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Correlations between corresponding thermoluminescence (TL) and thermally stimulated conductivity
(TSC) glow curves are investigated in detail for a single trap depth in the presence of thermally discon-
nected traps (reservoir for trapped charge carriers) and a single type of recombination centers. As a result
of our calculations, we conclude that both types of glow curves have identical shapes if the concentration
of thermally disconnected traps is much greater than the concentration of thermally connected traps. We
find pronounced differences if this inequality is not satisfied, and conclude (a) the customary practice of
analyzing TSC data with the aid of methods developed for TL is inadequate if those methods are based
solely on the shape of the glow peak; (b) simultaneous measurements of TL and TSC data by themselves
do not provide su%cient information on all the relevant parameters entering the kinetic equations derived
from the simple basic model; and (c) from correlated TL and TSC experiments, it is possible to decide (1)
whether there is a charge carrier transport associated with the thermal release of trapped charged carriers
and their subsequent recombination, and (2) whether there is a large concentration of thermally disconnected
traps present. The validity of the customary assumptions, that the concentration of free charge carriers is
much smaller than the concentration of trapped carriers, is discussed. In addition, the Dussel-Bube theory
of TSC is completed by extending it to the case of low retrapping and small concentration of thermally
disconnected traps.

INTRODUCTION KINETIC EQUATIONS

In order to investigate the usefulness of simultaneous
TL and TSC experiments for the determination of
trapping parameters, solutions of the kinetic equations
for TL and TSC must be compared for typical combi-
nations of the model parameters.

A detailed theory of TSC was presented by Dussel
and Bube" (hereafter referred to as DB) and in I we
have reported a similar phenomenological theory of TL.
Both theories use the same kinetic equations which are
derived from a model involving a single trap depth, a
single type recombination center, a conduction band,
and additional thermally disconnected traps which act
merely as a reservoir for trapped charged carriers.
Given this model, there are two parameters entering the
kinetic equations which essentially determine the prop-
erties of a TSC or TL curve: (a) the ratio R =P/y of the

retrapping coeKcient P and the recombination coeK-
cient y; and (b) the ratio fif/M of the concentration of
thermally connected traps S and the concentration of
thermally disconnected traps M.

DB point out that four basic types of TSC curves
exist: (1)R small and 1V/M small, (2) R small and 1V/M

large, (3) R large and cV/M small, and (4) R large and
Pi /M large. All four cases apply naturally also for TL
curves. However, the DB classification of TSC curves
is incomplete. Case (2) contains two diiTerent typical
TSC shapes. That makes it necessary to extend the DB
theory for a complete investigation of TSC/TL
correlations.

S IMULTANEOUS measurements of thermally stim-
ulated conductivity (TSC) and thermoluminescence

(TL) glow curves have been reported in a number of
papers. Most of the work was done on pure or doped
ZnS, ' on some alkali halides, ' ' and on Ti02.' Such
experiments determine whether a transport of charged
carriers takes place during thermal stimulation or
whether the carriers remain localized in a luminescence
center.

We hoped that a detailed investigation of the corre-
lations between TL and TSC based on the basic simple
model (see Ref. 10, hereafter referred to as I) would

yield new methods for the analysis of experimental data;
then, relevant parameters entering the kinetics could
be determined in a self-consistent way. We will show in
the following sections that this appears to be impossible
and that simultaneous experiments on TSC and TL do
not yield sufficient information to determine the kineti-
cal mechanism of the thermally stimulated recombina-
tion process without a priori knowledge of most of the
trapping parameters.

' H. Diehl and A. Scharmann, Z. Angew. Phys. 24, 173 (1968).' R. H. Bube, Phys. Rev. 83, 393 (1951).
3I. Broser and R. Broser-Warminsky, Brit. J. Appl. Phys.

Suppl. 4, 90 (1954).
4 F. A. Kroger, Physica 22, 637 (1956).' C. J. Delbecq, P. Pringsheim, and P. H. Yuster, Z. Physik

138, 266 (1954).
P. Braunlich and A. Scharmann, Z. Physik 177, 320 (1964).
D. Dutton and R. Maurer, Phys. Rev. 90, 126 (1953).

