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The radiative recombination spectrum of excitons in #-type Si exhibits structure which has been analyzed
in terms of one- and two-phonon processes. A model for radiative recombination of excitons is presented
which predicts one-phonon peak shapes which are in good agreement with experiment and two-phonon peak
shapes which are in fair agreement with experiment. Calculations are described with particular attention
devoted to phonon decoupling approximations. The observed width of the A;(25) two-phonon peak is ac-
counted for very well by phonon dispersion effects. Neither the 2;(60) nor the I';s:(64) two-phonon peak
alone can span the observed width of the assigned peak. We conclude that this peak is composite. The cal-
culations provide the following best estimates of the magnitudes (meV) of intervalley electron-phonon matrix
elements A;(25)-261, =:(48)-80, =,(60)-178, and the intravalley (valence band) matrix element I's5.(64)-403
where the phonons are designated by their symmetry and energy (meV). Also included are certain interme-
diate results which show the effects of the approximations and permit modifications of the model to be tested
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without extensive calculation,

1. INTRODUCTION

TRUCTURE observed in the intrinsic radiative

recombination spectrum of excitons in #-type Si
can be understood in terms of one- and two-phonon
processes.! Reasonable assignments of the phonons
involved can be made on the basis of the selection rules
and the experimental phonon spectrum.? However,
some ambiguities remain which cannot be resolved by
such considerations alone.

In this paper is presented a model for the calculation
of the shapes of radiative recombination peaks. It is
the purpose of this paper to show that the largest
two-phonon peak is composite and has major contribu-
tions involving a Z; intervalley phonon and a T
intravalley phonon. Detailed calculations are described
of the shapes of the principal two-phonon recombination
peaks from Si. The calculations are of theoretical
interest in that they lead to the evaluation of the
absolute magnitudes of those electron-phonon matrix

T Work supported in part by the Office of Naval Research
under Themis Contract No. N00014-68-A-0504.

!'W. P. Dumke, Phys. Rev. 118, 938 (1960).

2P, J. Dean, J. R. Haynes, and W. F, Flood, Phys. Rev. 161,
711 (1967).

elements which control transport processes.®4 In
previous calculations of this type, only the integrated
intensities were used to relate the experimental results
to the electron-phonon coupling constants.:5 There
was no basis to choose between equally tenable inter-
pretations. Besides clarifying the interpretation of the
two-phonon peaks the calculations reveal the effects of
decoupling approximations.

The many-valley picture of the band structure of Si
is briefly reviewed in Sec. 2 in the context of radiative
recombination. The exciton radiative recombination
intensity is expressed quantitatively in terms of matrix
elements between one-electron Bloch states in Sec. 3.
In Sec. 4, various levels of approximation and the
results obtained are described and discussed. Calculated
results are compared with experiment and empirical
values obtained for the electron-phonon coupling
constants in Sec. 5. Finally, in Sec. 6, the present results
and conclusions are discussed in light of related work.

3 D. Long, Phys. Rev. 120, 2024 (1960).

4]J. E. Aubrey, W. Gubler, T. Henningsen, and S. H. Koenig,
Phys. Rev. 130, 1667 (1963).

5 N. O. Folland, Phys. Letters 274, 708 (1968).
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2. MANY-VALLEY MODEL FOR RECOMBINATION

We consider a many-valley model for Si based on
the calculated band structure® and the experimental
phonon dispersion curves.”® In n-type Si, the conduc-
tion-band minima occur at six equivalent points along
the lines A in the Brillouin zone. At low temperatures
and at low electron concentrations most of the electrons
are weakly coupled to holes in the valence band to
form excitons. We assume that the excitons form a
Boltzmann distribution in energy which is undisturbed
by the radiative recombination processes.

In the experiments performed by Dean ef al.?2 on
n-type Si, electrons were excited from the valence
band by intense radiation from a mercury arc. The
intrinsic recombination radiation was observed for
emitted photon energies near and just below the
indirect exciton gap energy. The dominant contributions
to the recombination radiation involve excitons which
decay with aid of momentum conserving phonons.
For weakly coupled electrons and holes, the selection
rules’ are the same as those for the analogous free-
electron free-hole recombination.

