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Thus the trends and magnitudes predicted for the pres-
ent device are remarkably similar to the experimental
observations reported by Ovshinsky. ' It should be em-

phasized that the explicit temperature dependence ex-

hibited for U* and Vz is not general but a consequence
of the restricted applicability of Eq. (1) to Vr &X,. As

(15) switching occurs for Vt —& X„ the temperature depen-
dences of U* and Vp tend to vanish. The recent experi-
mental results on the time delay for switching of amor-
phous semiconducting devices recently reported by De-
Feo and Calella4 are in general agreement with the
analytic results presented here except that V* is slightly
different from Vp and has a different temperature
dependence.

4 S. Depeo and P. Calella, Bull. Am. Phys. Soc. 14, 115 (1969).
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Thermoluminescence (TL) glow curves are investigated in detail for a single trap depth in the presence
of thermally disconnected traps and a single type of recombination center. The diferent shapes of TL
curves are discussed as they relate to the ratio of trapping probability to recombination probability, and
to the densities of recombination centers and thermally disconnected traps. The influence of such equip-
ment parameters as heating rate, initial occupancy of the traps, and initial temperature is also examined.
As a result of our calculations, we conclude that TL by itself is not a suitable tool for determining trapping
parameters of imperfections in crystals, that the simple experiments performed to date have not yielded
unique values of the trapping parameters, and that even a sophisticated experiment is highly unlikely to
yield unique values,

INTRODUCTION

'HE experimental simplicity of thermolumines-
cence (TL) and thermally stimulated electrical

conductivity (TSC) has led to numerous papers which
advocate their use for determining trapping parameters
of imperfections in crystals. Despite considerable effort
in this field during the last two decades, however, there
is still little evidence that consistent quantitative infor-
mation on trap depths and probabilities for retrapping
or escape can be obtained by TI. or TSC methods. It is
not the purpose of this paper to give a thorough review
of the literature on the subject. As a typical example,
we will mention here only some of the work done on
CdS, which has been studied in this context more
thoroughly than any other material. Dittfeld. and Uoigt, '
e.g., determined the trapping parameters of CdS by

' H. J. Dittfeld and J.Voigt, Phys. Status Solidi 3, 1941 (1963).

utilizing 11 of the methods known for the analysis of
experimental TSC data, while Nicholas and Woods' did
similar work employing eight different methods. Bube
and co-workers' performed an analysis of CdS/CdSe
mixed crystals in which they also compared different
methods. The disagreement in the conclusions reached
by those workers is characteristic of the situation in
which the investigation of thermally stimulated pro-
cesses is at the present time. Dittfeld and Voigt found
that all the traps they investigated in CdS empty
under fast retrapping conditions. This result is based on
the consistency they obtain with methods based on a
quasi-equilibrium between trapped and free electrons.
Nicholas and Woods arrive, in a similar way, at exactly
the opposite conclusion. They 6nd that all but one of

2 K. H. Nicholas and J. Woods, Brit. J. Appl. Phys. 15, 783
(1964).

3 R. H. Bube, G. A. Dussel, C. Ho, and L. D. Miller, J. Appl.
Phys. 3'7, 2 (1966).
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the traps in CdS empty under monomolecular condi-
tions. Undoubtedly, differences in material may be
responsible for some of the diasgreement. ' However,
there is evidence that other, more basic reasons, might
render TL and TSC techniques unsuitable for the
investigation of the kinetics of the processes occurring
during thermal release of trapped carriers and during
their subsequent recombination. This evidence may be
grouped under two main points: (a) There is generally
insufFicient knowledge about which of the several
recombination kinetics discussed in the literature4 pre-
vail in a certain material; and (b) even if for some reason
a particular model is found to describe the thermally
stimulated processes in a certain material, consistent
quantitative information cannot be obtained on the
various characteristic parameters of that model from
TL and TSC experiments alone.

Obviously, both points need to be studied in more
detail, and it is the purpose of this paper to present as
a contribution to the task a complete phenomenological
theory of TL.

