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Self-Consistent Orthogonalized-Plane-Wave Energy-Band Study of Silicon

D. J. STUKEL AND R. N. EuwKMA

Aerospace Research Laboratories, Wright-PattersorI, Air Force Base, Ohio 45433

A 6rst-principles self-consistent orthogonalized-plane-wave energy-band calculation has been performed
for silicon using a nonrelativistic formalism and Slater s free-electron exchange approximation. The imaginary
part of the dielectric constant valence- and conduction-band densities of states, spin-orbit splittings, deforma-
tion energies, effective masses, and the x-ray form factors (Fourier transforms of the electron charge density)
have been calculated. The theoretical results are'compared with the available experimental data.

I. INTRODUCTION

A LARGE amount of information, both experi-
mental and theoretical, is available concerning

the valence- and conduction-band edges of the homo-
polar semiconductor, Si. Considerably less knowledge
exists concerning the energy-band structure of Si away
from the band edges. Unfortunately, most of the theo-
retical work concerning the band structure of Si is
empirical (pseudopotential method, ' ' full-zone k.p
method, ' and effective-mass Hamiltonian method') or
semiempirical t empirical refined orthogonalized-plane-
wave (OPW) method' sj. The validity of the empirical
and semiempirical work all depends on having accurate
experimental data. Even when accurate data are avail-
able, one question always remains. If some parameters
are adjusted to make the calculated band structure agree
with some "known" features of the experimental band
structure, how does one know that other features of the
calculated band structure will then agree with the actual
band structure?

In order to eliminate questions of this nature, we
have undertaken an almost 6rst-principles calculation
of the energy-band structure and related optical proper-
ties of Si. The only experimental datum which is used
in this calculation is the lattice constant. No claim is
made that the results of this calculation will explain all
experimental data or that our results are superior to
those obtained by other workers. The contribution of
this paper is twofold: (1) The work shows what can be
done froxn a more nearly 6rst-principles approach, and

(2) this work provides experimentalists with an un-
biased set of results which may be useful in interpreting
experiments. It is satisfying that our 6rst-principles
approach does yield results which compare well with
experiment and with the results of other workers whose

' D. Brust, Phys. Rev. 134, A1337 (1964).' E. O. Kane, Phys. Rev. 146, 358 (1966).
3 M. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789

(1966).
4 M. Cardona and F. H. Pollak, Phys. Rev. 142, 530 (1966).
' G. Dresselhaus and M. S. Dresselhaus, Phys. Rev. 160, 649

(1967).'F. Herman, R. L. Kortum, and C. D. Kuglin, Intern. J.
Quantum Chem. 15, 533 (1967).

7F. Herman, R. L. Kortum, C. D. Kuglin, and R. A. Short,
J. Phys. Soc. Japan 21, 7 (1966).

F. Herman, R. L. Kortum, C. D. Kuglin, and R. A. Short, in
Qgaetum Theory of Atoms, Molecgles arjd the Solid State, edited by
P. O. Lowdin (Academic Press Inc., New York, 1966), p. 381.
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calculations relied upon the input of a considerable
amount of experimental data.

The purpose of this paper is to present the Si band
structure and related optical properties such as the
effect of pressure on the band structure, spin-orbit
splittings, deformation energies, effective masses,
valence- and conduction-band densities of states,
imaginary part of the dielectric constant (e2), and the
x-ray form factors (the Fourier transform of the electron
charge density) based on a first-principles self-consistent
OPW calculation. These calculations were performed
using the self-consistent OPW (SCOPW) model
developed at Aerospace Research Laboratories. These
self-consistent programs have been very successful in
calculating the energy-band structures of group III—V,
II—VI, and IU compounds. ' "

In Sec. II, calculational details of the model are dis-
cussed. These include a brief description of the SCOPW
model, convergence behavior of the Brillouin-zone
averaging and of the OPW series, and interpolation of
the SCOPW high-symmetry point results throughout
the Brillouin zone. The SCOPW results are given, dis-
cussed, and compared with experimental and with
other theoretical results in Sec. III. Conclusions are
presented in Sec. IV.

II. CALCULATIONAL DETAILS

A. SCOPW Calculations

The OPW method of Herring" is used to calculate the
electron energies. In the SCOPW model, ' " the elec-
tronic states are divided into tightly bound core states
and loosely bound valence states. The core states must
have negligible overlap from atom to atom. They are
calculated from a spherically symmetrized crystalline
potential.

