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High-Field Energy Distribution, Mobility, and Diffusion of
Heavy Holes in p-Germanium
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A novel approximation scheme for hot-carrier distribution functions is introduced and employed in a
calculation of the high-Geld mobility and diffusion coefficients of heavy holes in p-Ge at 77 K. It is assumed
that the heavy-hole band has an isotropic and momentum-independent eRective mass, and that the holes
are scattered elastically by acoustic phonons and inelastically by optical phonons. Interaction with the
light-hole and split-oR bands is neglected. The principal results of the calculation are as follows: Over the
decade 1 kV/em&A'&10 kV/cm the mobility obeys the power-law relation p ~E o s. The diffusion tensor
is moderately anisotropic with Dl l &Dq, but neither coefficient departs greatly from the zero-field diffusion
constant, 250 cm'/sec, in the field range up to 35 kV/cm. The calculation method makes use of a param-
etrized model of the distribution function which characterizes the energy dependence of its angular
average by two distinct Maxwellians intersecting at the optical-phonon energy, but which makes no a
priori assumptions about the angular dependence of the distribution function. Solution for the Maxwellian
temperatures is effected by means of a special set of "anisotropy balance equations. " These equations
involve only the isotropic part of the distribution function and may be used to obtain the parameter values
of any parametrized energy distribution, of which the present model is but a special case. Following a
procedure originally outlined by Wannier, a derivation of these equations is given first for isotropic scat-
tering and a spherical, constant mass, as required for the p-Ge calculation. An alternative method is used
to derive a more general set of balance equations valid for scattering probabilities of the form P (~k—k ()
and spherical bands of arbitrary dispersion law. An error-estimate criterion is formulated. This criterion
permits evaluation of the influence on calculated transport quantities of distribution-function parametriza-
tions with one additional parameter.

inherent in their experiment. Indeed, the values they
obtained are considerably higher than what might be
reasonably inferred from the work of Erlbach and Gunn.

In view of the current paucity of experimental data,
a model calculation of the high-6. eld diffusion which does
not simply assume an Einstein relation would appear to
be justi6ed. Ours is undertal" en in this spirit and several
complications peculiar to p-Ge are accordingly avoided.
We treat the heavy-hole band as spherical parabolic and
disregard interaction with the light-hole and split-off
bands. Errors associated with neglect of the light-hole
band should not be large because of its low density of
states, while inaccuracies due to neglect of the split-off
band are anticipated only at extremely high fields; the
results should therefore be reliable over most of the field
range considered (470 V/cm(E(36 000 V/cm).
Qualitatively similar behavior might be expected in
n-Ge and n-Si, at least when the electric field is applied
in a direction of equal valley heating.

Kith the above simplifications the Inajor problem re-
mains that of finding, over the field range of interest,
the distribution function of heavy holes accelerated by
the field and scattered by optical and acoustic phonons.
There is experimental' and theoretical evidence' "that
when the lattice temperature is 77'K, at least over the
lower-field portion of the hot-carrier regime this distri-
bution function is composed of two Maxwellians inter-
secting near the optical-phonon energy. One would
think that such prior knowledge of the energy depen-

I. INTRODUCTION
' 'N this paper the high-field distribution function and
~ - transport properties of p-Ge are investigated theo-
retically with an aim toward determining the high-field
bulk diffusion tensor. ' Although some theoretical studies
of diffusion in barrier and junction regions have been
carried out, ' high-field diffusion in bulk semiconductors
is of interest in its own right. Gunn domains' and
avalanche transit time instabilities4 are influenced by it.
The possibility of diffusion-induced instabilities has been
advanced by several authors. ' Measurement of the field
dependence and anisotropy of the diffusion tensor
might also provide another experimental handle on the
form of hot-carrier distribution functions. Unfortu-
nately, the experimental picture at this time is somewhat
incomplete. An investigation of transverse noise tem-
perature in n-Ge has been carried out by Erlbach and
Gunn. ' Okamoto et al.7 employed a variation of the
Haynes-Shockley technique to measure the longitudinal
diffusion of minority holes injected into n-Ge under
high-field conditions. The possibility of considerable
overestimation of the hole diffusion coefficient appears

' A preliminary report on this work has already been given. See
G. Persky and D. J. Bartelink, Phys. Letters 28A, 749 (1969).

