the summation. We have chosen the method
given by Eqs. (17) and (18) of Paper I. The lattice en-

ergy for a classical lattice (Hr.) —constant =DPI.
(vacancy, distortion) =DE,+DE„, where AI~, is the
change in electrostatic energy and DE„is the change in
the effective repulsive energy which takes into account
the Pauli exclusion principle between the ith and jth
cores. Because the van der Waals terms increase the

NACl KCl MgO CaO

TABLE I. Input data for the point-ion model of the F' center
with ionic polarization, exchange energy, and Coulomb-correla-
tion energy. The Pauling factor of the ith and the jth ions is P;;.
The ionic radius of the cation is p+ and of the anion is p . The
quantity p is the stiffness factor in the empirical Born-Mayer
exponential form which characterizes the repulsive energy between
the ith and the jth ions. The Madelung potential constant at the
anion site is o.~. The quantity r& is the nearest-neighbor distance
(anion-cation) for the NaCl structure. The series coefficients C4,
C6, and C8 appear in the expansion in powers of the lattice distor-
tion 0 for the change in electrostatic energy E& which occurs when
a cation moves in the background of a perfect point-ion-lattice
potential; namely, Ez = —(6/r&) (C&o +Coo +C8o + ). The
quantities p++, p+. , p, and o,~ are dimensionless. All other
quantities are expressed in terms of atomic units (1 a.u. =27.2 eV
for energy and 0.529)&10 ' cm for length). The crystals NaCl,
K.CI, MgO, and CaO have the same lattice structure.

III. POINT-ION MODEL WITH IONIC
POLARIZATION

Neglecting lattice vibrations and magnetic interac-
tions, we shall discuss the point-ion Hamiltonian with
nearest-neighbor-ionic polarization for the F center in
a relaxed state ~t);, o.,) and then in an unrelaxed state
tris, o.,). We denote the total relaxed state by jt), ; a,)
and the total unrelaxed state by ~rif ', o.;).That is, when
the subscripts for q and 0- are the same, then the state
is relaxed, and when the subscripts differ, the state is
not relaxed. The notation ~t); o.,) means that the nearest
neighbors are at rr'=rt(1 —o.;). We limit the motion of
the nearest neighbors to a breathing mode and r1' is
their radial distance from the anion vacancy.

We now list the terms of the model Hamiltonian. The
kinetic energy operators for the two defect electrons
contribute a term

(7)

where V',' operates on the coordinates of one defect elec-
tron and V'„2 operates on the coordinates of the other
defect electron. The mass of the electron is m.

We consider the ions as point charges Z„and we write
the defect-electron —point-ion interaction operator in the
form

X2(r; o.) =Z& P' {Z./ ~

r—r„~ },
p++
p+-
p
p
p+
p
~M
71

1.25
1.00
0.75
0.599~
2.21~
3.00'
1.748
5.31~

1.25
1.00
0.75
0.637
2.77~
3.00
1.748
5.93~

1.50
1.00
0.50
0 629b
1.76b
2.55b
1.748
3 97b

1.50
1.00
0.50
0.629b
2.21b
2.55b
1.748
4.54b

where the prime means that the p=0 site is not in-
cluded in the summation, r is the position vector for one
of the defect electrons, and r„ is the location of the wth

ion. The Madelung constant is defined by

C4
C6
C8

3 579c
0 9895c
2.942c

3 579c
0 9895o
2.942o

3 579o
0 9895c
2.942c

3 579'
0.9895o
2 942c

a M. P. Tosi, in Solid State Physics, edited by F. Seitz and D. Turnbull
(Academic Press Inc. , New York, 1964), Vol. XVI, p. 52.

b M. L. EIuggins and Y. Sakamoto, J. Phys. Soc. Japan 12, 241 (1957).' A. Scholz, Phys. Status Solidi 7, 973 (1964).

n~=rrPCg(0; 0)/Zp), (9)

where rr is the nearest-neighbor distance (anion-cation)
for the NaCl structure. The potential energy is invariant
under the full cubic group and we may expand it in

rs I. M. Boswarva and A. Il. Lidiard, Phil. Mag. 16, 805 (1.967).
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terms of the Kubic harmonics" Q(r;, /, 0); e.g. ,

Xp(r; o) = Vpp(r) Q (rg', 0,0; 8, p)
+V4o(r)g(ri', 4,0' ~,~)+ . .

+V„p(r)g(ri', n, o; O, q)+, (10)

where e is an even integer. Because we shall limit the
wave functions to functions which belong to the irre-
ducible representations ri'("1s") and r4'("2p") of the
cubic group O~ and because the following matrix ele-
ments vanish:

(r, , lg(r, ,n,o;e, p lr, )=o
and

(r, lg(r. . .o;e, p,)lr, )=0
for all e~&4, we have that

(~ ~l~p(r;~)ln;~)=(~ ~IV "(r ~)l~ ~)

where the spherically symmetric part of the point-ion
crystal potential is denoted by V,~z(r; o) =—Vpp(r ' o').