The valence states must be well described by a modi-

~R. N. Kuwema, T. C. Collins, D. G. Shankland, and J. S.
DeWitt, Phys. Rev. 162, 710 (1967)."D.J. Stukel, R. N. Euwema, T. C. Collins, F. Herman, and
R. L. Kortum, Phys. Rev. 1"l9, 740 (1969)."D.J.Stukel and R. N. Kuwema, Phys. Rev. 186, 754 (1969)."D. J.Stukel and R. N. Euwema, Phys. Rev. (to be published)."D. J. Stukel R. N. Euwema, T. C. Collins, and V. Smith,
Phys. Rev. B 1, 79 (1970)."T.C. Collins, D. J. Stukel, and R. N. Euwema, Phys. Rev.
8 1, 724 (1970)."C. Herring, Phys. Rev. 5'7, 1169 (1940).

1635



1636 D. J. STUKEL AND R. N. EUWEMA

fied Fourier series

where k„=ko+K„, ko locates the electron within the
erst Brillouin zone, K„ is a reciprocal-lattice vector, R,
is an atom location, P, is a core wave function, and Qo is
the volume of the crystalline unit cell. The coefficients
A,„are determined by requiring that f&,(r) be ortho-
gonal to all core-state wave functions. The variation of
8„ to minimize the energy then results in the valence
one-electron energies and wave functions.

The dual requirements of no appreciable core overlap
and the convergence of the valence wave-function ex-
pansion with a reasonable number of OPW's determine
the division of the electron states into core and valence
states. The 3s and3p states of Si are taken as the valence
states. The convergence properties of the wave-function
expansion are discussed in Sec. II C. The core overlap is
less than 0.0008 of an electron.

The calculation is self-consistent in the sense that the
core and valence wave functions are calculated alter-
nately until neither changes appreciably. The
Coulomb potential due to the valence electrons and the
charge density are both spherically symmetrized about
each inequivalent atom site. With these valence quanti-
ties frozen, new core wave functions are calculated and
iterated until the core wave functions are mutually
self-consistent. The total electronic charge density is
calculated at 650 crystalline mesh points covering 1/24
of the unit cell, and the Fourier transform of p(r)'~' is
calculated. The new crystal potential is calculated from
the old valence charge distribution and the new core

charge distribution. Then new core-valence orthogonal-
ity coe%cients A,„,are calculated. The iteration cycle
is completed by the calculation of new valence energies
and wave functions. The iteration process is continued
until the valence one-electron energies change less than
0.01 eV from iteration to iteration.

The appropriate charge density to use for both the
self-consistent potential calculation and the form-
factor calculation is the average charge density of all
the electrons in the Brillouin zone. In the present self-
consistent calculations, this average is approximated by
a weighted average over electrons at the I', X, 1., 8,
5, and Z high-symmetry points of the Brillouin zone
shown in Fig. 1.The weights are taken to be proportional
to the volumes within the first Brillouin zone closest to
each high-symmetry point. The adequacy of this ap-
proximation is discussed in Sec. II B.

The starting crystal potential is represented by a
spatial superposition of nonrelativistic self-consistent
atomic potentials in the manner of Herman and Skill-
rnan. " This crystal-potential model (from Herman),
which is sometimes called the overlapping free-atomic-
potential model, also forms the basis of non-SCOPW
band calculations.

One way of taking relativistic effects into account
within the framework of nonrelativistic band calcu-
lations is with first-order perturbation theory. The
perturbing Hamiltonian obtained for the spin-orbit
splitting is

II,.= 4'iq'cr [—VV(r))& yg,
where V(r) is the potential, 0. is the Pauli-spin operator,
and q is the fine-structure constant. The F25 SCOPW-
valence wave functions are used in this calculation.

In order to calculate the density of states and the
absorptive part of the dielectric constant e2 a pseudo-
potential fit is made to the relevant energy levels at the
I', X, I., 8', 5, and Z points. The pseudopotential
technique is then used to calculate energy differences
and transition matrix elements throughout the Bril-
loujn zone. '~ In our experience, this procedure gives
the e2 peaks at the correct energies. However, the
relative peak heights do not match experiment because
of their dependence upon the poor pseudopotential
wave functions, and because of complicated electron-
hole and electron-phonon interactions which are ignored
in our model.

Fro. 1. Zinc-blende Brillouin zone with high-symmetry points
labeled. 6 and Z are symmetries possessed by the F-X and F-E
lines. In our calculations, the midpoint of the lines was used for
the 3, point (-,',0,0) and Z point (—,',—,',0).

B. Brillouin-Zone Averaged Charge Density

In determining the valence-electron charge distri-
bution in the SCOPW band calculations, one, in princi-
ple, sums the contribution of all occupied valence-band
states. In practice, one performs this sum by using a
representative sample of points in the reduced zone and

"F. Herman and S. Skillman, Atom~c Structure Calculations
(Prentice-Hall, Inc. , Englewood Cliffs, N.J., 1963).