'R. Stratton, Phys. Rev. 126, 2002 (1962); R. Stratton and
E. I. Jones, J. Appl. Phys. 38, 4596 (1967).' J. B. Gunn, Solid State Commun. 1, 88 (1963).

'W. T. Read, Jr., Bell System Tech. J. 3'7, 401 (1958); T.
Misawa, IEEE Trans. Electron Device ED-13, 137 (1966);
ED-13, 143 (1966).

~ W. P. Dumke, Appl. Phys. Letters 10, 314 (1967);K. Blotek-
jaer and P. Weissglas, J.Appl. Phys. 39, 1645 (1968).

E. Erlbach and J. B. Gunn, Phys. Rev. Letters 8, 280 (19
'K. Okamoto, J. Nishizawa, and K. Takahashi, J. A

Phys. 36, 3716 (1965).

A. C. Baynham and E. G. S. Paige, Phys. Letters 6, 7 (1963).
62). 9 T. Kurosawa, J. Phys. Soc. Japan 21, 424 (1966).
ppl. ' H. F. Budd, J. Phys. Soc. Japan 21, 420 (1966).

"H. Budd, Phys. Rev. 158, 798 (1967).
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dence, judiciously employed in conjunction with a suit-
able approximation scheme, should facilitate a suffi-

ciently accurate calculatron of the distribution function
with more insight and far less exhaustive computations
than is inherent in those available techniques that are,
in principle, exact. ' "The well-known ways of obtain-
ing approximate solutions to the Boltzmann equation,
however, do not permit ready utilization of information
solely about the energy distribution. Angular trunca-
tions'3 ' of this equation build into the distribution
function one or another set of restrictions on its angular
form. Moment balance techniques" have invariably
been applied to the drifted Maxwellian approximation, "
in which is implicit a different, but equally severe, set
of energy-angle constraints. We have therefore found it
advantageous to employ a method that permits us to
make all a priori assumptions about the energy depen-
dence of the distribution function, while requiring no
explicit approximations in the angular dependence.

The method makes use of moment balance equations,
which we call "a,nisotropy balance equations, " that in-
corporate the kinetic content of the Boltzmann equation
and involve only the isotropic part of the distribution
function. There are several ways in which such equa-
tions can be generated from the Boltzmann equation;
a direct procedure was outlined in a lengthy article on
gaseous plasmas by Wannier, " but there has been
apparently no previous application to semiconductor
physics. Section II is therefore devoted to a derivation,
paralleling that of Wannier, for the case of isotropic
scattering of carriers in a spherical parabolic band. An
alternative derivation, valid for nonparabolic bands a,nd
more arbitrary scattering laws, and an error-analysis
technique which extends the power of the method, are
developed in the Appendices. In Sec. III a two-Max-
wellian parametrized model of the heavy-hole distribu-
tion is introduced, and the parameter values determined
by means of the balance equations. The results of our
mobility and diffusion coefficient calculations are pre-
sented in Secs. IV and V, and compared therein with
the available experimental data.

II. ANISOTROPY BALANCE EQUATIONS

Consider an unobunded homogeneous slab of semi-
conductor in which one species of carriers predominates,
and to which is applied a uniform time-independent
electric field. If the density of carriers is low enough to
allow neglect of carrier-carrier interaction, then the
motion of the carriers is governed by the steady-state
8oltzmann equation

F.~.f(p) = f(p')S(p', p)d'P' (p)f(p), —(1)

'~ H. D. Rees, Phys. Letters 26A, 416 (1968).
3P A Wolff, Phys. Rev. 95, 1415 (1954).

i4 G. A. Bara8, Phys. Rev. 133, A26 (1964).
i~ R. Stratton, Proc. Roy. Soc. (London) A242, 355 (1957).

f(p) =Q rii(e)Fi(cos8),
L=o

(2)

where 8 is the angle that p makes with the field. When
(2) is substituted into (1), the entire equation may be
expanded in Legendre polynomials. Upon separately
nulling the coeKcient of each polynomial, there then
results the well-known inGnite Boltzmann hierarchy of
coupled differential equations. "For isotropic scattering
only ns(e), the isotropic part of the distribution func-
ion, contributes to the integral on the right-hand side
of (1), and these coupled equations take the form

',F(d/d -e) (enr) = (-', m) 'i'e'~'See,

FPs (d/de) (e"'es)+e'i'(dns/de) j= —(-'m) 'i'evni,

(1+1) d i d
F — —(e'+&'rsi+&)+ e'+' (el &'r—i$ i) ~—

(2l+3) de 21—1 de

(3)

= —(-', ns) '"e&+&'vni.