The dominant one-phonon processes which are
allowed by the selection rules® are shown schematically
in Fig. 1. At low temperatures, only phonon emissions
need be considered. In a typical one-phonon process
the transition to the virtual conduction-band state I'ss
is accompanied by the emission of a momentum conserv-
ing phonon [symmetry Ay (TO)] followed by emission
of a photon (symmetry TI'js) in the transition to the
T'95 ground state. Symbolically, Ay(Ag)~— T'y15— Tosr.

We also consider two-phonon (third-order) processes.
In the dominant two-phonon recombinations, a momen-
tum-conserving phonon is emitted in the transition from
the initial state to a virtual state in a neighboring valley
as shown in Fig. 2. The process continues to the ground
state as in the one-phonon processes. Only A; and 2,
intervalley phonons are allowed by the selection rules.
It should be emphasized that the selection rules preclude
intervalley phonons of symmetry 2, and intravalley
optical phonons of symmetry I'ss» as the initiators of a
two-phonon process. Another significant two-phonon
process which is allowed by the selection rules is a
one-phonon process followed by the emission of a T'ss
intravalley phonon. Thus, emission of a I'ss» intravalley
optical phonon is allowed to terminate a two-phonon
process but is not allowed to initiate one.

(1; 6(;) Dresselhaus and M. S. Dresselhaus, Phys. Rev. 160, 649
7 G.‘Dolling, Inelastic Scattering of Neutrons in Solids and

Lz'qzm'ds (International Atimic Energy Agency, Vienna, 1965),
. 249

8 B. N. Brockhouse, Phys. Rev. Letters 2, 256 (1959).

9 N. O. Folland and Franco Bassani, J. Phys. Chem. Solids 29,
281 (1968); M. Lax, Phys. Rev. 138A, 793 (1965).

1 Symmetry designations are in the notation of L. P. Bouckaert,
R. Smoluchowski, and E. Wigner, Phys. Rev. 150, 58 (1936).
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F16. 1. One-phonon radiative recombination processes in Si. The
symmetries of the allowed phonons are given in parentheses.

3. QUANTITATIVE FORMULATION

Using elementary time-dependent perturbation
theory,! the recombination emission intensity (number
of photons with angular frequencies within dw of
emitted from the material into a unit solid angle in
unit time) from the radiative decay of an excitonic
state 4 to the ground state of the electronic system F is

_ 2 1 H,up(1)---Her(N) 2
IA—>F= - Z
# B¢ |(Ea—Ep—Ay)- - (Ea—Eq—An-1)
XpeVo(Esa—Er—Ay), (1)
where
A= 2. &,
PanwY:

and the &; are photon or phonon energies and pz(w)
= (nhw)?/(hc)® is the photon density-of-states factor.
Photon and phonon indices are suppressed as they are

Kz

F16. 2. Many-valley model for Si. Typical intervalley phonon
processes are indicated by the wavy lines. The allowed phonon
symmetries are given in parentheses. The Z, intervalley phonon
(circled) is forbidden by time reversal symmetry.

U'W. Heitler, The Quantum Theory of Radiation (Oxford
University Press, New York, 1954), 3rd ed., p. 140.
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implied by the electronic states. In all cases, we will
assume that only one of the processes involves photon
emission. The total emission intensity is obtained by
taking an ensemble average in which each excitonic
initial state is weighted by a Boltzmann factor according
to its energy. We assume that thermal equilibrium is
established despite recombination and that the exciton
energy distribution is Maxwell-Boltzmann. The total
intensity is

IA—»F=§ Ny(Ea)lssr, 2

where N p is the Boltzmann distribution function.
Following Dresselhaus’s formulation® of the weak-
coupling exciton problem the intensity may be expressed
in terms of one-electron Bloch functions. The exciton
geminal expanded in a product of Bloch states is