'~R. N. Euwema, D. J. Stukel, T. C. Collins, J. S. DeWitt,
and D. G. Shankland, Phys. Rev. 1'78, 1419 (1969).
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assigning suitable weights to the various points. In
such calculations, it is also necessary to check the con-
vergence of the solution as a function of the number of
points sampled in the reduced zone.

In a previous paper, "we presented results based on a
one-point, three-point, and four-point sampling. In
this paper, we give the results of four-point and six-
point sampling. In the four-point sampling (I', X, L,
and W), the weights used were 0.1258, 0.1731, 0.3600,
and 0.3411. For the six-point sampling (I', X, L, W, d, ,
and Z), the weights used were 0.03125, 0.09375, 0.125,
0.1875, 0.1875, and 0.375. The weights are proportional
to those fractions of the reduced zone which are closer
to the point in question than to the remaining points.
The six points were selected to provide a uniform sampl-
ing of the zone. In Table I, the energy eigenvalues
calculated using the four-point sampling are given in
column 2 and those obtained using the six-point sampl-
ing are given in column 3. The greatest difference in the
four- and the six-point eigenvalues is 0.03 eV with the
average difference being about 0.01 eV. Hence, the error
in the six-point eigenvalues due to the zone sampling
is quite small.

In Table II, the theoretical structure factors based
on the four-point sampling are given in column 4 and
those based on the six-point sampling are given in
column 5. The difference in the structure factors due to
the number of points sampled is less than 0.01 for all
lines except the 222 line, where the difference is 0.03.
Hence, one can conclude that the errors introduced by
the six-point zone-sampling technique are not
significant.

C. OPW Series Convergence

In all OPW band calculations, it is important to make
sure that enough OPW terms are included in the vari-

Level

~15c
~2c
~25'v
~lv
&4c
&Ic
X4v

Xlc X4v
LSC

Lic
L3,
Liv
L2,
L3c—L3 v

LI,—L3,
8"2,
Wjc
W2,
W2v
WI
W2c W2v
~5c
~2c

~5v

~Iv
~Ic—~sv
&Ic
Z4c
&3c

&iv

&3c—&2v

Four-point
sampling
Slater's

exchange

2.78
2.76
0.0—11.75
9.79
1.25—2.72—7.75
3.97
3.81
1.59—1.18—6.76—9.53
4 99
2.77

10.80
5.14
4.81—3.58—7.61
8.39

Six-point
sampling
Slater's

exchange

2.79
2.75
0.0—11.74
9.79
1.2g—2.72—7.75
4.00
3.83
1.60—1.18—6.75—9.53
5.01
2.78

10.80
5.15
4.83—3.57—7.61
8.40
5.89
3.62
1.55—1.78—3.5g—10.69
3.33
5.54
5.02
2.88—1.27—3.45—5.40—9.74
4.15

Six-point
sampling

Kohn-Sham's
exchange

2.33
3.31
0.0—12.04
9.87
0.34—3.00—7.83
3.34
3.12
1.39—1.26—7.14—9.63
4.38
2.65

10.55
4.82
4.01—4.10—7.64
8.11
5.66
2.81
0.81—2.00—3.49—10.94
2.81
5.10
4.60
2.27—1.40—3.96—5.47—9.92
3.67

TABLE I. Self-consistent energy eigenvalues for Si based on a
four-point (F, X, I., and Wl and a six-point (I', X, L, W, n, and
Z) zone sampling. 259 OPW's were used at F and a comparable
number of OPW's at the other high-symmetry points. The lattice
constant used was 5.431 3,. The zero of energy has been placed at
the top of the valence band (F2~). All entrees are in eV.

TAaLE II. Experimental and calculated structure factors for Si. RHF values give the results for relativistic Hartree-Fock free-atomic
charge densities packed in the crystal lattice. Four-point sampling results involve averaging the charge density in the self-consistent
iterations and in the structure-factor calculation over the F, X, L, and W points, while six-point results were averaged over the j. , g,I., W, 6, and Z points. Sl stands for Slater's exchange. KSG stands for Kohn-Sham-Gaspar's exchange. Sl-RHF and KSG-RHF give
structure factors calculated with an SCOPW-valence charge density and a relativistic free-atomic Hartree-Fock core charge density.
Structure-factor units are electrons per crystallographic unit cell.