8 K. Teegarden and R. Maurer, Z. Physik 138, 284 (1954).
'R. R. Addiss, A. K. Ghosh, and F. G. Wakim, Appl. Phys.

Letters 12, 397 (1968)."P. J.Kelly and P. Braunlich, preceding paper, Phys. Rev. B 1
1587 (1969). "G. A. Dussel and R. H. Bube, Phys. Rev. 155, 764 (1967).
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Let e, be the concentration of free charge carriers,
e the concentration of trapped carriers, 3l the concen-
tration of thermally connected traps at a depth E, and
M the concentration of thermally disconnected traps.
The kinetic equations can be written as

ri =Pn. (N —n) —nP,

ri, +ri = yn,—(n,+n+M),
(1)

(2)
In l. —4—
inn,

where I'=I'pe ~~~ . As in I, we assume I'p to be tem-
perature-independent, and e,«e and n,«n."

For reasons stated in I, we will calculate w=n/N
from the formalism given there rather than using the
DB theory of TSC directly; e, is then found from the
expression -8

30 33
U

7n, =PNw/PN (1—R)w+M+RN7. (3)

Equation (3) is readily obtained from Eqs. (1) and (2)
by considering the mentioned assumptions. The fun-
damental equation which provides the correlation be-
tween corresponding TL and TSC curves is

n, =L/y(M+Nw), (4)

which is obtained from Eq. (3), and the following for-
mula from I for the TL intensity I.:

L=PNw (M+Nw) (Nw (1 R)+NR+—MP'. (5)

The filling ratio m has values only in the region 0& zan & 1.
The basic assumptions m,&(e and ri,&(ri, used to derive
Eq. (3), were considered by DB to be valid in high-
resistivity crystals under normal experimental condi-
tions as long as the lifetime 7- of the free charge carriers
is much less than 1 sec. Having calculated TSC curves
for the cases M =0 and %&&EX,we feel that the valid-
ity of those assumptions needs to be examined more
closely. For that purpose, it is convenient to write Eq.
(3) in the following form:

n, /nr, =P((1 R) (n/n, )+R(—N/no)+ (M/n, )7 '=X,
(6)

where ro= 1/(Vno) and no is the —concentration of trapped
charge carriers at T=Tp. Given a set of parameters, the
function X(P,R,n/no, N/no, M/no) is completely deter-
mined by the methods of I for either a constant or non-
linear heating rate. Equation (6) provides us with a
criterion to test the self-consistency of the TL and TSC
theories discussed in I and in this paper. If the as-
sumption e,«e holds, the following inequality must
be satisfied:

p
—1))X (7)

It is important to point out that 7 p may be selected
within a wide range of values independently of the
choice of the other parameters in Eq. (6). This fact
enables one to calculate for a given ~p a critical tempera-
ture T, up to which the condition n,(&e is still satisfied"

"It can be shown that A&«n if n,«n. :For all cases of the pa-

FIG. 1. Corresponding TL and TSC curves when there are no
retrapping transitions and no thermally disconnected traps. The
TSC curve does not depend on the heating program and has no
maximum. The parameters are: E/k=5)&103'K, I'0 ——10" sec ',
and m0

——1. The heating program is: dT=eT'dt, +=2&&10 '
(sec 'K) '.

for a particular TSC curve obtained by the methods of
I and Eq. (4). The theory breaks down for temperatures
above T..

It is obvious from Eq. (4) that there is no difference
between the shapes of corresponding normalized TL and
TSC curves if M))E, and one can, therefore, conclude
that in this case no additional information on the kinetic
parameters can be obtained by simultaneous measure-
Inents of TSC and TL. Of interest, therefore, are cases
where this inequality is not satisfied.