In the first member of (3), S is a scattering operator
defined by

Seo(e) = rio(e')S(p', p)d'p' —vn, o(e) .

To generate the required set of anisotropy balance
equations the following approach'7 is most direct. Each
equation in (3) has been written such that its highest-
order term appears only in a total derivative with re-
spect to energy. Hence an energy integration from zero

"P.P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).
» G. H. Wannier, Bell System Tech. J. 32, 170 (1953), p. 218."E. M. Conwell, High Field Transport in Semiconductors

(Academic Press Inc. , New York, 1967), p. 7.
'9 Reference 17, p. 197.

where F is the field force qE, p is the crystal momentum,

f(p) is the distribution function of the carriers in mo-
mentum space, S(p',p) is the probability per unit
time of a carrier being scattered from p' to p, and
v(p) = J'S(p,p')dsP' is the collision frequency.

We are interested in the distribution function for
heavy holes in a spherical parabolic band characterized
by an effective mass m, and for which the scattering is
by nonpolar optical phonons and by acoustic phonons at
temperatures high enough for equipartition" to apply.
Under these conditions (a) the collison frequency is a
function solely of the energy e= p'/2m, (b) the scat-
tering is isotropic, and (c) the solution to (1) has rota-
tional symmetry about the axis in p-space parallel to
the Geld, and hence may be expanded in a series of
Legendre polynomials with coeScients dependent on
the energy alone, i.e.,
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the remainder of the distribution function in the form
of indefinite energy integrals of np and Snp. In demand-
ing that «satisfy the lth member of (10), one guaran-
tees that the anisotropic components n~ ~ and n~ of this
distribution function satisfy the lth moment balance
relation in (6); the angular dependence of the distribu-
tion function is thereby automatically adjusted. The
isotropic part of the exact distribution function must
satisfy all members of the infinite set (10).

A generalization of these equations to nonparabolic
bands and anisotropic scattering is given in Appendix B.

To use the anisotropy balance equations in an ap-
proximation scheme one chooses, on physical grounds or
on the basis of prior knowledge, a suitably parametrized
form for the energy distribution. The parameter values
are then determined by simultaneous solution of as
many anisotropy balance equations as there are param-
eters. Starting with (10a), the equations should be
selected sequentially to satisfy the lowest-order moment
relations first and thereby ensure a progressive resolution
of the angular details of the distribution function. A two-
parameter distribution function fitted to (10a) and
(10b) satisfies the important momentum and power
balance relations and is therefore capable of yielding
reasonable accuracy in the calculation of transport
quantities which depend only on these few moments of
f(p)

The final form (linear, transcendental, piecewise, etc.)
of the anisotropy balance equations will depend upon
the particular way in which the energy distribution is
parametrized. Therefore, the existence and uniqueness
of solutions cannot be proven in general, although these
properties can be established in certain cases—linear
parametrizations, for example. Assuming the existence
of unique solutions for a chosen parametrized distribu-
tion, it is also desirable to have a measure of the con-
Gdence with which transport quantities can be predicted
from it. An error-analysis technique that permits one to
estimate the change in calculated transport quantities
that would be brought about by the introduction of an
additional parameter into an nz-parameter energy distri-
bution is developed in Appendix C.

III. TWO-TEMPERATURE ENERGY
DISTRIBUTION

It has been observed experimentallys that at a lattice
temperature of 77' and an applied field of 1000 V/cm,
the energy distribution of the heavy holes in p-Ge corre-
sponds very closely to two Maxwellians intersecting
near the optical-phonon energy ep. The Maxwellian
temperature of the holes above ep was found to be lower
than that of those below. Detailed calculations' "
carried out subsequent to this experiment indicate that,
at least for fields in the lower portion of the hot-carrier
regime (E(2000 V/cm), scattering of the holes by the
optical and acoustic phonons can indeed give rise to an
energy distribution of this form. On the other hand, in

~(~) = (2/2/ ) '"U1/1o) (~—«)'"+(1/~')""j (13)

(2/2/2) '/'
522p(e) = — L(e+ eo) «(e+ ep)

lp

(~ «—) ' "«—(')3 (14)

In accordance with (8), an energy integration of (13)
yields g.