@K (re,rn) = ka, 0k, k' Fa(Q)px(re)du (1),  (3)

where K'=k+k’, q=3(k—k’), and F.(q) is the
Fourier transform of the exciton envelope function
normalized so that (V/27)3/|F.(q)|%d3%¢=1. The
Bloch-function momenta are written with respect to
the conduction-band minima, k,=k.*+k or the valence-
band maximum, k,=0-+k’. The Fourier transform of
the exciton envelope function is a sharply peaked
function of ¢. Neglecting the ¢ dependence of the
matrix elements and phonon energies, the intensity
expression becomes

2
Taor=— 2 Np(E.)
% ab,-.-d

Hay(1)- - -Has(N) 2
(Ea—Ep—A1): -+ (Ea—Eq—Ay_1)
Xo(@)Vo(E,—Ax). (4)

The exciton energies Ep, ... are measured relative to
the top of the valence band. The Boltzmann function is
normalized, (2r)~3/d*K N g(E,(K))=n,, where 7, is
the exciton concentration. Equation (4) is our basic
expression for the recombination emission intensity and
represents the highest level of approximation that we
consider. It is difficult to assess the approximations
inherent in Eq. (4). But, we think that only the most
subtle effects have been neglected and that it is mean-
ingful to consider the effect of phonon decoupling
approximations as they affect the results from Eq. (4).

Conservation of momentum requires thatk, =k,+k,,
+G, where G is a reciprocal-lattice vector and k, is
the phonon momentum in the matrix element between
Bloch states k, and k... Since transition rates are
largest when the energy denominators are smallest, it is
energetically favorable for intervalley (intravalley)

2 G. Dresselhaus, J. Phys. Chem. Solids 1, 14 (1956); R. J.
Elliott, Phys. Rev. 108, 1384 (1957).

N. 0. FOLLAND 1

processes to precede (follow) transitions between
electronic states which are well separated in energy.
For example, the two-phonon process

A1(Z1) ~—> Ay(A5) ~—> T35 — Togr
is favored over a possible competing process
A1(A5) ~— T15(Tas7) ~— T'15—> Doy

by a factor of 400 from the energy denominators alone.
It is most improbable that variations in the matrix
elements can compensate for this.

4. CALCULATIONS AND APPROXIMATIONS

Our objective is to evaluate Eq. (4) for the dominant
radiative recombination processes. Since the energet-
ically favored transitions involve virtual states very
near the conduction-band minima, the conduction-band
state I'y;s and the valence-band states A; and I'gy, the
k dependence of the matrix elements can be neglected.
This may be justified theoretically for the electronic
states with k-p perturbation theory. We assume that
the % dependence of the electron-phonon interaction
may be neglected. Only phonon emission will be con-
sidered and the electron-phonon matrix elements are
taken to be independent of temperature which is
appropriate for low temperatures (:S100°K) and
phonon energies &>kpT. It is convenient to define
reduced matrix elements

Hoy(§)=Has(5) (ksT)/A/No, (5)

where all energies are expressed in units of k57, &;=§;
XkgT, E,=E.kpT. The factors /N, where N, is the
number of unit cells in the crystal, which occur in the
usual expressions for the electron-phonon and photon
emission matrix elements are included explicitly.

It is found, experimentally, that constant energy
surfaces relative to the conduction-band minima are
ellipsoids of revolution about the lines A

E(k)=E (avki?+ak.?), (6)

where, if length is measured in Bohr radii, then Eo=1
Ry=13.6 eV and au~1 and a,~5. Except for the
exciton energy shift we take the same K dependence
for the exciton energy band as for the conduction band.
Since the photon momentum is essentially zero, one
sum over virtual states is omitted. This enters the
intensity expression below as a § function.

If the sums over electronic states are converted to
integrals and the definitions and approximations
described above are introduced, Eq. (4) becomes

2m _ _
Tgor= ‘—h'—(kBT)!Hab(l)' - Haf(N)]?