TL-TSC CORRELATIONS IN CASE M=O

The complete absence of thermally disconnected traps
is relatively unlikely, as DB have pointed out. How-
ever, we believe it is legitimate to discuss this situation
here as a limiting case since there must be, in any sam-
ple, a deepest trap and associated TSC and TL glow
curves. With 3f=0, the only parameter to be varied now
is E. If E=O, we have the classical "first-order" con-
dition for which Randall and Wilkins" calculated the
TL glow curve:

L=PON expL —U F(U)7. —

We use here the notations from (I).
The concentration of free charged carriers (TSC) is

given by Eq. (3):n, =Poe ~, independent of the heating
program. In Fig. 1, the two curves are compared. The
"pathological" shape of the TSC curve is in sharp con-
trast to the TL curve. Again, one could argue that R=O
is a very unlikely situation and simply regard this result
as physically meaningless. However, even cases with
R&0 yield unusual TSC curves which may not even

rameters discussed in this paper this relation has been computed
and found to hold."J.T. Randall and M. H. F.Wilkins, Proc. Roy. Soc. (London)
A184, 366, 390 (1945).



P. 8RAUNLI CH AND P. KELLY

7
~ e ~

~4

In L —4-—
Inn

-8
20

0p 6- 7
~5t ~ ~ ~ o ~ ~ ~ ~ ~ t ~ ~ ~ ~

In L —4--
ln nz

(a)

30

, 2, 3, 4

40

I, 2, 3, 4

Fxo. 2. Corresponding normal-
ized TI. and TSC curves for differ-
ent values of the retrapping coeS,-
cient R in absence of thermally
disconnected traps and criterion
for validity of n,«n. (a) Heating
program dT=qdt; the heating rate
q is constant and was chosen as de-
scribed in (l). (b) Heating program
dT=uZ dt; u=2&&10 ' (sec 'K) '.
The parameters are: E/k=5)&10'
'K, P0=10" sec ', ma=i, and Uo
»U*. E does not aGect the shape
of the normalized glow curves.
The R values for the curves are as
follows —1:R=10 ",2: R=10 ",
3: R=10 ', 4: R=10 ' for q=0.481 'K sec ' and 5: R=0.2
for q=0.483 'K sec ', 6 R=03
for q=0.485 'K sec ' 7: R=0.4
for q=0.489 'K sec '. (c) Plot of
U, for diferent values of R as cal-
culated from Kq. (6) according to
the methods described in (I) and
the condition v0 '=10X. The pa-
rameters are 3f=0, E/k=SX10'
'K, Po ——10' sec ', and0, =2)&10 '
(sec 'K) '. For a given ro, the
critical temperature T,=F/lt V,
is defined as the temperature up to
which n,«n is valid. Above T„
the simple TSC theory which is
based on the assumption m,«n
breaks down.

-6--
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ble, however, to maintain a constant concentration e,
after a certain temperature is surpassed simply by heat-
ing with a heating program dT=+T'dt. '4 Curves with

"For physical reasons, the TSC curve must start to descend
eventually. It turns out that this occurs only at U values for
which the present theory is not valid because the assumption
n;«n breaks down.

have a maximum. A set of TL and TSC curves for two
different heating programs, (1) constant rate: dT=qdt;
and (2) quadratic rate: dT=T'dt, are shown in Fig 2. .
We have varied E in the interval 0&8.&1. We note
again the dissimilarity between TSC and TL and the
unusual shapes of the TSC curves. All TSC curves with7

a constant heating rate, exhibit a maximum; it is possi-



I I. THERMOLUM I NESCENCE AN D STI M ULATED CON D UCTI VI TY '1599

10—1

" 10—3I
0

il

10—5

10 7

10—9

16 20 '24 28 32

(c)

Fro. 2. (continued)