&(~)= 8(2/2/2)'"5(1/1o) (~—~o) "'+(1/4) ~"q (15)

In (13)—(15), i, is the constant mean free path for elastic
acoustic scattering and lp is the high-energy limiting
value of the mean free path for optical-phonon scatter-
ing. The various powers of (~ —6p)'/'are replaced by
zero for e(e//. Upon inserting (12)—(15) into (10a) and
(10b), and making appropriate changes of variables,
there results the following pair of coupled transcendental
equations for T and Tp'.

(gqo) 2 (py gO) /2~ e/kr//dq+—~ &/2g (~o—~) I&&ad~

(g+ qo) 1/2t g3/2+ p(g+ go) 2/2 j
&&pe "/" //(c+2eo)'/' e'/'5e '/ "r—//de=0, (16)

' Reference 18, Sec. IV. 3.

the extreme high-6eld limit the same scattering mecha-
nisms are known to lead to the saturated drift velocity
regime in which the distribution function becomes a
nearly isotropic single Maxwellian. "Therefore, a "two-
temperature model" of the distribution function, in
which the energy dependence is characterized u priori
by two Maxwellians intersecting near 6p, ought to pro-
vide an accurate representation in both limiting ranges
of field strengths; for intermediate fields it remains at
least a reasonable interpolation. In this paper we adopt
such a model at the outset, for convenience placing the
intersection point exactly at the optical-phonon energy.
We suppose that np is given by

no(e) =ave ""/'e-'" '" . (~(eo)
P ~

—e/kTp (e) e//),

where S is the normalization, k is the Boltzmann
constant, and T and Tp are, respectively, the hole
temperatures below and above the optical-phonon
threshold.

The values of T and Tp are determined with the
anisotropy balance equations (10a) and (10b). For
optical-phonon and elastic acoustic scattering, evalua-
tion of the collision integrals defining s and Snp is
straightforward. "At 77'K, in the presence of electric
fields suAiciently high to produce a large departure of
the distribution function from thermal equilibrium, it
is permissible to neglect the absorption of optical pho-
nons and we obtain
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Here Q and p are dimensionless quantities defined by

Q= P/p/pp,

p= lp/l. . (19)

They are, respectively, the ratio of the energy gained
by a hole in traversing an optical mean free path along
the field to the optical-phonon energy, and the ratio of
the optical to acoustic path length.

ENERGY (e V)

FxG. 1. Energy distributions, .at 8=800 and 1370 V/cm. The
solid curves are the two-temperature-model results. The dashed
curves are the energy distributions calculated by Budd (Refs. 11
and 12).

Equations (16) and (17) must be solved numerically.
The most economical computational procedure is to
eliminate the field term between them and treat Tp as
the independent variable. In this way one need solve
only a single transcendental equation for T . For each
pair of temperature values the corresponding Geld is
then obtained from either of the anisotropy balance
equations. The values of the various physical param-
eters we employed in our calculations for a lattice tem-
perature of 77'K are &0=0.037 eV, ms= 0.35~0, ~0

= 783 A, I„=8300 A; the path lengths are based on the
low-Geld mobilitv studies of Brown and Bray." Al-
though the effective mass does not appear explicitly in
(16) and (17), it is necessary in evaluating lp and I, and
in calculating transport quantities.

In Fig. 1, heavy-hole energy distributions at 800 and
1350)V/cm computed with the two-temperature model
are compared with "exact" energy distributions deter-
mined by Budd" "through the more elaborate integral
equation method. In the "exact" distributions, the
intersection of the Maxwellians is blurred and does not
occur precisely at the optical-phonon threshold. Never-
theless, agreement of the two-temperature model re-
sults with these distributions is quite good, particularly
at high energies. The small discrepancy in T can be
attributed to our placement of an abrupt intersection
at eo and neglect of optical-phonon absorption, which
Budd did take into account.