We consider the point ions as distributed on shells
centered at the anion vacancy. We denote the radius of
shell s by r„ the number of ions on shell s by S„and the
charge of the vth ion on shell s by Q, =Z„.We then ex-
press the spherically symmetric part of the crystal po-
tential V,„~(r;o) in terms of the above notation,
namely,

dx dy P„'(x,y)P„(x,y) = 1. (17)

lomb potential for distances beyond the 21st shell;

V,„@(r)= (Z„Zr/r) for r) rpi. (14)

The Coulomb interaction between the two defect
electrons contributes the term

K, (x,y) =(Zr'/lx —yl). (15)

Combining the terms (7), (13), and (15), we write
the total J'-center Hamiltonian for the point-ion model
with ionic polarization as the sum of one-body and two-
body operators:

BCp(x)y; tr) =HEI, (vacancy, (4stortlon)
—(A'/2m) V„'+V ')+U, y, (x. o-)

+V,„,(y; )y(z, /lx
=DEr+Kp(x; o)+Kp(y; a)+BC,(x,y),

where

Kp(rx; o) = —(A'/2m)V„'+V, „p,(x; o-).

Because all terms of the model Hamiltonian operator are
real, we may choose the electronic wave functions
P„(x,y) to be real. They also are normalized to the crys-
tal volume:

V,.„p(r;a.) = Vp, for 0&r&rg'
= Vp —

l (Sage/ri') —(Sigi/rl)7Z, .Zp
for r~'(r(r2
for r„(r(r„+i=V„+(D /r'),

where

Vp Z,Zp((n~——/r&)+$$&Q&~/rx(1 ~)7)

where for e&~2, we have

D„=Z„Zr Q S,g;.
i=1

V-= Vp —Z ZrL(5'igi/ri')+2 (5''Q'/r')7
i=2

and where

The Schrodinger equation for the J'-center wave
functions obtains, by performing the variation of the

(21) expectation value of the total Hamiltonian,

(X&)= dx dy P„'(x,y)Xr(x, y;
.~)P„(x,y)

dx dy P„*(x,yg „(x,y), (18)

with respect to the wave functions P,(x,y), subject to
the normalization constraint. That is, we vary the wave
functions P„(x,y) for a given electronic configuration to
determine the stationary value of the expectation value
(Kr). The variation gives the equation

The term
l Sigio/ri(1 —o)7 represents the total ionic-

polarization potential arising from the first shell due to
both the point charge Z, and the E' electrons. The elec-
tron-point-ion interaction operator contributes the term

Kp(r; o) = V,„p(r; o.) . (13)

"H. A. Bethe and F. C. Van der i,age, Phys. Rev. /1, 612
(1947); B. S. Gourary and F. J. Adrian, Phys. Rev. 105, 1180
(1957).

Because practical considerations limit the number of
shells which we may explicitly treat, we will consider
the first 21 shells in our computations and use the Cou-

dx dy 8$„*(x,y)(X&(x,y; a) E)p„(x,y) =0—. (19)

Kp(x, y; o)P„(x,y) =Eg„(x,y) . (20)

Because the Schrodinger equation (20) cannot be
solved exactly even by numerical methods, we shall use
the self-consistent Geld method LHartree-Fock (HF)7
to calculate the wave functions of the stationary states
of the F' center. Each of the two defect electrons moves
in the average field of the other defect electron. Even

Equation (19) is to be valid for any arbitrary variation
of the function P„(x,y). Hence, we obtain the Schro-
dinger equation
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dx u" (x)u(x) =1,

and may be chosen to be real because the Hamiltonian
is real.

We obtain the set of coupled integrodifferential equa-
tions for the functions ui and u2 by substituting Eq. (21)
into Eq. (19), by carrying out the variation with re-
spect to u& and u2 separately, and by equating to zero
the coefficients of 6u~ and bu~ which appear in the inte-
grand. We introduce the following abbreviations for the
coupled equations:

Ii2 ——I2i —— dx ui(x)u2(x), (22)

H,;(0)=H;, (0)= dx u. ,(x) K', o(x. ; 0.)u, (x), (23)

g,;(r) = dx u, (x)X,(x,r)u, (x) . (24)

though the model Hainiltonian (16) is spin-independent,
we shall include the symmetry effects of the spins of the
two defect electrons. The total wave function must be
antisymmetric upon interchanging the space and spin
coordinates for the two defect electrons in accordance
with the Pauli exclusion principle. The wave function is
expressed in the self-consistent Geld approximation as an
antisymrnetrized sum of products of one electron func-
tion ui(r) and u2(r). That is, we approximate the wave
function P„(x,y) by the HF wave functions:

P„(x,y) =P„(x,y; HF)
= 2 'i'(ui(x)u2(y) —ui(y)u&(x) 7. (21)

The functions u& and u& are normalized to the crystal
volume and spin space

to regard the spin-orbitals u~ and u2 as orthogonal
functions

dx u,*(x)u, (x) =8;;. (27)

Statement (27) follows from Eqs. (25) and (26) and
from the reasoning given below. Replacing u2 by a new
function u~' =u2+cui in the wave function f„(x,y; HF)
does not alter the wave function P„( xy; HF). We then
choose the constant c so that u2' and u~ are orthogonal
and then simply call u2' by the name u2.