Q% _
Xnap(@)——1In, (7)

()"
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A 2o

Np(E.)o(Es—An)6(ki—kiy)
(Ba—Ep—0y)?- - - (Ba—Eq— Ry_1)?

is a dimensionless shape function.

Calculation of the one-phonon transition rates is
trivial if the weak % dependence of the phonon energies
involved is neglected. A typical one-phonon, A;(As) ~—>
T'15— T'g5r transition rate is given by

. 2(VE)exp(—E)4(E)
12 = — — ) (9)
(E —E T15™ gAs)z

where
E=8,—(E,—8a,), 0x)=0(1), if x<(>)0.

The exciton gap energy is £,=1.155 €V and &, is the
photon energy. It follows from Eq. (9) that the one-
phonon transitions will exhibit a sharp threshold in
photon emission at an energy &a, below the exciton gap
energy and that the peak in photon emission is 1kpT
above threshold energy. The observed one-phonon
peaks are noticeably broader than predicted by Eq.
(9).12 Inspection of the phonon dispersion curves
indicates that the Aj; phonon-energy dispersion is
greatest in directions perpendicular to the line A,

8ay(K)=2 84"+ 8! (ku/ko)?, (10)

where if ky=27/a, then 8,,=58 meV and &'=—12.7
meV are consistent with the observed broadening and
the main features of the phonon-dispersion curves.

In general, calculation of the two-phonon and higher-
order transition rates must be done numerically. An
approximation is suggested by the fact that initial
electron states are restricted to a very small region in
k space near the minima. Thus, the 2 dependence of
these states which appears in the phonon energies
should be small and may be negligible. If the % depen-
dence of the phonon energy is neglected, the first
integral of Eq. (8) can be evaluated

_ Qo \ V2
IN=2(——-) fd3kb- . -/d“kd
473

v/ (E) exp(—E)0(E)s (ki—ki_1)
(E—FEy—Ry)? - - (E—Eg—Ky_1)?’

(11)

where E=Ay—FE,. From Eq. (11), it is easy to see how
the momentum dependence of the phonon energies can
affect the peak shape. Particularly for photon energies
near the threshold (£~0), the change of the phonon

13 J. R. Haynes, M. Lax, and W. F. Flood, Proceedings of the

International Conference on Semiconductor Physics, Prague, 1960
(Academic Press Inc., New York, 1961), p. 423.
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energy by just a few meV will be a large change in the
numerator of the integrand. For the intermediate
states considered here, similar changes of the phonon
energies in the denominator will have negligible effect.
For photon energies near threshold the variation of the
phonon energy with momentum often serves to truncate
the integral via the 6 function. Thus, truncation errors
are less important here. For photon energies beyond
the peak maximum truncation error becomes more
important. In the spirit of the model it was necessary to
restrict the regions of integration to % vectors near the
minima. We expect that truncation errors will under-
estimate the high-energy tails of the two-phonon peaks,
but will have little effect on the peak height or width.

The two-phonon transitions involving a A; (LA)
intervalley phonon should be most sensitive to the
approximations leading to Eq. (11). Fortunately, this
is also the most symmetric case and both Egs. (8) and
(11) can be evaluated with equal facility. The momen-
tum dependence of the A; phonon energy is approx-
imated by a conical surface centered at k=0. For small
deviations k’ from the intervalley momentum k,
(defined as the momentum transfer between valley
minima)

8(ko+Kk')=25.0 meV+25.0 meV (| ko+k'| /ko—1). (12)

“Exact” (points) and approximate calculations (smooth
curve) for the Ay intervalley phonon peak are compared
in Fig. 3. The peak shape is not appreciably different
in the two calculations and the peak height for the
“exact” calculation, Eq. (8), is about 69, smaller