R&1 and quadratic heating rate have no maximum.
The unusual shapes of the TSC curves shown in Figs.
1 and 2 require a test of relation (7). Since M=O, the
parameter 70 has a simple meaning: It is the recombi-
nation lifetime" of the free charge carriers determined
at To. The lifetime ro is for a given combination of
parameters R, M, Ar, ns, P(Te) determined by 7 or the
cross section for recombination. This cross section is
independent of the trapping parameters. Lifetimes en-
countered in materials which exhibit TSC range from
0.1 sec" down to less than 1 nsec. We have calculated
X for the glow curves shown in Figs. 1 and 2. Choosing
7 p to be at least 10 X in order for the assumption
e,«e to be valid, we derived from that calculation a
critical value U, (rs), so that the solutions of Eqs. (4)
and (5) for TSC and TL are consistent with the basic
assumptions only in the region U& U, . In Fig. 2(c), U,
is plotted as a function of 7.0 for the cases M=O and
0&R&0.4 with we ——1, Pe 10"sec—', E/k =5X——10' 'K,
and n=2&(10 ' (sec 'K) '. Those are the most critical
parameter combinations, since according to Eq. (6), X
decreases with increasing R and M. The U, values for
rs 10 ' sec indicate that ——the TSC curves in Figs. 2(a)
and 2(b) with R& 10 ' and &=0 peak in the allowed
region of U values and that, therefore, they cannot be
simply disregarded as being mathematically meaning=
less. If R(10 ' and M=O, the TSC theory described
here appears to be inadequate because the assumption
e,((e may not be justified. This does not apply to the
corresponding TL theory, as can be seen from Figs. 1
and 2. All TL curves peak in the allowed region of U
values.

"The lifetime of free charge carriers is r=t/y(n, +n+ jII).
Assuming Te to be low enough so that n, (Te)&&ne, it is 7 =1/one
if the concentration 3f of thermally disconnected traps is very
small.

The characteristic features of TSC curves with &=0
are as follows: The curve starts at Uo linear in U with
a slope of about —1, passes a maximum, and reaches a
constant value at n, =Pe/yRP for quadratic heating
rates (Fig. 2(b) ).The onset of that constant part occurs
at larger values of U as R increases. If a constant heat-
ing rate is used, we note a slightly different slope of the
initial rise and a distinctly different behavior of the
decreasing part of the glow curve after the maximum.
The constant part is replaced by the slowly varying
function 1n(n, ) ~in(AU'/yE). All curves exhibit a
maximum and broaden enormously as R increases )Fig.
2(a)j. (A full discussion of the behavior of the TSC
curves is given in Ref. 16).

A set of curves, calculated from Eq. (4) by the
methods of I, with different initial filling ratios mo

=no/E is shown in Fig. 3. While the TL curve changes
from a first-order shape to a second-order shape as mo

decreases, the TSC curve changes drastically. It exhibits
no maximum for 0(R(1 if m 0 is sufficiently small and
if a quadratic heating rate is used. "According to Eq.
(6), the critical value U, for a given rs becomes smaller
as wo decreases from ma= 1 to smaller initial filling ratios,
so that the TSC curves in Fig. 3 represent valid solu-
tions of Eq. (3).

TSC-TL CORRELATIONS IN CASE M&NR

We will concern ourselves in this section with the
case M/1V& 1 only. This is done because (a) here again
w'e have a striking dissimilarity between the shapes of
the first-order TL peak and the corresponding TSC
peak, and (b) calculations of TSC curves of this type
are required to complete the DB theory.

Equations (3) and (9) of I yield TSC curves, the
characteristic features of which are shown in Fig. 4
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FIG. 3. Normalized TL and TSC
curves for di6'erent 6lling ratios gyp

in the absence of thermally dis-
connected traps. The curves were
obtained for the two diGerent heat-
ing programs (1) dT=qdt; and
(2) dT=aT'dt. They are labeled
accordingly by the subscripts q
and a. The parameters are: M =0;
2=10 '; 8/k=SX10' 'K; Uo
&)U*; Pp=10" sec '; and n
=2X10 ' (sec 'K) ', for 1V, see
caption of Fig. 2. The mp values
for the curves are as follows —1:
wp= 1 for q=0.481 'K sec ' 2:
up=0. 5 for q=0.481 'K sec ', 3:
zvp= 10 ' for q=0.514 'K sec '.