The HF variational equations (25) and (26) may be
solved in principle by numerical iterative techniques.
However, we must solve them at many values of the
ionic polarization 0- in order to find the minimum J -cen-
ter energy for a given electronic configuration. Such a
procedure requires an excessive amount of computer
time. To reduce the computation time, we introduce
Slater's" simplified version of these HF equations. His
simplification is based upon his free-electron exchange
approximation for the exchange terms which occur in
Eq. (25) and Eq. (26) when the two defect electrons
are in a triplet configuration (5=1). Slater suggests
that the essential features of the HF method are re-
tained by replacing the exchange potentials for the
different orbitals u~ and u~ with a common exchange
potential. A suitable averaging of these individual ex-
change potentials yields this common exchange poten-
tial. Following Slater's suggestion, we assume that the
averaged exchange potential for the Ii' center at the
point r is equal to the exchange potential which a free-
electron gas would have if its total electron charge
density for both spins were equal to that of the nonuni-
form system (the two F'-center defect electrons):
namely,

V.„.i, (r) = —3e'f(3/8~) e—'( p(r)
~

7'i'. (28)
Using the approximation (21) and Hamiltonian (16), we
have the two equations for u& and u2 'o.

[Xo(r; 0) —E+AEr, +Hg2(0) +g2g (r)7ui(r)
=LIig(BCp (1 ' 0) E+AEr}+Hip (0') +—pig (r)7u2(t')

(25)
and

PC, (r; ~) —E+gE,yH„(~)+ g„(r)7u, (,)
=Pu(HO(r; 0) —E+AEr, }+Hi~(a)+bi~(r)7ui(r) .

(26)

Because the bracketed operators in Eqs. (25) and (26)
are different functions of r, their solutions ui(x) and
u2(x) are, in general, orthogonal to one another. How-
ever, the structure of the self-consistent field equations
(25) and (26), which arises from the antisymmetric
properties of the wave function P,( y; HxF), permits us

2 H. A. Bethe and E. E. Salpeter, Quantlm Mechanics of One-
and TVIIIo-E/ectron Atones (Academic Press Inc. , New York, 1957),
p. 140.

Equation (28) means that the averaged exchange poten-
tial for the two J'-center electrons depends only on the
local electronic charge density p(r) =pz. (r; g). Thus, the
problem of calculating the exchange integrals g,; when
i~j for the triplet states is circumvented.

We shall write presently the HFS equations for the
J'-center electrons. But erst, it is necessary to intro-
duce more notation. When the author listed the five
lowest-lying states, he has assumed implicitly that the
central-field approximation is reasonable for the low-

lying states with angular momentum quantum number
3&2 in a cubic potential. The most general central field
representation for the functions u is

unim (x) =E8nima(r) Flm(g, &p)as,

where R(r) is the radial function, F'i is a spherical har-
monic function, and e, is the spin function. The princi-
pal, orbital, magnetic, and spin quantum numbers are,
respectively, ys, l, m, and s. We shall use, however, the
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more restrictive representation

u c,=R c(r)F'c (O, q)n, .

We define the radial functions P„c(r), P„c(r)=rR„c(r),
and normalize them to the crystal volume 1'P„cP(r)dr
=1.

We express the spherically averaged total electronic
charge density for both spins in terms of the radial
functions

p, (r) = —e[o.(r)/4irr'),

where the spherical density o.(r) is

o(r) =2 ~.cP-c'(r)

and the occupation number of the spatial orbital for
both spins is co &. The summation P„&co & equals 2 for
the Ii' center.

Keeping the above assumptions in mind, we write
the HFS variational equations for the F' center when
the electrons are in a triplet state:

d' A' l (1+1)
+ +V,„i,(r; o)

2m dr' 2m r'

electrons move away from the vacancy, the exchange
hole lags behind. This lag is slight for spatially compact
states, but it becomes important for spatially diffuse
states. Hence, Eq. (28) becomes suspect at large values
of r T.he Coulomb potential V, (r) for the P' center ap-
proaches 2e'/r as r becomes sufficiently large. Also, as r
becomes large, the exchange potential V, ,q(r) ap-
proaches zero faster than 1/r approaches zero. One
electron in the F' center cannot act upon itself. The
sum V, (r) must approach e'(P„ceo~i —1)/r as r ap-
proaches infinity and it should not approach e'(P „ccp„c/r)
as r approaches infinity. Hence, the approximation (28)
does not treat the self-energy correctly for large values
of r.

The self-Coulomb energy part of the total electronic
Coulomb energy cancels exactly in the conventional
HF method a corresponding energy in the total exchange
energy. This cancellation does not occur in the HFS
equations at large r. Following Latter, " we alter the
sum V, (r) so that it has the correct asymptotic behavior
at large r. We define V(r) = V, (r)+V, (r) for r(rp and
V(r) = e'~ P„cco„c—1)/r for r~) rp. The radius r p is that
value of r at which

V, (rp) =e'( P co„c—1)/rp.

where the Coulomb potential U, (r) has the form

g2

V,.(r) =— o (t)dt +e'-"o(t)
dt,

+V, (r) P„c(r)=E„cP„c(r). (30).
Because the change in lattice energy AEI. is independent
of the defect electron coordinates and occurs only as a
constant for fixed 0, we do not include it in these varia-
tional equations when computing the radial functions
P„c(r) for fixed o..