Figure 2 displays the Geld dependence of T, Tp, and
average temperature T, $= (2/3k) (p)] ove—r a field

range 0.47(E(36 kV/cm. At lower-field strengths,
Kurosawa's' Monte Carlo calculations indicate that the
two-temperature model is not likely to be a good repre-
sentation. In the lower-held portion of the figure, car-
riers above the optical-phonon threshold have a lower
Maxwellian temperature than those below. This can be
attributed to the cooling effect of optical-phonon emis-
sion, and is in agreement with previous Gndings. ' "For
field strengths in this range, the maximum energy a hole
can gain between collisions is much less than eo. There-
fore, only those holes which escape emission of an optical
phonon can arrive at high energies. Because the acoustic
scattering is relatively weak. (I,) 10lp here) such high-

energy holes tend to stream along the field direction,
their distribution function taking the form of a narrow
spike. Following Shockley's" derivation of the field de-

pendence of the ionization rate for streaming carriers,
one may conclude that the high-energy holes should
have a Maxwellian energy distribution with an average
energy proportional to the field. Such a field dependence
is displayed by Tp in Fig. 2, which rises nearly linearly
with field up to E 4 kV/cm.

The low-energy temperature T attains a broad
maximum of value pp/Ip in this field range and then
begins a, gradual descent, intersecting Te at 5 kV/cm for

2' D. M. Brown and R. Bray, Phys. Rev. )2'7, 1593 (1962)."W. Shockley, Solid State Electron. 2, 35 (1961).



HEA VY HOLES IN P —Ge 1619

20

l6
Ox
A l4-

FIG. 2. I ow- and high-energy tem-
peratures (T and Ts) versus field.
T,„is the average temperature of the
distribution.

4.
O
cnlo-

8-
IJj
0 6-
IK
LJJ
6
X

0 0.2 0.4

lK
LU

Q 2
0
0

1 1

0.6
1

0.8
1

l.o
l.o

kT~~ i
p

2.0 3.0 4.0 X lO

ELECTRIC FIELD (V/Cm)

which Q=1. A value of Q equal to 1 )see Eq. (18)7
denotes that the average energy a hole gains between
collisions is about equal to es. For fields such that Q ex-
ceeds this critical value, it may therefore be anticipated
that the distribution function will undergo a qualitative
change. When Q) 1, holes can remain at high energies
after multiple collisions and therefore become more iso-
tropically distributed in momentum space. At the same
time, deceleration by the field of holes with negative p,
begins to overcome scattering as the predominant
mechanism through which holes arrive at energies below
the optical-phonon threshold. As expected, Tp still rises
with applied field, but a surprising result is that T
drops markedly below the value es/k. A possible ex-
planation for the low T, or, equivalently, a rise in
density near the origin, is the following. For Q))1,
holes starting from relatively large negative p, can reach
the vicinity of the origin within one scattering time.
A representative shell of such holes is displaced parallel
to the Geld during this interval with only a reduction in
amplitude. Vpon arrival at the sphere of radius ps
=(2rne&)'I', inside of which there is relatively little
scattering, the large radius shell will first make contact
on the p, axis. The on-axis holes therefore continue into

the sphere unimpeded, while the density of oA-axis holes
still outside the sphere is diminished further by scatter-
ing. The resulting distribution which crosses the plane
p, =0 (for e(ee) will then be peaked at the origin. This
effect is enhanced because the scattered off-axis holes
themselves reenter the distribution in the vicinity of
the origin. The actual form of no at low energies is
probably quite non-Maxwellian and much smoother at
e= eo than the two-temperature model, which makes a
Maxwellian best fit, would suggest. IIowever, errors in-
troduced by the inability of the model to exactly repre-
sent the low-energy distribution at very high fields
should be of small consequence since relatively few
carriers will then be found below eo. This is made evident
by the near equality of Tp and T, for E)5 kV/cm.
Proceeding toward the right-hand side of the figure, Tp
and T, approach the quadratic dependence on Geld
characteristic of the saturated drift velocity region. '0

IV. MOBILITY

In a manner analogous to the development of the
anisotropy balance equations one can derive expressions
dependent only on the energy distribution for all trans-
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FIG. 3. Theoretical and experimental high-field mobility of p-Ge at 77'K. The solid curve is the two-temperature-model calculation.
The dashed curves are experimental results: (a) Ryder (Ref. 23), (b) Mendelson and Bray (Ref. 24), and (c) Zucker (Ref. 25).

port quantities. In the case of the drift velocity this is
particularly straightforward. We multiply the first
member of (3) by e an.d perform an energy integration
from zero to infinity to obtain

(20)

m. ge'~'de ape'~'de, (22)

in which n=de/dp is the group velocity. The drift
velocity is given by

the factor of 3 arising from the I.egendre polynomial

A partial integration of the left hand side of (2()) yields normalization. Therefore,

sF nnre'f'de= —(-'m)'" e+'Snsde,
0 0

(21) rg= —Pfn)'l' ~'~'Snod~ nse'f'de (23).