Expt RHF

Four-point
sampling

Sl Sl
Six-point sampling
KSG Sl-RHF KSG-RHF

ili
220
311
222
400
313
422
333
511
440

11.12+0.04.
8 78&0 09b
8.05&0.07'
0.22a0.04.
7.40+0.14c
7.32&0.12'
6.72&0.06'
6.43&0.08'
6.40m 0.08c
6.04&0.15'
5.00a0.10

10.53
8.71
8.16
0.0
7.51
7.18
6.70
6.44
6.44
6.03
497

10.89
8.77
8.10
0.22
7.53
7.36
6.92
6.50
6.55
6.17
5.12

10.88
8.77
8.11
0.19
7.54
7.34
6.81
6.51
6.55
6.17
5.12

10.69
8.64
8.01
0.17
7.44
7.21
6.68
6.38
6.42
6.02
4.96

10.86
8.72
8.03
0.19
7.46
7.27
6.71
6.40
6.44
6.05
4.99

10.70
8.67
8.05
0.17
7.49
7.26
6.73
6.41
6.45
6.07
5.04

a L. D. Jennings (private communication to P. M. Raccah).
b M. Hart and A. D. Milne, Acta Cryst. A25, 134 (1969).
e H. Hattori, H. Kuriyama, and N. Kato, J. Phys. Soc. Japan 20, 1047 (1965).
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FIG. 2. Convergence study of NSCOPW energy levels at the F point in Si.

ational wave functions to ensure a high degree of con-
vergence. The convergence properties of NSCOPW band
calculations for Si are illustrated in Fig. 2. In this
drawing, the energy levels at F are shown as a function
of the number of OPW's used and as a function of
2X;„.Here, X;„=2~/k, where k, is the magnitude
of the largest k vector used in the OPW expansion.
2X;„is, thus, the minimum distance that is "felt out"
by the plane-wave terms. 4xr'p is also plotted where p is
the core density. In order to obtain solutions that are
convergent to about 0.02 eV, it is necessary to use
about 259 OPW's at the F point and a comparable
number at the other high-symmetry points. If one
increases the number of OPW's at the I' point from 229
to 259, F&„F»„and F2, change by less than 0.01 eV
and F», changes by less than 0.02 eV. Further increases
in the number of OPW's lead to negligible changes in
these energy levels. The convergence properties of the
energy levels at other high-symmetry points in the zone
are similar to those shown in Fig. 2. The convergence
properties of the SCOPW band calculations are very
similar to those of the NSCOPW band calculations. "

» R. Q. Euwema and D. J. Stukel (to be published).

or
=L '( j'"

(Ep V(r) ]'". —
The Kohn and Sham exchange term differs by a factor

of ~~ from Slater's and is given by

V (r)=(—4/2 )k (r).
'9 J. C. Slater, Phys. Rev. 81, 385 (1951).
~0 W. Kohn and L. J. Sham, Phys. Rev. 140, AI133 (1965);

R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954).
D. A. Liberman, Phys. Rev. 171, 1 (1968); L. J. Sham and

W. Kohn, ibid. 145, 561 (1966).

D. Choice of Exchange Potential

In setting up the SCOPW model, one must decide
how to handle the exchange and correlation terms.
Along with everyone else, we ignore correlation. Since
no one has been successful in performing a true Hartree-
Fock calculation for a crystal, one of the local exchange
approximations must be made. The three most widely
used exchange approximations are those of Slater, "
Kohn and Sham ' and I.iberman. "

The Slater exchange term is given by

VXB(r)= —(6/2n. )kr(r),
where
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SELF CONSISTENT ENERGY
BAND STRUCTURE

259 PLANE WAVES

1639
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K
K
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Fro. 3. SCOPW energy-band structure of Si obtained using Slater's exchange. The solid dots denote SCOPW energy levels The so]id

lines were obtained by fitting a pseudopotential-type interpolation scheme to the SCOPW energy levels.

Our experience on tetrahedrally bonded semicon-
ductors is that K.ohn and Sham's exchange gives bands
which are too compressed, while those obtained using
I.iberman's r-dependent state-dependent exchange are
too spread out. The bands obtained using Slater's
exchange match experiment very well. Thus, Slater's
exchange seems to simulate both exchange and corre-
lation for these crystals. "

In Table I, we give the energy eigenvalues obtained
using Slater's exchange in column 3 and those obtained
using Kohn and Sham's exchange in column 4. The
general compression of the bands is indicated by the
change of the X&,-X4„ from 4.0 eV for Slater's exchange
to 3.34 eV for Kohn and Sham's exchange, and the
L3,—Ls, from 5.01 eV for Slater's exchange to 4.38 eV
for Kphn and Sham's exchange.

III. RESULTS

A. Energy Bands

The SCOPW model contains no adjustable parame-
ters. However, one must supply the lattice constant.
In these calculations, the lattice constant used was
5.431 A determined by Kiendi2' at 23'C. Self-consistent

'2 H. Kiendl. Z. Natnrforsch. 22a, 79 (1967).

calculations were also made with lattice constants pf
5.42 and 5.442 A to calculate the effects of pressure.