The Slater free-electron exchange approximation
stresses the similarities between the exchange hole for a
free-electron gas and for an atomiclike system such as
the F' center. We now mention some difficulties. The
above exchange hole in the atomiclike F' center is not,
in general, spherically symmetric and does not attain its
maximum value at the position of the electron as the
exchange hole for the free-electron gas does. As the

and the exchange potential has the form

U, (r) = 3e'[(3/—87r) e ') p,„(r) (
yP

Let us define V, (r) = V, (r)+V, (r) for future use. The
HF variational equations for the central field approxi-
mation of the F' center in a singlet state become

d' f" t(t+1)
+ +U„a(r; o)

2m dr2 2m r2

Thus, we use approximation (28) for the region r(rp in
which the exchange hole follows the motion of the elec-
tron fairly well and we use the correct asymptotic form
e'(P„ccp„c—1)/r for the region r &~ r p. The radial func-
tions P„&(r) and the energy eigenvalues E„cof the inner-
most orbitals are insensitive to the replacement of V, (r)
with U(r). This replacement alters only slightly the
radial functions of the outermost orbitals, while it may
alter appreciably the corresponding energy eigen-
values. " Because the author computes the F'-center
energy from only the HF wave functions and does not
sum in the appropriate and usual manner the eigen-
values to obtain the total F' energy, he expects that the
above replacement has only a negligible effect on the
J'-center energy and on the radial wave functions for
the low-lying states. The discontinuity in the slope of
the modified HFS potential V(r) does not induce dis-
continuities in the radial functions. This is important
because such discontinuities would give erroneous val-
ues for the kinetic energy. Herman and Skillman22 have
examined their HFS radial functions near ro and they
find that no discontinuities exist out to sixth-order
diGerences.

IV. CORRELATION ENERGY AND TOTAL
E'-CENTER ENERGY

The HF method does not include the spatial correla-
tion in the motion of the two defect electrons produced

"R.Latter, Phys. Rev. 99, 510 (1955)."F. Herman and S. Skillman, Atomic Structure Cgtculatioes
(Prentice-Hall, Inc. , Englewood Cliffs, N. J., j.963), Chap. 1.
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by their instantaneous Coulomb repulsion BC,(x,y). The
HF field acting on one electron is obtained by averaging
over the motion of the other electron. But even though
the Coulomb correlation is neglected, the HF method
does introduce a statistical (exchange) correlation
in the motion of electron pairs with the same spin
through the antisymmetric (determinantal) wave func-
tion, This statistical correlation results from the elec-
trons obeying Fermi-Dirac statistics and tends to keep
electrons with the same spin apart. Since Coulomb cor-
relation is most important when the electrons are close
together and since the statistical correlation tends to
keep electrons with the same spin far apart, neglect of
the Coulomb correlation in the HF equations for the
triplet states of the F' center is tolerable. But, the HF
equations for the singlet states of the F' center contain
no exchange terms and, hence, no statistical correlations.

Since the Coulomb correlation is much more impor-
tant for the singlet states of the F' center than it is for
the triplet states, we shall follow the procedure of Mit-
ler'4 which estimates the Coulomb correlation energy
for atomiclike systems. The approximate HF wave
function (21) is the source of the Coulomb correlation
problem. It arises from the fact that P„(x,y; ») does
not depend upon the distance between the two electrons

lx —yl and that f„(x,y; HF) contains products of one-

electron wave functions. We define the correlation
energy by the relation

E.=Q (*y)l~ lk( y))
-Q,(,y;») l~ l~.(,y;»)) (»)

approximate correlation potential W(r) has the formP'

0.288
W(r) = —e'-

5.1ap+r, (r)
(34)

We expect that expression (34) is a good estimate for
the correlation potential W, (r); that is, W(r) =W, (r).
Mitler'4 applies expression (34) to the ground state for
helium and obtains by perturbation theory a ground-
state energy which agrees to within -',% of the experi-
mental value. Our prescription is, then, to replace V, (r)
in the singlet HF variational equations (30) with V, (r)
+W(r). Because the inequality

0& W(r, )/V, „,a(r, ) &0.314r,/(5. 1gp+r, )(0.314r,

is obtained, we do not include the Coulomb correlation
potential in the triplet HF variational equations (29).

Hence, the HFS equations which include the ionic
polarization, exchange energy, and correlation energy
and from which we numerically compute the radial
wave functions for a given value of distortion o- become

d' A' l (1+1)+ +V„a(i;~)
2m (&' 25$

+V(r) P„,(r) =E„,P„i(r) (35)

where ao is the Bohr radius and the local density of
electrons is

e 'I ~(~) I =L(4~/3)~. '(~)?'