22 l

14

10r

-8 -4 [e] 4
(KT)
Fic. 3. The A; (25 MeV) two-phonon peak. The ‘“approximate”

calculations from Eq. (11) are given by the solid line and the
“exact” calculations from Eq. (8) by the points.
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Fic. 4. The plane, k.=0 in reciprocal space. Lines of special
symmetry in or near the first Brillouin zone are marked in the
notation of Bouckaert ef al. The intervalley momentum vector
kz=(2r/a) (0.80, 0.80, 0) falls near the point K, but just outside
the first Brillouin zone.

than the peak height found in the approximate calcula-
tion, Eq. (11). The two-phonon peak is about three
times as wide at half-maximum as is the one-phonon
peak, Eq. (9). If the phonon momentum dependence
were neglected entirely, the two-phonon peaks would
have the same shape as the one-phonon peaks.

We now consider the two-phonon peaks involving 2,
intervalley phonons with momenta near k°=(27/a)
(0.80, 0.80, 0). The %,=0 plane (Fig. 4) in reciprocal
space shows the symmetry in perspective. It is difficult
to measure high-energy phonon-dispersion curves as
can be seen in Fig. 5 where the experimental points
and estimated errors for the highest energy Z; and Aj
phonon branches’ are plotted together from the point
X[(2w/a)(1,1,0)]. The momentum dependence of the

2 -~
62 /
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/
/
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F1G. 5. Dolling’s data and estimated errors (Ref. 7) are plotted
relative to the point k.= (27/a) (1,1,0) on the same scale for the
optical phonon branches As, ka= (27/a) (0,0,x), and

=1, kz= 27 /a) (x,x,0).
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phonon energies was approximated by a polynomial
expansion about the point X consistent with the
symmetry4 and the experimental phonon data.

The 2, two-phonon peaks calculated from Eq. (11)
were narrower than the A;(25) two-phonon peak by
about a factor of 2. Even when a definite shoulder
(shown by the broken line in Fig. 5) representing the
extreme structure consistent with the =;(60) data was
introduced the widths (2.4-3.2k5T) were considerably
less than the observed width (4.2k5T). The lower =1(48)
two-phonon peak as calculated from Eq. (11) also is
only slightly broadened from the one-phonon peak
shape. The =,(48) peak is observed in the shadow of
the 2,(60) peak and little can be said about its shape.

The remaining two-phonon process which is favored
energetically and by the selection rules is completed
by the emission of a I'ss intravalley phonon. The
phonon dispersion is approximated by

8(Tay) =64.5 meV-7.0 meV (%' /ko)?,  (13)

where ky=2n/a and %’ is the momentum with respect
to the point I' (k=0). The shape of the I';5» two-phonon
peak is similar to the Z; peaks, but because of the
maximum in the phonon energy momentum relation,
Eq. (13), the threshold is very sharp.

The main features of the peak shapes calculated from
Eq. (11) are given in Table I. Although most of the
table entries are self-explanatory, it should be em-
phasized that the entries labeled “calculated integrated
intensity”’ should not be compared with the experi-
mental integrated intensities. The calculated integrated
intensities are defined as /" Iy(E)dE with Iy given by
Eq. (11). They may be used to calculate the electron-
phonon coupling constants as described below or serve
as the basis for other comparisons. For example, param-
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Fic. 6. Comparison of high-gain experimental radiative
recombination two-phonon peaks (Ref. 2) (solid curve) with
calculated peak shapes (points). A small constant background
about 5%, of the principal two-phonon peak was subtracted from
the data.

4 F, A. Johnson and R. Loudon, Proc. Roy. Soc. (London)
A281, 274 (1964).
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TasLE I. Calculated peak characteristics. All calculated quantities refer to Eq. (11). The one-phonon peak is labeled by its symmetry
(As). The two-phonon peaks are labeled by the symmetry of the intervalley (intravalley) phonon. The threshold phonon energies listed
correspond to the momentum for the prototype intervalley (intravalley) process. The peak maxima are displaced with respect to the
threshold phonon energies as is exemplified in Fig. 3. The calculated integrated intensities [from Eq. (11)] should not be compared
with the experimental integrated intensities (see text). At 7'=26°K, kp7'=2.24 meV.