The knowledge about different kinetical models aside
from the classical "simple model"' is, at best, only frag-
mentary. 4 However, one important fact is established:
It is not possible to decide between several "reasonable"
models by simply calculating a theoretical glow curve
which fits the experimental curve. ' Too many unknown

parameters are present to establish a best fit. By means
of various optical and electrical measurements, the band
structure of a material can be determined, and it usually
is known whether the material is rt type or p type. This
information allows certain conclusions to be made about
the recombination processes, especially in regard to
which way the electrons released from the traps travel
toward the recombination center. However, the values
of transition coefficients are usually unknown. In addi-
tion, no safe conclusions are possible in most cases as to
whether or not the trapped and free electrons are in
thermal equilibrium. The attempts by Dittfeld and
Voigt and Nicholas and Woods to gain information on
just this point in CdS by analyzing TSC and photocon-
ductivity data had to fail because, for a proper choice
among the numerous diferent methods of analysis,
knowledge is required about the relative importance of
retrapping transitions as compared to recombination
transitions. Because a good fit of calculated and mea-
sured TSC or TL glow curves does not provide sufficient
knowledge of what kinetics prevail, ' there is no way of
finding out, from glow-curve experiments alone, which
method of analysis should be used to obtain trapping
parameters in a particular case.

This is also illustrated by the fact that the same

G. Bon6glioli and P. Braunlich, in Thermollminescence of
Geological 3faterials, edited by D. J. McDougall (Academic Press
Inc., London, 1968) (these articles list additional references on
the subject}.

6 G. A. Dussel and R. H. Bube, Phys. Rev. 155, 764 (1967).
6 P. Braunlich and A. Scharmann, Z. Physik 177, 320 (1964).

analytical methods for experimental data may provide
di6'erent parameters when various models are used. The
methods based on glow-curve shapes provide examples.
Although designed for the determination of a trap depth
when the kinetics are described by the "simple model, "5

they may yield the trap depth for hole traps if the model
proposed by M. Schon~ ' holds. Conversely, they may
yield the energy difference between the ground and the
excited state of a trap if the model discussed previouslv
in the literature' describes the kinetics.

Currently, there is no method known which is com-
pletely independent of the kinetics. The knowledge of
one or more key parameters is always required. This, in
turn, explains at least partially the discrepancy of the
results reported by Dittfeld and Voigt and Nicholas and
Woods. However, a final word on the situation could
not be given at the time of those experiments because
there was no complete theory of TL and TSC available.
Not even the kinetic equations derived from the simple
model were completely solved for TL. Recently, though,
Dussel and Bube' (hereafter referred to as DB) pre-
sented a detailed analysis of this model, but for the TSC
only. One could, in principle, obtain solutions for TL
using their results. However, as we will show, their
analysis is not complete. Further, they introduce a
quasi-Fermi level. This imposes restrictions and requires
assumptions, which one wishes to eliminate. By using a
more direct approach, it is possible to develop a com-
plete theory of TL based on the simple model. This will
be done in the following sections. It is also possible to
complete the DB theory of TSC.' After this has been
accomplished, we are in a position to make the following
statement: It appears impossible to obtain relevant
quantitative information on the trapping parameters by
any method of evaluating experimental TL or TSC
data unless the electron kinetics is known in detail. TL
and TSC data may then provide a way to check ex-
perimental data obtained otherwise. If one can assume
that the simple model discussed in this paper is a good
description of the kinetical processes occurring during
the thermal release of trapped charged carriers, only a
sophisticated analysis of TL and TSC will reveal
enough information to characterize the parameters.
This would require a measurement of the shape of a
peak over many orders of magnitude with various initial
trap 6llings.

PHENOMENOLOGICAL THEORY OF TL

The kinetic equations obtained by considering the
charge carrier traffic in terms of the typical model' are
usually solved with the aid of two assumptions. The
first is that the concentration of free charge carriers

7 P. Braunlich, Ann. Physik 12, 262 (1963).
8 M. Schon, Tech. Kiss. Abhandl. Osram-Ges. 7, 175 (1958);

HalbleeterProblerrte, edited by W. Schottky (Friedrich Vieweg and
Sohn, Braunschweig, 1958), Bd. IV, p. 282.