Let us assume also that a correlation operator
b, (lx —yl) exists such that its expectation value in the
approximate representation P„(x,y; ») is the correla-
tion energy

E.=Q,(*,y;») lb. (l» —yl) l4"(*y;»)). (32)

We may introduce, then, the correlation potential
W, (r) by the following operation:

W, (r) = dpxf„(xr; »)8,(lx —rl)p„(xi'; HF). (33)

Mitler'4, adapts to atomic helium the free-electron gas
approximation given by Wigner" for the correlation
energy of alkali atoms. This procedure is analogous to
Slater's free-electron gas approximation of the exchange
energy. These authors introduce in the HF equations an
additional central "correlation" potential W(r) to which
pairs of electrons with opposite spin are subject. The

» K. Wigner, Trans. Faraday Soc. 34, 678 (1938); E. Wigner,
Phys. Rev. 46, 1002 (1934).

for the triplet F'-center states and

+V,(r)+W(r) P„i(r)=E,iP„i(r) (36)

for the singlet E'-center states.
The author does not compute here the total energy

of the Ii' center by summing the eigenvalues of the HF
variational equations and substracting one-half times
the expectation values of those two-body operators
which are estimated in the self-consistent field method
by effective one-body potentials. The numerical results
from Chap. I of Ref. 22 suggest that the HF wave func-
tions P i(r) are less sensitive to modifications in effec-
tive potentials than are the eigenvalues E„~. For this
reason, the author expects that the more accurate way
to compute the total energy of the F' center for a given
value of the ionic polarization o- is to compute the total
energy directly from the original Hamiltonian (16) by
using the HF wave functions which obtain from Eqs.
(35) and (36). The triplet state ha, s total a energy
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ent potential which occur between two successive iter-
ations in the numerical integration procedure. Solving
the F'-center problem to greater accuracy requires an
excessive amount of computer time. The author does
not feel that the rather simple model given in this paper
warrants greater numerical accuracy in the solution of
the HF equations.

Experimental studies of the F' center in MgO have
been reported only very recently. '4 We do have more de-
tailed experimental P'-center studies in CaO' with which
to compare the predictions of the present model. Tables
II and III give for MgO and CaO the 5 lowest-lying
J'-center states in the perfect point-ion lattice. These
calculations include the Coulomb correlation energy for
the singlet states and the exchange energy for the triplet
states. Tables IV and V contain for MgO and CaO, re-

spectively, the 3 lowest-lying singlet states for absorp-
tion from the ground state. These calculations include
both the correlation energy and the ionic polarization

TABLE II. The five lowest-lying states for MgO of the F' center
in the prefect-point-ion lattice (o =0) with exchange and Coulomb
correlation. Triplet states are computed from Eqs. (35) and (37)
and singlet states are computed from Kqs. (36) and (38). The
states 'S(1s, ls), 'P(1s,2p), 'P (1s,2p), 'S(ls, 2s), and 'S(1s,2s) are
labeled, respectively, in this table by A, 8, C, D, and E for con-
venience. The total energy of state X is ET(X; o-=0), where X
=A, 8, C, D, or E. The transition energy from state X to state Y
is E(X,Y). The quantities n and l are the principal and angular-
momentum quantum numbers for the symmetry of the one-elec-
tron orbitals from which the F'-center configuration is made. The
spatial extent quantities r &(s) and r, (nl) are dimensionless and
the energies are expressed in terms of atomic units (1 a.u.
=27.2 eV).

State

Er
r„t(1)
r t(3)
r, (nl)
r„(.(1)
ra i (3)
r, (n'l')

E(A,C)
E(D,S)
E(C,E)

—1.110
0.826
0.760
0.920
0.826
0.760
0.920

0.144
0.200
0.146

—1.005
0.751
0.597
0.795
0.900
0.982
1.092

—0.956
0.821
0.748
0.912
0.949
1.168
1.231

D

—0.805
0.694
0.483
0.695
2.065

11.973
5.798

E
—0.810

0.782
0.663
0.854
2.269

15.007
6.615

State

r„i(i)
r„t(3)
r, (nl)
r„ t. (1)
r„.t. (3)
r."(n'l')

E(A,C)
E(D,a)
E(C,E)

A

—0.991
0.818
0.719
0.879
0.818
0.719
0.879

0.112
0.195
0.148

—0.922
0.714
0.571
0.767
0.873
0.859
0.984

C

—0.879
0.813
0.710
0.873
0.914
0.986
1.079

—0,728
0.689
0.466
0.677
1.873
9.421
5.030

—0.731
0.775
0.635
0.820
2.176

13.013
5.980

TABLE III. The five lowest-lying states for CaO of the F' center
in the perfect point-ion lattice (~=0) with exchange and Coulomb
correlation. The notation in this table is the same as the notation
given in Table II.

TABLE IV. The three lowest-lying singlet states for the F' center
in MgO. These singlet states are computed from Eqs. (36) and
(38). The initial state is 'S(1s,1s) and o =0.003. The value of o.

remains the same for the other two states. The notation is ex-
plained in Table II.

State

ET
r.i(1)
r„t(3)
r, (nl)
r..].(1)
rn t (3)
r, (n'l')

E(A,C)
E(A,C; expt. )
E(C,F)

—1.100
0.820
0.740
0.902
0.820
0.740
0.902

0.145
0.183'
0.157

C

—0.954
0.814
0.729
0.895
0.936
1.106
1.181

—0.798
0.776
0.652
0.839
2.260

14.836
6.566

Y. Chen et al. , Bull. Am. Phys. Soc. 14, 872 (1969).

of the nearest neighbors. The calculated absorption
energy for MgO of 0.145 a.u. agrees to within 20% of
the recently reported value. '4 Much better agreement
obtains for CaO. The calculated absorption energy for
CaO of 0.116a.u. agrees to within 2% of the experimen-

TABLE V. The three lowest-lying singlet states for the F' center
in CaO. These singlet states are computed from Eqs. (36) and (38).
The initial state is 'S(1s,1s) and o =0.017.The value of o remains
the same for the other two states. The notation is explained in
Table II.