for constant and quadratic heating rates together with
corresponding TL curves. While the TL curves exhibit
typical properties of first-order curves, we obtain again
unusual shapes of the TSC curves LFig. 4(a)7. Math-
ematical expressions for e, (U) in the four regions indi-
cated in Fig. 4(a) are given in Ref. 16. The influence of
M on the shape of the TSC curves is shown in Fig. 4(b).
Note that region III narrows as M increases until re-
gions IV and II merge, for M/RA & 1, a case discussed

The inRuence of xo on the shape of the TSC curve is
found from the formulas for m and e, given in Ref. 16
and is shown in Fig. 5. As zoo decreases, the initial linear
part of 1n(e,) shifts from region I in Fig. 4(a) toward
region IV. A first-order glow peak is obtained if mo

(M/1V. If one assumes that Tp in (7) may be again as
small as 1 nsec, the region on the U axis for which the
assumption e,&(e is still justified extends to the values
U& U, =21 for the parameter combination considered
in Figs. 4 and 5. The cases discussed in the last two sec-
tions are of interest in as much as under typical first-
order conditions a distinct deviation from a typical
first-order shape" of the TSC curve is obtained. Corre-
sponding TSC and TL curves are completely different.
Further, it is found that under certain conditions, the
solutions of Eqs. (1) and (2) do not even exhibit a
maximum.

CORRELATIONS BETWEEN TSC AND TL FOR
CASES M&RN) R(l) AND M &RN, R&1

These are the two typical cases left to be discussed
within DB's classification. The solutions of Eqs. (1) and

rp NRC Report No. 11000, 1969 (unpubhshed); this report may

(2) are known from the work of DB and from I. Since
here we are not interested in cases where M))iV (perfect
correlation), we will discuss the case M)RX for E(1
and M&E only. Typical examples of TSC and TL
curves for constant and quadratic heating rates are pre-
sented in Fig. 6.

M &RN, R &1, and M& N

Under those conditions, the TL curve is the first-
order type. The assumptions of this section permit the
derivation of formulas for both curves. " The results
only are illustrated here. In Fig. 6, corresponding TSC
and TL curves are plotted for that case (TSC curves
1o. and 1q). We note the differences in the shapes of
those two curves. The TSC curve has not the Randall-
Wilkins shape despite the typical first-order conditions.
The two types of curves are identical only if w p(M/E.
The assumption e,((e is not critical in this particular
case.

M &NR, R&1

Examples of TL and TSC curves for that case and
two different heating programs are shown in Fig. 6. We
note that both types of curves have a very large half-
width and that one obtains a large section of the TSC
curve which is temperature-independent if a quadratic
heating rate is employed. Both types of curves were dis-
cussed in detail by DB or in I, respectively.

The comparison of corresponding TL and TSC curves
in Fig. 6 reveals considerable dissimilarities in their
shapes. Half-width, peak temperature, and initial rise

be obtained free of charge by writing to Dr. P. Kelly, NRC, Build-
ing M36, Ottawa, Canada.
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In L

Inn,

TL

FIG. 4. TL and TSC curves for
the erst-order case M &1M, E&1.
(a) A typical TSC and TL curve
obtained with the heating program
dT=nT'dt. (b) Corresponding TSC
and TL curves for diferent con-
centrations of thermally discon-
nected traps and two diferent
heating programs. In the limit
M —+ 0, the TSC curves have the
shape shown in Fig. 2. The param-
eters are: Ejjt =5 X10' 'K, Po
=10"sec ' 8=10 ', q=0.481 'K
sec ' and n=2&10 ' (sec 'K} '.
The E/M values for the curves
are 10', 10' 10, and 10"for curves
1, 2, 3, and 4, respectively. The
ratio S/M does not influence the
TL curves. Curves labeled by the
subscript cx are obtained with the
heating program dT=aT' and the
ones labeled by the subscript q are
with dT= q4't,
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of both TSC and TL curves depend critically on mo, and
only for mo«1 are the curves identical and of first-order
type.