The bands obtained using the six-point sampling
technique and Slater's exchange are shown jn Fig. 3
The eigenvalues are given in column 3 of Table I.These
calculations were made using 259 OPW's at the p point
and a corn.parable number of OPW's at the other hig
symmetry points.

The valence-band structure is very similar tp that of
other group IV and group III—V compounds. The
theoretical SCOPW indirect gaP (g„m—i'», ,) is y lO
eV, and is 0.82 of the distance from the center tp the
edge of the zone. MacFarlane et al." concluded from
their work on the fine structure in the absorption-edge
spectrum of Si that the minimum occurred at 0.81 pf
the distance from the center to the edge pf the zpne
Experimentally, the indirect gap is 1.13 eV, whjch is
obtained by correcting the gap of 1.115 measured by
Frova and Handler" by one-third the spjn-prbit
splitting. The indirect gap is the only key transition
whose energy and symmetry are known beypnd
question.

'G. G. MacFarlane, T. P. McLeon, J. K. Quarrington andV. Roberts, Phys. Rev. Ill, 4245 ($958)."A. Frova and P. Handler, Phys. Rev. Letters 14 178 (1965)
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TABLE III. Comparison of theoretical transition energies. Si transition energies derived from diferent calculations are given in eV.
The column headed "present work" gives our unadjusted SCOPW results for Slater's exchange using 259 OPW's. The numbers in
parentheses give assumed experimental results which were used in various adjustment procedures.

Transition

—F 6„
Xy —I'26
L,—F26
I 16 ~26'
Lie—L3"
~ic—~6e
r, .—r„„
X1a X4y
&3c—&2v

L3,—L3,

Present
work

1.10
1.28
1.60
2.79
2.78
3.33
2.75
4.00
4.15
5.01

Herman~

1.13(1 13)
1.3
2.25
2.7
3.4(3.4)
3.4
4.2
4.1
4.3
4.95

Kaneb

1.15(1.15)

3.2
2.9

3.3
4.1

5.3

Cohen-
Bergstresser'

0.8(1.1)

1.9
3.4(3.4)
3.1(3.2)

3.8
4.0(4.1)

5.2 (5.3)

Dresselhaus and
Dresselhausd

1.07(1.1)
1.19
1.77
2.43
3.20(3.2W0. 1)

3.74(3.75+0.2)
4.44
4.43
5.30

a References 6 and 8.
& Reference 3.

b Reference 2.
& Reference S.

Table III gives a comparison of the energy bands ob-
tained from the SCOPW model and those obtained from
Herman's' ' empirically reined OPW calculation, from
Cohen-Bergstresser's' and Kane's' pseudopotential
calculations, and from Dresselhaus and Dresselhaus's
effective-mass Hamiltonian calculation. ' The assumed
experimental data which were used in obtaining the
various solutions are shown in parentheses in Table III.

Herman calculated the band structure of Si using his
empirically adjusted OPW model. ' In this model,
Herman uses the OPW formulation with a potential
which is represented by a spatial superposition of over-

lapping free-atomic potentials. His OPW calculation is
not self-consistent. He then uses a three-parameter
adjustment scheme to bring the calculated values of
three key interband transition energies into agreement
with their experimental counterparts (or with his

estimate of their experimental counterparts based on

his own analysis of experimental reflectivity spectra).
Herman' indicated that in a three-parameter adjust-
ment scheme he adjusted to h~, —F»,=1.13 eV, L~,

1.3.„3.4 eV (his —best e——stimate at that time), and

F...—F2,.,=4.05 eV (the value quoted by Cardona,
Shaklee, and Pollak» on the basis of their electro-

reflectivity measurements). Unfortunately, Herman did

not publish in Ref. 6 any detailed solutions for Si.
However, Herman did publish detailed solutions for
Si based upon a two-parameter adjustment scheme

where he adjusted to 6&, —F»,——1.13 and L&,—L3 „
=3.0, 3.2, and 3.4 eV. The solutions Herman obtained

using L&,—L3,——3.4 eV are quoted in Table III, since

this value of LJ,—L3., agrees with his best estimate a
year later.

Kane' computed the band structure of Si using the
Heine-Abarenkov —pseudopotential method. He then

adjusted the theoretical Fourier coefficients of the po-
tential on the order of 30% to give agreement with

measured cyclotron masses and the indirect gap. Cohen

and Bergstresser' used the empirical pseudopotential

» M. Cardona, K. L. Shaklee, and F. H. Pollak, Phys. Rev.
154, 696 (1967).