State

ET
r„&(1)
f„t(3)
r, (rtl)
r„.t. (1)
r„.t. (3)
r. (I't' )
E(A, C)
E(A, C; expt. )
E(C,E)

—0.996
0.800
0.667
0.834
0.800
0.667
0.837

0.116
0.114~
0.179

C

—0.879
0.796
0.659
0.829
0.887
0.880
0.992

—0.701
0.760
0.594
0.782
2.135

12.428
5.822

& B. Henderson et al. , Phys. Rev. 183, 826 (1969).

TABLE VI. The two lowest-lying singlet states for the F' center
in MgO. These singlet states are computed from Eqs. (36) and
(38). The initial state is ~8(is,2p) and o.= —0.007. The value of
0. remains the same for the other state. Thenotationis explained
in Table II.

State

—1.097
0.836
0.792
0.948
0.836
0.792
0.948

—0.956
0.830
0.779
0.939
0.969
1.274
1.315

tal value of 0.114 a.u. Tables VI and VII present the
theoretical results for the low-lying singlet states when
the initial state is E(1s,2p). Again, the Coulomb corre-
lation energy and the ionic polarization of the nearest
neighbors are included. The theoretical emission energy

'4 Y. Chen et al. , Bull. Am. Phys. Soc. 14, 872 (1969),
E{C,A) 0.141
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TABLE VII. The two lowest-lying singlet states for the F' center
in CaO. These singlet states are computed from Eqs. (36) and (38).
The initial state is ~P(is, 2p) and o.=0.009. The value of 0. remains
the same for the other state. The notation is explained in Table II.

TABLE X. The low-lying excited singlet states of the F' center
in MgO. These singlet states are computed from Eqs. (36) and
(38). The initial state is 'S(is,2s) and o = —0.058. The value of 0.

remains the same for the other state. The notation is explained in
Table II.

State

ET
r g(1)
r„t(3)
r, (nl)
r„& (1)
rn'l' (3)
r. (n'l')

E(C,A)
E(C,A; expt. )

—0.994
0.808
0.689
0.853
0.808
0.689
0.853

0.114
0.0928

C

—0.880
0.804
0.681
0.848
0.898
0.923
1.027

State

E(E,C)

—0.917
0.870
1.002
1.153
2.341

16.900
7.217

0.048

—0.870
0.913
1.152
1.261
1.324
3.889
2.938

' B. Henderson et al. , Phys. Rev. 183, 826 (1969).

«om 'P(1s,2p) to '$(1s,1s) for CaO oi 0.114 a.u. is
within 20'Po of the experimental value of 0.092 a.u. The
correct experimental value of this transition energy in
MgO remains in doubt. '4 The present model, however,

State E

TABLE XI. The low-lying excited singlet states of the Ii' center
in CaO. These singlet states are computed from Eqs. (36) and (38).
The initial state is 'S(is,2s) and o.= —0.052. The value of a. re-
mains the same for the other state. The notation is explained in
Table II,

TABLE VIII. The low-lying states for the Ii' center in MgO from
which the spin-forbidden transition energy may be computed.
State A is computed from Eqs. (36) and (38) and states 8 and D
are computed from Eq. (35) and Kq. (37). The initial state is
~P (is,2P) and 0- = —0.005. The value of cr remains the same for the
other two states. The notation is explained in Table II.

State

r z(i)
r„t(3)
r, (nl)
r„.).(1}
r„t"(3)
r, (n'l')

E(E,C)

—0.834
0.885
0.983
1.111
1.117
2.201
1.971

0.063

—0.771
0.840
0.855
1.018
2.246

14.385
6.405

r„)(1)
r„){3)
r, {nl)
rn i (1)
r„.l (3}
r. (n'l')

E{B,A; spin-forbidden)
E(B,D)

—1.098
0.833
0.782
0.939
0.833
0.782
0.939

0.093
0.189

—1.005
0.755
0.609
0.807
0.909
1.024
1.127

—0.816
0.698
0.491
0.703
2.089

12.281
5.879

TABLE IX. The low-lying states for the E' center in CaO from
which the spin-forbidden transition energy may be computed.
State A is computed from Eqs. (36) and (38) and states B and D
are computed from Eq. i35) and Eq. (37l. The initial state is
'E(is, 2p) and 0 =0.013. The value of ~ remains the same for the
other two states. The notation is explained in Table II.

State

—0.995
0.805
0.679
0.844
0.805
0.679
0.844

—0.924
0.734
0.545
0.742
0.856
0.800
0.935

D

—0.707
0.683
0.454
0.665
1.750
8.231
4.705

E(B,A; spin-forbidden)
E(B,A; spin-forbidden; expt)
8{8,D)

0.071
0.0758
0.216

+ B. Henderson et e/. , Phys. Rev. 183, 826 (1969),

fails to predict the correct Stokes shift. The theoretical
Stokes shift is E(A,C; absorption) E(A,C; emission)—
=0.002 a.u. for CaO and the experimental CaO Stokes
shift is 0.022 a.u. This failure to give the correct Stokes

shift by an. order of magnitude suggests that the present
model should be improved for emission calculations.
Such improvements might correspond to those con-
tained in Paper I"and Paper II."However, the models
in those papers would require a substantial increase in
computer time when they are applied to the two defect
electron centers.