~ The results are presented in paper II.
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(n,) is always much smaller than the concentration of
trapped charge carriers (n), and the second is that the
time rate of change of the free carrier concentration
(ri,) is much smaller than the time rate of change of the
trapped carrier concentration (n): That is,

n,((n. (2)

SOLUTIONS OF KINETIC EQUATIONS

The range of validity of (1) and (2) will be discussed
in paper II; as shown there, the results presented in
this paper are not affected by these assumptions.

(heating program) has to be introduced at this point.
In practice, a constant heating rate is generally used
(dT=qdt), but in some cases quadratic heating rates
have been employed (dT=nT'dt). ' "The result of the
integration with either rate is given by

F (U) = (8 2)—lnL(M+Nw)/(M+Nwo) 1
8 ln(—w/wo), MAO (9a,)

=A ln(wp/w)+R(w ' —wp
—'), M=O (9b)

F(U) =P(e—~ e~p)—for dT =nT'dt

(10)

The basic kinetic equations are Up

E e ~dv for dT=qdt,

(3) with

(4)

n=Pn, (N —n) —Pn,

n, +ri = yn, (n, +n—+M)
P =Ppk/uE, —
Pp=PoE/qk U',

U= E/k T, —
wo—=n(T =To)/N,

where P is the retrapping coeKcient, y is the recombina-
tion coefhcient, E is the density of thermally con-
nected traps, M is the density of thermally discon-
nected traps (deep traps), and P=Pp exp( —E/kT),
the probability of escape, with k the Boltzmann
constant and T the absolute temperature. Thermally
connected traps are those which deliver charge carriers
to the empty band during the glow-curve experiment.
Pp is assumed to be temperature-independent (see
Ref. 5).

Inequalities and Eqs. (1)—(4) immediately yield"

ri = (M+n) Pn/D—1 R)n+M+R—1Vj (5)
and

n, =Pe/yP(1 R)n+M +R—1V7, (6)

with R=P/y.
These equations yield a measure of TL, since the TL

intensity is proportional to —ri, and a measure of TSC
since the latter is proportional to e,. The thermolumi-
nescence intensity can be calculated from

I.(T) = —ri—= —w1V, (7)

and one obtains readily

I.(T) =PNw(M+Nw)/P(1 —R)1Vw+M+RN). (8)

The fraction of filled traps m is defined in the interval
0&m&1; m=o, corresponds to empty traps, and zan =1

corresponds to completely filled traps. The luminous
eKciency is taken to be unity in Eq. (7); however, as
long as the eKciency can be assumed to be constant
over the temperature range of the TL peak. , the results
are unchanged

Integration of Eq. (8) yields implicit expressions for
w. A function which correlates time and temperature

and
x=—eS,
3—= 1—E,
P= 1+RN/M. —

We omit at this point any further duscussion of the case
M= Osince we show—that the case 1V/M))1 contains
this limiting case.

The solution of Eqs. (8)—(10) for I.as a function of U
is determined by the initial concentration wo ——np/N at
Tp, the retrapping factor R, and the ratio 1V/M.

We proceed now to discuss the expected behavoir of
TL glow curves in terms of a wide variation of these
parameters.

DISCUSSION OF TL CURVE SHAPES

We now consider the expected shape of TL curves as
predicted by Eqs. (7)—(10) using the approach of DB.
We limit the present discussion to curves obtained with
the rate dt=0. T'dt since there is less algebraic complex-
ity. In the next section, we show that there is no funda-
mental difference in the shape of a glow curve obtained
with either a constant heating rate or this nonlinear
rate.

The basic idea of the DB method as applied to the
case of TL is to find the characteristic shape of a TL
curve for a particular set of parameters (Tp, T, 1V/M,
R, and P) without solving Eqs. (7)—(10} and without
elaborate calculations. First, an extremum condition is
discussed. It provides the possible location of extrema
of a TL glow curve. Thus, we obtain the regions of posi-

"The assumed inequalities effectively decouple the basic kinetic
equations (3) and (4). All our attempts to solve the basic equations
numerically have been unsuccessful. However, in the accompany-
ing paper, we discuss the relevance of these assumptions.

"A. Halperin, M. Leibowitz, and M. Schlesinger, Rev. Sci.
Instr. 33, 1168 (1962); W. Arnold and H. Sherwood, J. Chem.
Phys. 62, 2 (1959);P. J. Kelly and M. J. Laubitz, Can. J. Phys.
45, 311 (1967).
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tive and negative slopes of the TL glow curve in an
I;U plane.