DISCUSSION

The present calculation of TSC curves reveals a num-
ber of new TSC shapes. Under certain conditions there

is no maximum. '4 Corresponding TL and TSC curves
exhibit remarkable differences in shape and location of
the maximum on the temperature scale whenever the
inequality M»A" is not valid. %e found further that
under typical erst-order conditions, for which the TL
curve has the classical Randall-Wilkins shape, '3 the TSC
curve departs considerably from this shape. We con-
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FIG. 5. Normalized TL and TSC
curves for diferent filling ratios in
case M&ER and R&l. Again,
corresponding curves for the two
heating programs are compared.
LCurves are labeled by the sub-
scripts n and g (see Fig. 3).j The
curves reveal the basic shapes
which are typical for that case.
However, because of the normal-
ization, the shift of the linear
part of inn, with decreasing mp
is reversed. A shape like that
of the TSC curve 1 in Fig. 6
(modified first-order shape) is ob-
tained if F0&M/E. The param-
eters are: R/k =5 X10' 'K; Po
=10" sec ', q=0.481 'K sec ',
n 2)&=10 5 (sec 'K) ' 3l/N
=10 9, and R=10 6. The mo val-
ues for the curves are 1, 0.5, and
10 ' for curves 1, 2, and 3,
respectively.

elude from this fact, e.g. , that Grossweiner's method"
for the determination of E from 6rst-order TL glow
curves cannot be employed to TSC curves unless 3f))E.
The factor A (DB notation)" in his formula changes
from 0.726 for E= 10 "to 1.346 for 8=0.1 in the case
M=O, vvp=1, and from 0.788 for vep ——1 to 1.38 for
we ——10 ' in the case 8=10 ' and M/N=10 s. The
application of this formula to first-order kinetic TSC
can, therefore, be in error up to 50%%u&. All other shape
methods derived for TL are erroneous also, if applied to
TSC," ' unless M&)E. Moreover, there can be no

method based on the shape of the curve, the location of
the maximum, or its initial rise which does not require
specific knowledge of the parameters in Eqs. (1) and (2)
as one can see from DB, I, and the present calculations. "
Even methods which one can derive from TL-TSC cor-
relations, by utilizing the differences in the maximum
temperature or half-width of the two corresponding
curves, depend critically on the parameters. The only
method which gives a consistent value for an activation
energy is, as pointed out by DB and in I, the initial rise
method" for it requires only that top(1, which is experi-

tnL
4a

)nnc

-8,
5 15 25 35

I I I
I I I

FIG. 6. Comparison of normalized
TL and TSC curves for (1) M &1M,
R&1: first-order conditions, TL and
TSC curves 1n and 1g. While the TL
curve has the characteristic Randall-
Wilkins shape, the TSC curve is
shifted to higher temperatures, has an
extended linear initial rise, and de-
scends steeper on the high-tempera-
ture side. {2) M&NR, R)1:Curves
20., 2q. Both types of curves have large
half-widths and exhibit a linear rise
with the slope of ——,

' if ma=1 ~ The pa-
rameters are; E/k 5)&10 Kp zoo 1,
Po ——10'3 sec ' n=2&&10 ' (sec 'K) '
and g=0.481 'K sec '. For curves 1o.
and 1g, 37/%=10' and R=10 '. For
2a and 2g, E/ALII=10' and R=10'.

"L.J. Grossweiner, J. Appl. Phys. 24, 1306 (1953).
"The factor 6 is defined as the so-called lower temperature "half-width"; A =T~-T~, where T1 is the temperature on the

low-temperature side of the peak at which the intensity is half the maximum intensity.
» K. H. Nicholas and J. Woods, Brit. J. Appl. Phys. 15, 783 (1964).
"H. J. Dittfeld and J. Voigt, Phys. Status Solidi 3, 1941 (1963).
"This is also the case for the so-called "Fermi-level analysis" (Ref. 11), which requires for proper application that trapped and

free carriers are in quasithermal equilibrium. That means the rate of recombination transitions must be much smaller than the
retrapping rate. Therefore, at least information on R is needed.