Tables VIII and IX contain the results for the spin-
forbidden transition from the sP(1s,2P) state to the
'S(1s, ls) state. The theoretical transition energy for
this transition in CaO is 0.071 a.u. It agrees to within

6% ot the experimental value of 0.076 a.u.' Hence, the
present model agrees reasonably well with three of the
four known experimental quantities for CaO, namely,
the absorption energy, the emission energy, and the
spin-forbidden-transition energy. The model does not
give, however, the correct Stokes shift.

Tables X and XI contain the results for emission from
the singlet state 'S(1s,2s) to the singlet state 'P(1s,2p).
The author knows of no reported experiments in either
MgO or CaO which treats this transition.

The F'-center calculations for the alkali halides are
not as straightforward as those for the alkaline-earth
oxides. Both theoretical and experimental studies indi-
cate that the alkali halide F' center has very few bound
states. They also suggest that it might have only one
bound state, the ground state. In fact, there is no firm

» H. S. Bennett, Phys. Rev. 184, 918 (1969). Hereafter, we
shall refer to this paper as Paper II.
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TAar.E XII. The ground-state energies of the F' and F centers
in NaCl and KC1 for the perfect point-ion lattice 0.=0.0. The
ground-state energy of the F' center 'S(1s,1s) is computed by
substituting the orbital, which is obtained from Eq. (35) modified
by the addition of the Coulomb correlation potential W(r) to the
potential V(r), into Eq. (38). The ground-state energy of the F
center is computed by substituting the orbital, which is obtained
from Eq. (36) with 8'(r) =0 and with V, (r) =0, into Eq. (44). The
binding energy Ez is computed from Eq. (43). The nearest-
neighbor ions are at their perfect-lattice positions 0.=0.0. The re-
maining notation is explained in Table II.

z&(J')
Ez (I'; Ref. a)
ri (1)
ri, (3)
r. (1s)

z&(J.)
ri, (1)
ri, (3)
r, (1s)

Ez {theory)
E&(theory; Ref. b)
E~ (expt. )

NaCl

—0.289—0.300~
0.862
1.089
1.262

—0.239
0.723
0.563
0.779

0.051
0.047b

KCl

—0.270—0.276'
0.839
0.948
1.130

—0.220
0.710
0.527
0.742

0.050
0 043b
0 044~

a S. Y. La and R. H. Bartram, Phys. Rev. 144, 670 (1966).
~ H. J. Raveche, J. Phys. Chem. Solids 26, 2088 (1965).
e L. Pincherle, Proc. Phys. Soc. (London) A64, 648 (1951).

evidence that it has at least one bound excited state.
The numerical integration of the singlet HFS Eq. (36)
for the ground state 'S(1s,1s) in the alkali halides con-
verges very slowly.

After 10 min of computation on a digital computer,
the self-consistent potential criterion that

~
d V ( U&0 01

is not met. The numerical integration of the HFS Eq.
(35) with the Coulomb correlation potential W(r) added
to the potential V(r) converges much faster than that
for the HFS Eq. (36). We consider this triplet-state 1s
orbital, which obtains from the triplet HFS Eq. (35)
with the potential V(r) replaced by the potential V(r)
+W (r), as a good approximation to the singlet-state 1s
orbital which would obtain from the singlet HFS equa-
tion (36) if computer time were not a limitation. insert-
ing the triplet-state —1s-orbital approximation to the
singlet-state —1s-orbital into Eq. (38) for the singlet
state gives the ground-state 'S(1s,1s) energy of the F'
center in the alkali halides. Table XII contains the
results for a perfect lattice a=0. The ground-state
energies of the F' center in NaCl and in KCl given in
Ref. 11 agree to within 4%%u~ of the values given in Table
XII. The author does not include the results when the
nearest neighbors move to accommodate the two defect
electrons. The inward motion of the neighboring ions
becomes very large (o.=0.20) and the classical ionic
lattice model from which the change in lattice energy is
computed may be incorrect for such large distortions.
Table XII also contains for 0.= 0 the binding energy of
the F' center in the alkali halides. The F'-center binding
energy E& is the difference in energy (for the same
value of o.) between the ground-state F'-center energy
E~ LF' center, 'S(1s,1s); o =07 and the ground-state

F-center energy Er $F center, 1s; o =07:

Erj Er—)—F', S(1s,1s); g =07 Er—(F,1s; o =0). (43)

The F-center energy for the ground state is given by the
expression

Er(F, 1s, o-=0) =HEI, (o)

+ d'rut (r)Xp(r o =0)ut (r) (44)

where the "1s" F-center wave function is the ui, (r)
solution to the HFS equation (36) with V, (r) =0 and
W(r) =0.

The theoretical binding energy in KCl is 0.0496 a.u.
and it agrees to within 12% of the experimental value of
0.0441 a.u. The theoretical binding energy for KCl from
Ref. 8 is 0.0426 a.u. Experimental J'-center binding
energies in NaC1 have not been determined. The
author's value is 0.0505 a.u. for the binding energy in
NaC1 and it agrees to within 6%%uq of the value given in
Ref. 8 of 0.0474 a.u.