Peak type one-phonon two-phonon two-phonon two-phonon two-phonon

(symmetry) (As) (A1) (o) (023)) (T'2s)
Phonon energy (meV) 58 25 48 60 64.5
Displacement of max. from thres. (k57) 0.5 1.5 0.9 0.9 0.9
Width at § max. (ks7) 1.8 5.3 2.8 24 2.3
Height of max. (dimensionless) 2.4(—6) 1.9(—12) 2.3(—12) 2.2(—12) 2.8(—12)
Height of max. (decoupling approx.) 2.4(—6) 26.(—12) 19.(—12) 17.(—12) 16.2(—12)
Integrated intensity (calculated) 4.9(—6) 12.(—12) 7.2(—12) 5.8(—12) 6.1(—12)
Integrated intensity (decoupling approx.) 4.9(—6) 53.(—12) 39.(—12) 34.(—12) 33.(—12)
Integrated intensity (expl.) 1.0 0.032 0.010 .030 0.040

eters obtained from the lowest level of approximation
where phonon energy-momentum dependence is ne-
glected entirely are given in Table I.

5. EMPIRICAL ELECTRON-PHONON
MATRIX ELEMENTS

The procedure used to fit the experimental data was
to superpose the calculated peaks as Z:R ()1 (i), where
for peak 4, R(i) is the ratio of experimental to the
calculated integrated intensity. Thus, fitting in this
way to the experimental curve amounts to reestimating
the experimental integrated intensities.

The A; two-phonon peak was chosen to determine
the exact location of the conduction-band minimum
because the calculated and experimental peaks both
appear to be quite broad and the peak positions should
not be influenced by finite slit-width effects. The
conduction-band minimum found in this way lies at
k= (27/a) (0.8040.01,0,0) where most of the es-
timated uncertainty arises from the phonon-dispersion
data. The A; peak does overlap with the A5(58) one-
phonon peak and the experimental integrated intensity
is subject to interpretation. The Z; phonon energies as
determined by the 296°K data’ are 48 and 60 meV
(&1 meV), and the T's5 phonon energy is 64 meV.
The best fit to the recombination data was obtained
when these energies were taken as 48, 60, and 64.5 meV
as given in Table I.

The results of the curve fitting are shown in Fig. 6
where the experimental high-gain two-phonon radiative
recombination spectrum? from which a small constant
background contribution has been removed (59, of the
principal two-phonon peak) is given by the solid line.

The points represent the calculated emission intensity.
Related experimental curves? indicate that the slits are
of the order of 3-5 meV wide. The effect of finite slit
widths was estimated by integrating the calculated
intensity over a finite spectral region. The results are
insensitive to the slit width.

As mentioned above the curve fitting procedure
amounts to calculating the integrated intensity. Since
the composite two-phonon peak is isolated it was chosen
as the best estimate of integrated intensity relative to
the one-phonon peak. A good fit (Fig. 6) was obtained
when the integrated intensity for the A; two-phonon
peak was doubled over the estimate given in Ref. 2.

The ratios of experimental to calculated integrated
intensities are simply related to the electron-phonon
matrix elements by Egs. (7) and (8). The ratio of these
quantities for the dominant one-phonon process and
the observable two-phonon processes provide a good
approximation to individual electron-phonon matrix
elements,

Ny How () |22 R (3)/R(A5(58)) , (14)

where R(3) is the ratio of experimental to calculated
integrated intensities for the ¢th two-phonon process
and R(A5(58)) is the same ratio for the dominant
one-phonon process. The number N; takes specific
account of the number of equivalent intervalley scatter-
ing options which might be initiated from a given
valley, N(Z1)=4, N(Ay)=1, and N(Ts)=1. The
electron-phonon matrix elements calculated from Eq.
(14) are listed in Table II, both for the detailed shape
calculations and for the decoupling approximation.