HEA VY HOLES IN p —Ge 1621

12x 106
SATURATION VELOCITY

o 9

8

7

6

LaJ

LOW FIELD ASYMPTOTE

0
I

Q.2
I

0.4
1

0.6
I

0.8 I.O

1.0 2.0 3.0 4. 0x )0

ELECTRIC FIELO (V/Cm}

FIG. 4. Velocity-field relation calculated with the two-temperature model (solid curve). The dashed curves are estimated values for
three-parameter energy distributions: {a) two-temperature model with variable intersection point and (b) two-temperature energy
distribution in displaced coordinate system in momentum space.

Equation (23) is essentially a power balance relation,
the numerator on the right-hand side representing the
power loss to the scattering system; the presence of this
term in (10b) should be noted. The results of computa-
tions with this formula, wherein no is represented by the
two-temperature model, are given in Figs. 3 and 4.

In Fig. 3 the two-temperature theoretical mobility
is compared with experimental data. " "The theoretical
curve is norma, lized to a zero-6eM heavy-hole mobility
of 3.82&& 10' cm'/V sec at 77'K, based on the results of
Brown and Bray" as were the coupling constants used
in determining the distribution function. Thus there are
no adjustable parameters. Agreement with the findings
of Mendelson and Bray'4 and Zucker" is perhaps sur-
prisingly close in view of the fact that the experimental
results (conductivity measurements) include the effects
of the light holes. The theoretical curve has a slight
curvature below 1 kV/cm. Between 1 and 10 kV/cm it

23 E. J. Ryder, Phys. Rev. 90, 766 (1953).
24K. S. Mendelson and R. Bray, Proc. Phys. Soc. {London)

B'70, 899 (1957)."J.Zucker, Phys. Chem. Solids 12, 350 (1960).

is linear with p~E ", although at somewhat higher
fields p tends toward an 8 ' dependence. The decade of
8 "dependence may well be compared with the 8 "
dependence in this field range fitted by Mendelson and
Bray, and by Zucker, to their measurements. This
initially appeared explicable in terms of emission of
acoustic phonons into unpopulated states" (zero-point
lattice), but the predominant interaction with the
optical phonons greatly weakens such an explanation.
It is interesting that an equivalent power law arises
from the present calculation in which the energy loss
is taken to be due to optical-phonon emission and
acoustic scattering is assumed to be elastic with equi-
partition applying.

The heavy-hole velocity-held curve calculated with
the two-temperature model for fields up to 37 kV/cm is
given in Fig. 4. A fairly pronounced knee in the vicinity
of 2 kV/'cm and eventual velocity saturation are evident.
Also displayed in Fig. 4 are error limits predicted with
the error theory of Appendix C. This theory permits an

r~ B. V. Paranjape, Proc. Phys. Soc. (London) BTO, 628 (1957).
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ibid. (to be published).

APPENDIX A' INTERPRETATION OF
{6b) FOR 1=1, 2

For l=1, Eq. (6b) takes the form

CvSiA

(A1)

h tilized the orthogonality and normaliza-where we ave u i ize
of the Legendre polynomials. Equ

h fildf d(A2) expresses the equality between t e e or
sity and time rate of momentum e yensit loss to the scat-
tering system.

When /=2, Eq. (6b) becomes

pntdp =-,'(-', m)' ' e'f've2de (A3)

or

Letting ( ) denote expectatton va u,ue A1 becomes

(A2)
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0

Introducing the orthogonality relations yields

F(v,f)= ~~m((3v, '—v')vf).

(A4)

(AS)
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(F Vo+ot)G(p) sin8d8=—2h(p) AO. (88)

Then (86) reduces to

The left-hand side is the power input density from the and define a new function h(p) by
field. The right-hand side (the presence of an ns com-
ponent) shows that anisotropy must result from this
power input.