. "G.F. Garlick and A. F. Gibson, Proc. Roy. Soc. (London) 60, 544 (1948).
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mentally easily achievable. But all other parameters
remain unknown. One gains, therefore, no significant
information on the kinetical process by studying TL,
TSC, or TSC-TL correlations alone. It appears even
doubtful whether a consistent value obtained for E is
of relevance, since there seems to be no way to check
the applicability of the simple basic model for a par-
ticular crystal by measuring and analyzing TSC and TL
glow curves. Other conceivable models must be in-
vestigated, e.g. , those which consider two activation
energies. ' By looking at those models, it appears
questionable if the initial rise of a glow curve is always
determined solely by the depth of a trap. Detailed inves-
tigations of some of the more relevant models are needed

"P. Braunlich, Ann. Physik 12, 262 (1963)."P.Braunlich, J. Appl. Phys. 39, 2953 (1968).

and will be presented in a later paper, with the goal to
answer these questions.

We conclude that TSC and TL experiments are not
adequate tools for measuring trapping parameters in
contrast to statements on the subject in the literature.
Isolated experiments on glow curves are of little value
unless the pertinent parameters are measured by some
other experimental technique, in which case TL and
TSC may provide an excellent means of checking the
results.
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Far-Infrared Donor Absorption and Photoconductivity in Epitaxial n-Type GaAs
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Donor-state absorption and photoconductivity spectra of n-type epitaxial GaAs layers with carrier con-
centrations in the range 10'~10"/cm' are reported. The essentially effective-mass-like behavior of the impurity
spectra is con6rmed, and ionization energies of 6.08, 5.81, 5.89, and 6.10~0.025 meV are reported for Ge,
Si, Se, and S donors. The influence of impurity-banding upon the values of ZD is considered. Central-cell
corrections to donor ground-state energies are discussed.

~ 'HE effective mass of an electron in the k=0
minimum of the conduction band of GaAs has

recently been reported as (0.0665&0.0005)ms. ' The
binding energy EH predicted by effective-mass theory
for the ground state of a simple donor near k=0 will,
therefore, be small, EH=5.79 meV. ' Many older esti-
mates of donor binding energies, based mainly upon
electrical measurements of fairly impure bulk-grown

~ G. E. Stillman, C. M. Wolfe, and J. O. Dimmock, Solid State
Commun. '7, 921 (1969).' The measurement of ep in GaAs seems to have posed several
problems and consistent values are simply not available. LSee
low-frequency determinations reported for ep, K. S. Champlin
et al. , Appl. Phys. Letters Il, 348 (1967); N. Braslau, ibid. 11,
350 (1967); S. Jones and S. Mao, ibid. 11, 351 (1967); C. B.
Rodgers et al., ibid. 11, 353 (1967). We reverse the procedure by
noting that our result for Si in GaAs puts an upper limit on XII,
and therefore, a (lower) bounded value on ep. This bounded value
is in good agreement with a room-temperature static determina-
tion of 12.5+0.3 for qp. We have thus used fp =12.5 and m*=0.0665
~0.0005 as the most consistent and best values available to
calculate the hydrogenic donor binding energy in GaAs. We
obtain EH = 13.6m*/ep'= 5.79&0.28 meV.

material, are in the region of 2—5 meV. ' As it is dificult
to envisage a potential field that will produce such
shallow isolated donors in a III-V semiconductor, it is
highly probable that these estimates are infIuenced by
donor-impurity banding.

Epitaxial growth techniques now produce GaAs layers
of a purity not previously available, and thus it is of
interest to investigate by direct means the question of
donor binding energies in e-type GaAs. Very recently,
spectroscopic determinations of donor ionization ener-
gies E~ of 4.6 5 1y 68p 60' and 6.5 meV' have
been reported. Direct chemical identifications have not
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