Tastk IL. Magnitudes of the electron-phonon matrix elements and related quantities. The matrix elements are labeled by the symmetry
of the phonon involved. The intervalley scattering amplitude, Eq. (17), and the coupling constants, Eq. (16), are discussed in the text.

Phonon Ay 21 2 Tas
Phonon energy (meV) 25 48 60 65
Electron-phonon matrix element (meV) 261 80 179 403
Electron-phonon matrix element, decoupling approx. (meV) 54 18 33 77
Intervalley scattering amplitudes (relative) 0.70 0.14 0.55 s
Electron-phonon coupling constant [ (meV)~/2 sec™] 1.12(+12) 0.43(412) 2.1(+12) 2.7(+12)
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The empirical electron-phonon matrix elements found
above are the same ones that govern scattering by
optical phonons in transport processes. The lifetime for
scattering from a conduction (hole) state k,=k,’+k’
is given by

1/7(ea(k)) =gia(ea(k') — 8:0)20(ea (k') — &), (15)

where the coupling constant go, is related to the electron-
phonon matrix element by

QO\ Ni, H,. (z) |2 /m Cmgmat\ V2
ja=—\| 1
§ (003/ o \( Rymo)3> (16)

and &, is the energy of the optical phonon involved.

The coupling constants obtained from the empirical
electron-phonon matrix elements are listed in Table II.
The coupling constants defined above differ from the
scattering amplitudes 4 ; defined by Long and used by
him in his analysis® of the mobility of Si by a phonon
energy and a proportionality constant,

A= gia/ . an

The coupling constants and phonon assignments
described above were used to repeat Long’s analysis of
the mobility of Si as a function of temperature. It was
possible to reproduce Long’s values of mobility as a
function of temperature to within 8%, between 100 and
300°K. It should be noted that the temperature
dependence of the mobility is not very sensitive to the
21(60) coupling constant. As reported previously® the
mobility curves were approximated equally well using a
set of coupling constants based on an incomplete
analysis of the recombination data. Our general
conclusion here is that a fairly good fit can be obtained
in the temperature range considered as long as the
21(60) coupling constant is not too small or zero. The
fit obtained here would be improved if the ratio of the
21(60) to the A;(25) coupling constant were increased.

6. DISCUSSION

The main conclusion resulting from our analysis of
recombination radiation in Si is that the large two-

N. O. FOLLAND 1

phonon recombination peak is decomposed into peaks
attributed to three independent processes. The largest
contribution to this peak in terms of integrated intensity
involves a I'ysr optical phonon and the remaining parts
are from Z; optical phonons. We are in substantial
agreement with the original interpretation of radiative
recombination in Si made by Dumke.! A discrepancy
that has persisted between Dumke’s analysis and the
analysis of mobility data made independently by Long
is resolved.

One objection to our interpretation and conclusions
is made by Onton'® in the interpretation of his oscil-
latory photoconductivity data. He concludes that the
A1(25) and Z,(48) phonons are evidenced as dips in
the photoconductive response, but that no higher
energy phonons may be seen, and therefore they are
not involved. We note that this interpretation may be
invalid because it is based on the original theory of
Stocker and Kaplan'® which does not apply in this
context where more than one type of phonon is available
for scattering. Calculations applicable to the case of
Si which are based on an exact solution of the Stocker-
Kaplan model for oscillatory photoconductivity are in
progress.

The model described in this paper leads to one-
phonon peak shapes which are in excellent accord with
experiment and two-phonon peak shapes which are
in fair agreement with experiment. Calculations which
include the momentum dependence of the phonon
energy fully account for the observed width of the A;
two-phonon peak and require that all allowed two-
phonon processes be operative to explain the principal
two-phonon peak. In addition to the empirical electron-
phonon matrix elements and coupling constants, we
presented various intermediate results which display
the effects of the approximations and permit simple
modifications of the model to be tested without exten-
sive calculation.

18 A. Onton, Phys. Rev. Letters 22, 288 (1969).
16 H. J. Stocker and H. Kaplan, Phys. Rev. 150, 619 (1966).