B. Hydrostatic Pressure

To calculate the eRects of hydrostatic pressure on the
band energies, we iterated to self-consistency using
lattice constants of 5.42 and 5.442 A, in addition to the
equilibrium lattice constant of 5.431 A. The results are
presented in Table IV. The two sets of energy differences
give one a feeling for the accuracy involved in taking
small differences of quantities from different sets of
iterations. The deformation energies are defined as

8U/V (33a/a)

"J.C. Phillips, Solid State Phys. 18, 55 (1966).

method to calculate the band structure of Si. Dressel-
haus and Dresselhaus' developed an effective-mass
Harniltonian in terms of certain Fourier expansion
coefficients or band parameters for Si and the resulting
energy bands were used to calculate the frequency
dependence of the complex dielectric constant. The
band parameters were based on 12 optical transitions
and cyclotron resonance measurements.

It is clear from Table III that there are wide differ-
ences in the theoretical band structures calculated by
various authors. Herman and Phillips" single out two
groups of energy transitions. The "insensitive" tran-
sitions do not vary much when the potential is per-
turbed. They include the L3,—L3 „the X~,—X4„and
the F~5,—F»., We agree closely with Herman on all
these energies. We both disagree with Cohen and Berg-
stresser on the F»,—F», transition energy. This is
because Cohen and Bergstresser erroneously attributed
the 3.4-eV e& peak to this transition. The most "sensi-
tive" transitions, according to Herman and Phillips, are
the F2,—F», and the L~,—F», . We differ from
Herman by 1.4 eV on the first and by 0.6 eV in the
second. Our F2, is very low compared with the theo-
retical results of others. Our Lj. transition is also low,
but it compares better with the others than it does with
Herman.
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Level Energy (5.431 A) ~5.42 —&5.431 +5.431 +5.442

~lsc
~2c
~25 vr„
X1,
X4,
XI„
Lec
LIc
J3,
W2,
W2c

~5~
&ac

7.022
6.978
4.228—7.515
5.512
1.511—3.519
8.059
5.831
3.051
9.059
0.663
5.781
2.452
7.109
2.955

0.099
0,207
0.077
0.036
0.054
0.057
0.058
0.077
0.103
0.066
0.067
0.047
0.070
0.061
0.086
0.065

0.071
0.135
0.067
0.028
0.059
0.051
0.049
0.068
0.091
0.061
0.078
0.044
0.064
0.056
0.078
0.060

14.0
28.2
11.8
5.3
9.3
8.9
8.8

11.9
16.0
10.4
11.9
7.5

11.0
9.6

13.5
10.3

TABLE IV. Self-consistent energy eigenvalues for Si based on
six-point zone sampling, Slater's exchange, 259 OPW's, and a
lattice constant of 5.431 A. are given in column 2. The changes in
the eigenvalues when self-consistency was obtained at 5.42 & and
5.442 A. are given in columns 3 and 4. The resulting average de-
formation energies appear in column 5. Energies are in eV.
Deformation energies are in eV per unit dilation.

Transition

Theory
Present GoroB and

work Kleinman' Herman Experiment

LIc—~25 ~

Xlc I 25'ea„—r„.,~„—r„„
I'15c—~25 v

~Ic—~su
X1,—X4„
4.3-eV peak
&3c—&2m

~2 —~25

3.4-eV peak
J-3.-L3"

—4.1~0.2
2.5+1.3

+1.6+0.4
0.8%0.3—2.1&1.5—1.4&0.1

+0.9+0.4

-3.2+0.3—16.3~5.1—5.5&0.6

—1.5%0.3

—4.1
+0.3

—1.35

—2.3

—8.6—4.5

—4.1
+1.4
+1.4 +1.5' +3.71~
+0.7—0.6—13—1.4 —2.8+0.5e

3 0 1—11.9—5.2
5 0~0 5e

Reference 27.
~ Reference 8.
e Reference 28.
d Reference 29.
e References 30-33.

TABLE V. Comparison of theoretical and experimental net
deformation energy differences for Si in eV per unit dilation. The
~ indicates the di6erence from the average to the 5.42- and
5.442-A results.

and are given in units of eV per unit dilation. u is the
lattice constant.

Table V gives the physically more interesting de-
formation energy diGerences for Si. The ~ gives the
distance from the average to the separate column
results of Table IV and is only a rough measure of the
theoretical uncertainty. The theoretical values of Goroff
and Kleinman'7 and Herman' are also presented to-
gether with the experimental results of Paul and
Brooks ' Balslev" Zallen, "and Gehardt. ""

%ith a very few exceptions, our results agree within
our limits of uncertainty with Herman's' results. A
direct comparison with experiment can only be made on
the 6». —I'25 „deformation energy for the indirect-
band gap. Here we support Herman in our agreement
with Paul and Brook's" value of 1.5 eV/unit dilation
rather than with Balslev's" later value of 3.71 eV/unit
dilation. The other experimental results give shifts of
reQectivity peaks which involve contributions from
large sections of the reduced zone.