The usual power balance relation that can easily be
derived directly from the Boltzmann equation (1) is

P&'f) = —&e(8f/8l)- ), (A6)

where (8f/Bt)„i is the collision derivative. Equation
(AS) is not identical to this relation. Together, (AS)
and (A6) imply that

&(»*'—&')rf) = —2&&'(8f/8/)-~)

when the scattering is isotropic and the carrier heating
is due to an applied Geld.

APPENDIX B: ANISOTROPY BALANCE
EQUATIONS FOR NONPARABOLIC

BANDS AND ANISOTROPIC
SCATTERING

The Boltzmann equation (1) can be written in the
form

[(F V —o)f=O, (81)
where

p' no(p) h(P)dP =0 (89)

where no(p) is the isotropic component of the distribu-
tion function. The exact ne(p) must satisfy (89) for all

h(p) defined by (88), wherein G(p) satisfies (87).
Eqiiation (89) will yield a distinct anisotropy balance
equation for each independent function G that satisfies
(87) and results in a nonvanishing /z.

Explicit solutions for G are obtainable if the scattering
operator a., and hence Ot, are diagonal in the I.egendre
polynomial representation. It is a well-known result"
that the diagonality requirement is met when the
band has rotational symmetry about the field direc-
tion and the scattering probability has the form
s(p', p) =s(l p' —p I)

This property is most easily exploited if we make the
expansion

'f= f(p')~(p—',p)d'P' —(p)f(p) . G(p) =Q g„(p)P„(cos8) .
v=0

(810)

It then follows that
We premultiply (81) by an arbitrary function G(p) and
integrate over momentum space. Clearly,

o.tG =Q s„tg„(P)P„(cos8),
v=0

(811)

G(F.V~ —o)fd'P =0. (83)
and (87) and (88) can be expressed in component form
as

An adjoint scattering operator Ot may be defined such
that

G(p')~(p, p')d'p' —(p)G(p) (84)

( l+1 d l d
(p'+'go+i)+ P"+'—(P' 'gi —i) l

(2l+3 dp 2l—1 dp j
+p' s+( g(

t——0, l) 1 (812)
It follows that

sP(dldP)(P'gi)+P'»tgo =P'h(P). (813)

Gofd'p = fotGd'p. .(BS)

f(F Vs+or)Gd'P=O. (86)

We now impose on G the condition

By performing a partial integration of the field term and
invoking (BS), (83) can be recast as

To utilize (812) and (813), one first finds a G satisfying
the coupled set of equations (812), and then inserts the
resulting gi and ge into (813) to produce an h. An anisot-
ropy balance equation is obtained upon substitution of
h into (89).Functions G which satisfy (812) exactly can
be found by terminating (810) after a finite number of
terms. Successive functions G generate consecutive
members of the set of anisotropy balance equations. Ke
shall derive the first few.

Let G(p) =go(p). Then for l=1, (812) reduces to

dg eldP= 0&'
P~(cos8)(F Vo+o' )G(p) sin8d8=0, l)1 (8/) zzii. Dsvison, Nezzzrol Trolsporz Theory (Oxford University

0 Press, New York, 1957), Sec. 17.1.
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h(P) = (so'1) .

e we take= const. I"or convenience

,813) h i ldthis constant to e un'
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, and h. The resultan an'find gy, g0, and
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0 p
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it e uation and is equiv-Kquation (817) is the continuity eq
alent to (6a).

We now let G(p)=gp p gi
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(818)

I
"P' " d 'dp —0. (826)(sp P P )p

II

' ERROR-ESTIMATE THEORYAPPENDIX C:
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of th hi h-fi ld lectronthe authors in a calculation o t e

mobility in InSb."
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D js givene variatj. pn of6rst order we have
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which represents the infinitesmal variation of A with
D +1. Thus we may take