The author has examined also the possible singlet
excited state 'F(1s,2p). Again, the numerical integra-
tion of the singlet Eq. (36) for 1s-like and 2p-like orbitals
does not converge in a reasonable time for either the
1s-like orbital or the 2p-like orbital. The numerical inte-
gration of Eq. (35) modified by replacing the potential
V(r) with the potential U(r)+W(r) has also question-
able convergence for a bound 2p-like orbital in an alkali
halide F' center. After 10 min of computation, a com-
pact 1s-like orbital obtains, but the trial eigenvalue for
the 2p-like orbital is very small, about —0.001 a.u. The
eigenvalue accuracy condition (tAE~/E)&0. 001 is not
satisfied by the 2p-like trial eigenvalue. This suggests,
perhaps, that the self-consistent potential for the eth
iteration of the numerical integration procedure for the
two F'-center electrons admits a bound 1s-like orbital
which is compact and either a bound 2p-like orbital
which is very diffuse and which has an eigenvalue very
close to zero (0 a.u.)E)—0.001 a.u.) or a conduction-
band 2p-like wave function with a positive eigenvalue.
The author has modified the numerical integration pro-
cedure so that it may accommodate 2p-like conduction-
band wave functions at those iterations having a self-
consistent potential for which the integration of the
2p-like orbital converges very slowly, if at all, and for
which the trial 2p-like eigenvalue is very close to zero.
Whenever the trial eigenvalue becomes greater than
—0.001 a.u. , the Milne method" is used to integrate the
radial HFS equations for a bound 1s-like orbital and a
conduction-band wave function with positive eigenvalue
K=0.001 a.u. and with the angular-momentum quan-
tum number /=1. This modification enables the author

"The author thanks Professor E. H. Hygh for a copy of his
computer program for the solution of a system of N equations by
the Milne's method. L. J. Page, et al. , Phys. Rev. Letters 21, 348
(1968).
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to consider the possible situation in which the integra-
tion procedure has the following features. The iterated
self-consistent potential initially admits bound 1s-like
and 2p-like orbitals. As the number of iterations in-
creases, the self-consistent potential for the eth itera-
tion admits only one bound 1s-orbital. The second 2p-
like orbital is a conduction-band wave function with
positive eigenvalue. The self-consistent potential then
changes with succeeding iterations so that it again ad-
mits bound 1s-like and 2p-like orbitals. The modifica-
tion also contains estimates of the number of bound
states which the self-consistent potential at each itera-
tion admits. '~ The results of this modification for both
XaCI and KC1 are qualitatively the same. The iteration
proceeds until the trial eigenvalue for the 2p-like bound
orbital becomes greater than —0.001 a.u. The trial
eigenvalue for the 2p-like function in the HFS equa-
tions is set equal to +0.001 a.u. Milne's method then
yields a 2p-like conduction-band wave function. The
self-consistent potential does not change su%ciently to
admit a bound 2p-like orbital. The estimate for the num-
ber of bound states is between 1 and 2 at the end of the
numerical integration.

These results indicate that the point-ion-lattice model
given above for the F' center in the alkali halides (NaC1
and KC1) has only one state (the ground state) for
which the two electron orbitals are both bound. The
nature of possible excited states remains uncertain. The
possibility of an excited state having a bound 1s-like
orbital and a conduction-band 2p-like wave function
seems to be consistent within the framework of the
point-ion-lattice model. But more experimental and
theoretical research is required before definitive state-
ments may be made about the excited states of F' cen-
ters in the alkali halides. We expect that the effects of
electronic and ionic polarization are much more impor-
tant for F' centers in monovalent crystals than they are
for F' centers in divalent crystals.

"L.D. Landau and E. M. Lifshitz, Quantum 3lechaaccs (Addi-
son-Wesley Publishing Company, Inc. , Reading, Mass. , 1958},
p. 185.

Finally, the author concludes with a summary of the
results of the present paper. The point-ion-lattice model
with ionic polarization of the nearest neighbors and with
Coulomb correlation energy for singlet states and ex-
change energy for the triplet states accounts rather well
for the experimental observations on the F' center in
Cao. It gives the correct ordering of the lowest-lying
states as determined by experiment and reasonable val-
ues for the absorption, emission, and spin-forbidden
transition energies. It fails only in predicting the experi-
mental value for the Stokes shift. Among all of the
presently known experimental measurements, the
Stokes shift is most sensitive to the electronic polariza-
tion. The F'-center model given here neglects the elec-
tronic polarization. Models exist which include such
effects for F centers. '»""Their application to the F'
center is formally straightforward. However, the corn-
putation time for them becomes prohibitive within the
framework of existing computer programs. The same
point-ion-lattice model also agrees well with the ground-
state observations on the F' center in the alkali halides
NaC1 and KC1. Questions about the nature of the low-
lying-excited F'-center states in the monovalent crystals
remain unanswered. The F' center in the alkali halides
also requires a much more sophisticated treatment for
the motion and electronic polarization of the neighbor-
ing ions than does the F' center in the alkaline-earth
oxides. However, before substantial progress can be
made in computing the electronic structure of the F cen-
ter or F' center, more effort should be devoted to the
model used to represent the host lattice of these point
defects.
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