All parameters except the filling ratio m are fixed.
Considering wo= 1 yields the envelope of all glow curves
with the same set of parameters and smaller vvp. The
extremum condition is obtained from Eqs. (8) and (9):

I/I = (LG(U)/g(w) 7 1)Po—/P, (11)
with

G(U) =Pe—xp( —U),
I=I./M, —

and
P(N/M)Aw+8$'

g(w3=—
((1V/M)Aw+B7wN/M+8(1+ (N/M)m)

Obviously,

(12)

defines the location U* of the extrema of I(U) in the
I-U plane.

Extrema are possible only in the region between
U*(w=1)—= Ui* and U*(w=0) —= Uo*. The curve I*(U*)
defined by Eqs. (8) and (12) divides the plane between
two lines through U~* and Uo* parallel to the I axis in
two parts: one for which I&0 and one for which I&0.
The function g(w) is always positive for the values of
x in the allowed range 0&+& 1. It is monotonically
decreasing with increasing w. We note further that I(U)
decreases with decreasing m and fixed U. With this, we
can now establish where the sign of I is positive and
where it is negative. Assume a fixed point on I*(U*).
For fixed U, I(U) increases upon increasing w and we
reach a point above the curve I*.At the same time, g(w)
decreases and, in Eq. (11),I becomes positive. I*(U*)
decreases rapidly as U* approaches Uo* so that for
U& Ua* the slope of the TL curve I(U) is always posi-
tive. The slope of I(U) for U) Ui* depends on the
parameters and will be discussed separately. Having
tried all combinations of the parameters, there are only
three distinct sets of parameters, we need to discuss —I:
8&1, Jtr/I&378; II: Rg 1, M&SR; III: M~AÃ. In
the following section, we give a summary of the results
obtained for these cases. (A complete discussion of this
procedure is given in Ref. 12. Mathematical expressions
for the glow curves reported here are derived as well. )

Case I:R (1, M (NR

There are three different dependencies of I* on U*,
as illustrated by regior;=, I, II, and III of Fig. 1(a).

Assuming the initial condition Uo)&U~, it is possible
to construct a glow curve which is an envelope for all
other glow curves with the same parameters. This curve
is the one which is obtained for no= 1 (completely filled
traps at U'o). All other glow curves (with wan&1) have
lower TL intensities at any temperature and the curve
I(wc=1)=—Io is, therefore, an upper limit. The typical
TL glow curve of this section starts with a linear slope

of —1 at the right of V~*. As it approaches I*, the slope
increases until it crosses the curve I* horizontally. The
maximum temperature shifts considerably with de-
creasing mo until for mb((1 the curve crosses in region
lII. The decreasing part of the TL curves lnI(U) have
a positive slope and lie, therefore, between Io(U) and
I*(U*).We note an interesting feature of this part of
the glow curve: If U* of a TL curve lies in region I,
which is the case of zo 1, the curve decreases first
steeper (as it would in a typical first-order peak), later
less steep again with a constant slope of +1, and,
finally, we have a characteristic steep decrease.

TL curves which cross lnI* in region II still have
the constant slope after the maximum. Note that the
quadratic heating rate chosen for the discussion, in
this section is not the reason for that constant slope
of a glow curve which has its maximum occurring in
region III. A linear heating rate produces a similar
effect.

Computed examples of TL glow curves are shown in
Fig. 1(b), which illustrates the predicted behavior for
case I.

Case II: R)1, M(NR

There are three different dependencies of I*on U*, as
illustrated by regions I, lI, and III of Fig. 2(a).

Again, we can construct a largest of all possible glow
curves Io with the same initial condition of case I, that
is Uo»UO*. It is an envelope for all other glow curves
with mo(1, In the region U) Ui*. the function ln(IO)
has a constant slope of —1 because m is still nearly
unity. The curve approaches U&* with a linear slope
and has a value" at Ui* which is below inLI*(Ui*)).
Thus, the curve ln(IO) bends over to a smaller slope.
It must remain below the curve ln(I*) until it crosses
it at U*& U *. From now on, the condition m&~ is
fulfilled and the curve decays linearly until w&M/N.
The curve decreases rapidly for w&M/N. All other
glow curves (wo& 1) cross the vertical line through Ui*
at lower values than ln(IO) does and have a slope of —i2

only, if mo is still close to one. The decreasing part will
have the slope +1 if the crossing occurs in region II
because all curves must be between ln(Io) and ln(I*) in
this region.