AA= (b—A/BD„+r)D ~r (C17)

as a first-order estimate of the change that would be
introduced into the calculated value of A by adding
another parameter to the energy distribution and satis-
fying the expanded set of anisotropy balance equations.
It should be noted that hA is not unique, but depends
upon the particular additional parametrization chosen.
A small value of hA implies that either the transport

quantity A is not sensitive to the particular additional
parametrization (oA/oD +r -+ 0) or the anisotropy
balance equation D +1=0 is well satisfied for small
n +&. To establish the quality of the initial m-parameter
model, in principle one would have to perform the error
test with all possible m+1 parametrizations, obtaining
small AA for each. In practice, a Prt'on knowledge of
reasonable forms for the energy distribution will allow
this test to be carried out with a particular finite set. An
example, wherein A is the drift velocity, is given in
Sec. IV.
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Lifetimes of Bound Excitons in CdS

C. H. HENRY AND K. NASSAU

Bel/ Telephone I.uboratories, 3fNrruy Hill, New Jersey 07974
(Received 23 September 1969)

Weakly bound excitons in CdS have giant oscillator strengths which lead to exceedingly fast radiative
lifetimes. We have been able to measure the lifetime of the I2 line, an exciton bound to a neutral donor, and
the lifetime of the I& line, an exciton bound to a neutral acceptor. We find T12=0.5&0.1 nsec and TI,——1.03
~0.1 nsec. The measurements were made at 1.6'K. The lifetimes are measured by exciting the luminescence
with an argon laser modulated at 100 Mc/sec, and measuring the time delay of the luminescence with a
100-Mc/sec phase-sensitive detector. Previous calculations by Rashba and Guygenishvili predicted radiative
lifetimes which were an order of magnitude shorter than our measured values. They used an incorrect value
for the exciton mass. When corrected, their theory gives Tl, =0.56 nsec and 7I,=1.86 nsec, in reasonably good
agreement with our measurements. Thomas and Hop6eld measured the absorption oscillator strength of the
I2 line. Their measurements predict a radiative lifetime for the I2 line of 0.4&0.1 nsec. This is very close to
our measured value and shows that the I& line decays radiatively. We conclude that the nonradiative Auger
effect is negligible for the I2 line and either negligible or small for the II line. We also calculate the lifetime
for donor-acceptor pair recombination to be 2.2 nsec as the pair separation goes to zero. This agrees with
Colbow's experimental value of 2.5+1 nsec. Using the same method, we calculate the lifetime of the Te
isoelectronic trap to be 27 nsec, This agrees poorly with Cuthbert and Thomas's measured value of 300 nsec.

I. INTRODUCTION

'HE edge emission in CdS, at helium temperature,
consists primarily of donor-acceptor pair re-

combination in the green and the decay of excitons
bound to neutral donors and acceptors in the blue. The
decay of the bound excitons consists of sharp no-phonon
lines followed by much weaker phonon sidebands.
These transitions are shown in Fig. 1. The I2 line is the
decay of an exciton bound to a neutral donor and the
I~ line is the decay of an exciton bound to a neutral
acceptor. In this paper, we report the measurement of
the lifetimes of the I1 and I2 lines in CdS at 1.6'K.

The I& and I2 lines were analyzed by Thomas and Hop-
field' in 1962.That same year, Rashba and Gurgenishvilie
(hereafter referred to as RG) showed that in a direct
band gap semiconductor, such as CdS, the oscillator
strength for radiative decay of a weakly bound exciton

' D. G. Thomas and J.J.Hopfield, Phys. Rev. 128, 2135 (1962).
2 K. I. Rashba and G. E. Gurgenishvili, Fiz. Tverd. Tela 4, 1029

(1962) /English transl. : Soviet Phys. —Solid State 4, 739 (1962)g
(referred to as RG in this paper).

could be simply calculated in terms of the binding

energy of the bound exciton, the exciton mass, and the
oscillator strength per molecule of the free exciton.
They pointed out that excitons, weakly bound to im-

purities, have giant oscillator strengths that are many
orders of magnitude larger than the oscillator strength
per molecule of the free exciton. Using values which
they thought appropriate for bound excitons (the Is
lines) in CdS, they concluded that the oscillator
strength was roughly a factor of 4&104 greater than
the oscillator strength of the free exciton per molecule
in CdS, i.e., the oscillator strength was about 80. The
ideas of RG were qualitatively verified at the time of

publication, because they explained why impurity ab-

sorption just below the free exciton was so strong in

undoped relatively pure semiconductors such as CdS.
From the oscillator strength, one can predict both the
absorption strength and the radiative lifetime of the
bound exciton. Their value of the oscillator strength
would give a radiative lifetime of about 0.044 nsec.