C. Spin-Orbit Splitting

The spin-orbit splitting at I' of the threefold degen-
erate F25, was found from erst-order perturbation
theory on the self-consistent F» valence wave functions
to be 0.056 eV. Experimentally, the spin-orbit splitting
has not been determined from an analysis of any doublet
structure connected with the transition I'2, —F25,. A
precise value of the splitting 0.0441~0.004 eV has been

27 I. Goroft and L. Kleinman, Phys. Rev. 132, 1080 (1963).
ms W. Paul and H. Brooks, Progr. Semicond. '7, 135 (1963).I I. Balslev, Phys. Rev. 143, 636 (1966).' R. Zallen, Gordon McKay Laboratory of Applied Science,

Harvard University, report No. HP-12 (unpublished).
s' U. Gerhardt, Phys. Letters 15, 401 (1965).
32 U. Gerhardt, Phys. Status Solidi 11, 801 (1965).
ss U. Gerhardt, Phys. Letters 9, 117 (1964).

deduced by Zwerdling et a3.,'4 from an analysis of the
infrared spectrum of electronic transitions from the
valence bands to acceptor impurity levels.

D. Effective Masses

Effective masses have been calculated for the top
valence band at the F point and for the bottom of the
conduction band at its minimum which occurs at 0.82
of the way along the 6 line between I' and X. For the
I'ss „valence band (where spin-orbit splitting has been
neglected) mr*=0.8 in the (1,1,1) direction and 0.3 in
the (1,0,0) direction. Hensel, Hasegawa, and Naka-
yama" have measured the effective masses at the mini-
mum in the conduction band. They obtained m*= 0.1905
and m~~* ——0.9163. The SCOPW eGective mass at the
minimum in the conduction band is m~~* ——1.0 in the
(1,0,0) direction.

E. Density of States

In Figs. 4(a) and 4(b), the SCOPW density of states
for the valence and conduction bands are given. The
zero of energy for both the valence- and conduction-
band density of states was taken at the top of the F25,
valence band. The location of the high-symmetry point
bands is shown. It should be emphasized that these are
merely the locations of high-symmetry point bands and
do not imply that the given structure is due to the
particular band.

In the valence-band density of states, the first broad
peak below the top of the valence band is due to states
near L3, Z2, 65, X4, Z~, h2. , and 8"2.The next peak down

3 S. Zwerdling, K. J. Sutton, S. Lox, and L. M. Roth, Phys.
Rev. Letters 4, 173 (1960)."J.C. Hensel, H. Hasegawa, and M. Nakayama, Phys. Rev.
138, A225 (1965).
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FIG. 4. (a) Electronic density of states for the valence bands of Si. (b) Electronic density of states for the conduction bands of Si.

originates in the Rat area around L1.The lowest peak is
due to the s-like valence band. In the conduction-band

density of states, the rapid rise to the first peak is due

to the Qat areas around L1 and X1. The second peak
results primarily from the Oat area around the L3 .

Si IMAGINARY PART OF DIELECTRIC CONSTANT

IO—

Xi-Xg

F. imaginary Part of Dielectric Constant

The imaginary part of the dielectric constant (e~)
calculated from the bands obtained using the six-point
zone sampling and Slater's exchange are shown in Fig.
5, together with the e~ calculated from experimental
data by Phillipp and Ehrenreich. " Table VI gives a
summary of the theoretical (present work and Brust's')
and experimental e2 peak positions.

We 6nd that the interband transitions which are
primarily responsible for the main reQectivity peak at
4.5 eV are from the outer part of the zone in the U-E
region. This peak, which is commonly called X1,—X4„,
carne from a relatively large volume in the outer part
of the zone. The broad weaker peak at about 5.3 eV is
due to transitions closely related to the L3,—L3,

j Zs Z2
TABLE VI. Comparison of theoretical and experi-

mental peak positions for Si.