The remarkable features of curves with the character-
istic parameters of this section are the slope of —~~dur-
ing the "initial rise" if w~~1 and the slope of +1 after
the maximum for w) M/N. A family of computed TL
glow curves is shown in Fig. 2(b) which illustrates the
predicted behavior of this case. Again, note that the
intensity becomes smaller and the TL maximum shifts
to higher temperatures as the filling ratio mo is de-
creased from unity.

"NRC Report No. 10999, 1969 (unpublished); this report may
be obtained free of charge by writing to Dr. P. Kelly, NRC, Bldg.
M36, Ottawa, Canada.
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lnX

In X

FIG. 1. (a) The function I* (location
of glow maxima) and TL glow curves.
Io represents the curve with complete
initial f'dling of the traps (ms=1) and
the curves a, b, c, and d are glow
curves with decreasing initial occu-
pancy u 0. (b) A set of TL glow curves
characteristic for case I, calculated
from Eqs. (8)—(10) with a quadratic
heating rate and A=0.1, M/&7=10 4,

E/k =5X10' 'K, o.=2)&10 ' (sec
'K.) ', P0=10" sec ', and Uo»U*.
The initial occupancy zop of the traps
E is 1, 0.5, 0.1, 10~, 10 ', and 10 4 in
order of decreasing intensity at the
maximum of the curves.

(a)

Ui = In P {1+R)~ U
I o!

InI -6--

20

(b)

30
U

40

Case III: M)RN

As illustrated in Fig. 3, the conditions imposed by
this case yield the 6rst-order Randall-Wilkins shape. "
There is no noticeable shif t of the TL maximum if mo

varies between zero and one.

"J.T. Randall and M. H. F. Wilkins, Proc. Roy. Soc. (London)
A184, 366 (1945).

COMPARISON OF TL CURVES OBTAINED WITH
DIFFERENT HEATING RATES

We now show that there exists little or no difference
between the shapes of computed TL glow curves ob-
tained with the rate nT' or the rate q. In order to obtain
a meaningful comparison we chose, arbitrarily, two

temperatures To and T*, so that the glow curves started
at the same temperature and peaked at the same
temperature.
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Uo = In P~ M/RN 1

(a)

Fzo. 2. (a) The function I* (lo-
cation of the extrema) and TL
glow curves. Io represents the
curve with complete initial trap
6lling (u 8

——1) and the curves a, b,
c, and d are glow curves with de-
creasing initial occupancy mo. (b)
A set of glow curves characteristic
for case II, calculated from Eqs.
(8)—(10) with quadratic heating
rate and 28.'= 10', ll/E = 10 4, F/k
=5X10' 'K, n=2&(10 ' (sec
'K) ', Po ——10"sec ', and Uo))U*.
The initial occupancy mo of the
traps N is 1, 0.5, 0, 1, 10 ', 10 ',
and 10 4 in order of decreasing
intensity at the maximum of the
curves.

In I -6--

—12
5 20

(b)

50

The parameters (E/k, P&, a, R, M, X, ttP) completely
determine a particular glow curve. After selecting a set
of these parameters, the steps outlined in the Appendix
were taken to compute glow curves.

We now present some computed cases with typical
sets of the parameters: Figure 4 contains the TL glow
curves with two heating rates (g, nT') for the parametric
combination considered in the last sections. For these

combinations of parameters, where three distinct be-

haviors can be obtained, we note that there is little or

no difference observed in the shapes, due to the different

heating programs.
The special case of a solid containing no thermally

disconnected traps (M=O) is illustrated in Fig. 5.
Again, there is little or no difference observed between

glow curves obtained with the two different heating
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rates. The inAuence of the filling ratio mo on a curve of
that type (R«1) is easily explained with the aid of Eq.
(9b). A first-order shape's is obtained for to&) R since
the logarithmic term is dominant in a wide range of
values for U. As m decreases, this range narrows and
finally a perfect second-order'4 shape results for mo(E.

EFFECT OF EXCITATION TEMPERATURE ON
TL GLOW-CURVE SHAPES

Figure 6 illustrates the effect of the choice of various
Uo on the shape of a TL glow curve characterized by a
set of parameters from case II (Jt.'=10s, E/M=10 ',
ws ——1).Note that, under certain conditions, a TL glow
curve can exhibit a minimum. This can be under-
stood with the aid of Fig. 2(b). If Us is selected in
region I and the traps are filled to the rates mo for which

I(Ue,wo))I*(U*), the glow curve starts in a region
where it must have a positive slope. It decays with de-

creasing, U until it crosses I*horizontally. At the cross-
over point, the TL curve exhibits a minimum. The
slope of the curve now becomes negative until it crosses
I horizontally again, at which point the maximum is
reached.

With reference to Figs. 1(b) and 3, it is obvious that
for cases I and III such behavior cannot occur.

DISCUSSION

In Io

c c

U

FIG. 3.The function I*and TL glow curves for mo ——1 and m&0& 1.
All curves of this type have the shape characteristic for first-order
kinetics and there is very little shift of the maximum temperature
with changing mo.

In the preceding sections, we have presented TL Knowledge of these parameters, and the experimental
curves for a specific simple model which describes a parameters wo Tp and q or o, , predicts uniquely TL
solid through the parameters R, M, E, E, and I'0. phenomena. The question we would like to discuss now

M
a 4-

25
U

35

Fro. 4. Comparison of normalized typical TL glow curves for the two heating rates uT (quadratic rates) and q (contant rate). The
parameters were selected so that each of the three discussed characteristic cases is represented. The parameters common to all curves
are E/k=5/10' 'K, P0=10"sec ', +0=1, and Uo))U*. The remaining ones are: 1'—3f/E=10', 8=0.1, q=0.481 deg sec ' (case III) '

2q 3E/%=10 ', 8=10', q=0.431 d—eg sec ' (case II); 3q—M/Ilr=10 ', 2=0.1, q=0.481 deg sec ' (case I). The corresponding curves
with quadratic heating rates (subscript u) were calculated with +=2 X10 ' (sec 'K) '.

"G.F. J. Garlicit and A. F. Gibson, Proc. Roy. Soc. (London) A60, 574 (1948).
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In I —4--

2. 3

20. 30 40

FIG. 5. Comparison of normalized TL glow curves with quadratic and constant heating rates for the special case M =0. The common
parameters are E/k =5)&10' 'K, Pp ——10" sec ', m0 ——1, and U0»U*. The values of the retrapping factor R and of q (in deg sec '),
are 1g—R=10 5, q=0.481; 2g—R=10 ', g =0.481; 3g—R=0.3, q=0.486; 4g—R=1.0, q=0.509. The corresponding curves with quad-
ratic heating rate (subscript n) were calculated with n=2 X1 05 (sec 'K) '.

is the converse of the above: What can we learn about
the solid from thermoluminescenceP And, to anticipate,
the answer is "precious little, "unless we know, a priori,
something about the parameters characterizing the

)nI -2--

-4
24 30

U

36

FrG. 6. Comparison of TL glow curves with different values of
U0. The parameters were selected from case II and are: R= 10',
SI/N = 1, o.=2 X10 ' (sec 'K) ~ and E/k =5 X10' 'K. The ratio
Up/U* for those curves is in order of decreasing intensity at the
maximum 100, 1.010999, 1.01090, and 1.0180. The curves show
that under certain conditions TL glow curves may exhibit a
minimum.

kinetics of the solid, and more importantly, if we know
that the assumed model is applicable to the solid.