Peak
Theoretical eg Experimental

Present work 8 rust~ Refiectivity

Li

E2 XJ,—X4,(U-E) regions
4.1
L3,—L3, region
5.0

+15c ~25'o
3.5
LJ,—L3,
3.15
Xlc X4e
4.0
L3 —L3,
5.2

3 4b

4 5c 43c

0
0

ENERGY (eV)

Fro, 5. Comparison of theoretical and experimental e2 curves
for Si. The solid line gives the SCOP% e2 curve for Slater's ex-
change. The dashed line gives the experimental results of Phillipp
and Ehrenreich.

a Reference 1.
b Reference 32; B. O. Seraphin and W. Bottka, Phys. Rev. Letters 15,

104 (1965);B. 0. Seraphin, Phys. Rev. 140, A1716 (1965).
'Reference 36; M. L. Cohen and J. C. Phillips, Phys. Rev. 139, A912

(1965).
& Reference 36.

"H. R. Phillipp and H. Ehrenreich, Phys. Rev. 129, 1550
(1963).
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transition. It can be seen from Fig. 5 that for these
two peaks our unadjusted theoretical peak positions
match the experimental peak positions within a couple
tenths of an eV. Brust and Kane have achieved similar
results for these peaks, but, of course, they adjusted
to do so.

It is clear from Fig. 5 that we have not been able to
match the 3.4 eV peak—especially in intensity. We do
have some structure at 3.4 eV which comes primarily
from transitions near the A~,—A5, transition. Phillips'~
has suggested that the difference between theory and
experiment for the 3.4-eV peak (which has been found
in all theoretical work) may be due to a strong exciton
near 3.4 eV. Brust'" and Kane' have been able to
generate a 3.4-eV peak in their theoretical spectrum
but it is not clear that their theoretical peak is, in fact,
related to its experimental counterpart. Phillips, "'
Brust, ' "Cohen and Bergstresser, ' Cardona and Pollak4
and Kane' assign the 3.4-eV reQectivity peak so the
r», —rss. „ transition (or to closely related At, —As„
transitions). Of course, the Fts,—Fss „assignment is
nominal since such a transition would give rise to an
edge rather than a peak in the reQectivity spectrum.

From our SCOPW experience, the iterated core changes
little from the free atomic core. Consequently, the corn-
bination of the RHF core and the SCOPW valence
structure factors give our best theoretical estimate. It
It can be seen that KSG comes very close to RHF for
the high-order rejections. In other words, these treat-
ments of the exchange potential give a description of the
core which is close to the true Hartree-Fock. One also
sees that the experimental results depart from the free-
atom RHF calculation for the 222 in Si. The departure,
however, is in the opposite direction from that observed
for metals, where the first Fourier components were
lower than the RHF values, indicating a delocalization
of the outer electrons. Here, on the contrary, they are
higher, suggesting a localization of the valence electrons.

As can be seen, all of the exchange model results are
in qualitative agreement with the experimental data.
Thus, the band calculation does improve on the free-
atom values. For the 111 reAection, it appears that the
various exchange models used are not too satisfactory
for Si. For the 222 reQection, all SCOPW calculations
give excellent agreement with experiment and are im-
provements with respect to the RHF value.

G. Form Factors

Table II compares the experimental structure factors,
corrected for thermal and anomalous dispersion, with
the results of several different SCOPW calculations for
Si. The theoretical procedures differ by the method used
to approximate the exchange potential. The columns
headed RHF (relativistic Hartree Fock) are obtained
by placing relativistic Hartree-Fock free atoms in the
crystal lattice. Those headed Sl contain results obtained
using a Slater p')" approximation, while KSG refers to
the use of Kohn-Sham-Gaspar exchange. The symbol
RHF added to any of these headings means that rela-
tivistic Hartree-Fock cores have been substituted for
those obtained in the calculation. This is done because
the main interest here lies in the valence contribution to
the structure factors. From the study of gases, it is
known that RHF results match experiment very closely.

s' J. C. Phillips, Phys. Rev. Letters 10, 329 (1963).
's D. Brust, Phys. Rev. 139, A489 (1965).
~9 J. C. Phillips, Phys. Rev. 125, 1931 (1962).

IV. CONCLUSIONS

It should be emphasized that no adjustments are
made in our SCOPW model. Input data consists of the
crystal symmetry, the nuclear charge of Si, the lattice
constant, and the exchange constant. The resulting
agreement with experiment of such quantities as the
energy and deformation energy of the indirect gap, the
parallel effective mass of the conduction-band minimum,
the F25, spin-orbit splitting, and the e2 peak position
is, thus, surprising, but is also consistent with past
experience with this model. The mediocre agreement
with experiment of the form factors, and the disagree-
ment with all other theories of the I'2, energy must,
however, be noted. We conclude that for Si, as for other
tetrahedral semiconductors, the SCOPW model with
Slater's exchange seems to work remarkably well.
Apparently, for these tetrahedral crystals, Slater's
exchange simulates the correct exchange plus correlation
rather well, at least as far as energy eigenvalues are
concerned.