To reach this conclusion, we have to examine the
various methods of analysis of glow curves. Three basic
approaches have been used: (1) methods which use
directly the shape of the glow peak, (2) "heating rate
methods, " where the heating rate of the specimen is
varied, and (3) "initial rise" methods. The first two
approaches actually depend upon the detailed shape of
the peak: In the experiments, as they have been done
and continue to be done right now, the TL intensity is
measured only over two, or at most three, orders of
magnitude. Even a casual perusal of Figs. 1—5 reveals
that, barring the widths, the shape of the tops of the
curves, the first two or three orders of magnitude, are
not very sensitive to the parameters R, M, and 2V

characterizing our model, and, thus, yield no informa-
tion about them; this is especially true when no account
of mo is taken. As the width of the curve is convention-
ally taken to be a measure of the trap depth E, then
this quantity can be seriously in error when determined
from the glow curve without a prior knowledge of R,
3f, and N.

The characteristic features of the TL glow curves
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discussed in the previous sections may permit one to
categorize a particular measured glow peak as belonging
to one of the three cases. If this can be achieved than it
might be possible to pick from the many existing ana-
lytical methods appropriate ones and, thus, one or more
of the trapping parameters could be determined. How-
ever, clear evidence is required that the simple model
used in the present work describes the kinetics. Also,
the experiment needed for that task is necessarily much
more elaborate than any TL experiment described in
the literature. The light intensity of a single undisturbed
peak would have to be measured over more than five
orders of magnitude for filling ratios mp varying be-
tween 1 and 10 5 and for different initial temperatures.
According to our results, only then will it be possible,
e.g., to distinguish between the first-order shape of the
curves with m «(1 in cases I and II and the typical first-
order shape of case III. The mentioned requirements
and the unlikely chance to find an undisturbed peak or a
peak that can be "cleaned" with known techniques
throw serious doubt on the usefulness of shape methods
as direct tools for the determination of trapping param-
eters. In addition, and this is an important point, pre-
liminary studies indicate that other models, on the basis
of quite different parameters, yield TL curves of the
same shape as given by the model here considered. No
unique information can, therefore, be obtained from
the shape of the TL curve above. As a particular conse-
quence, elaborate analyses of the conventional "first-
order"~3 and "second-order" kinetics'4 (which are
nothing but very special cases M =0, iV = 1, E much less
than 1, and M=O, %=1,8=1 of our simple model) as
have, for instance, been recently published by Chen, "
seem to us at this state of the development of the field
to be of rather limited value.

The only positive information can be obtained from
the third approach, the initial rise method. This
approach always yields an activation energy E (even
for case II with mp=1, where the initial slope of the
curve has the wrong value, a second experiment with a
different wo can be performed to obtain the correct E).
The problem still remains, however, that with no model
of the solid established, to what does this activation
energy pertain&

The conclusion, therefore, is that whereas a model of
the solid with given kinetic parameters uniquely speci-
fies the TL curve, the TL curve, by itself, gives little or
no information about the model or the parameters. TL

~ R. Chen, J. Appl. Phys. . 40, 570 (1969).

can only be useful where previous information on the
solid already exists. Whether such information can be
obtained from other experiments is a moot point: In
the next paper, we investigate the combined case of TL
and TSC, and show that in that particular case the
answer is no. It remains to be seen if other combinations
of experiments prove more useful.
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APPENDIX: STEPS TAKEN TO COMPUTE
TL GLOW CURVES

Although it is possible to use standard numerical
analysis techniques on the equations in the text, the
following steps were taken to compute TL glow curves
because of a saving in computer time.

(1) Equation (12) was solved for the value w* with
the condition Up))U*. This yields a value of U* from
the relation G(U*)=I' exp( —U*—).G(U*) is here equiv-
alent of F(U*) in Eq. (10).

(2) Now we arbitrarily choose a value for Uo which is
ten times the value of U* obtained in step 1 in order to
solve for a value of U~ in the most general manner. We
generalize the extremum condition, Eq. (12), to
g(w*) =F (U*). This is solved for a new value of U*. In
practice, the choice of Up&2U*, with U* from step 1.,
leaves the value U* unchanged.

(3) For values of w, in the range 10 "&w;&1, we
solve Eq. (9) for the corrseponding value of U;.

(4) Computed values of inP(U;)/I(U*)) were plot-
ted versus the values of U;. The accuracy of steps 1—4
was &10 "

(5) In order to compute the curves with a constant
rate, we 6rst eliminate the quantity q from Eqs. (9) and
(14) and solve for w, * as in step 3. This yields a value
for q as well. The heating rate q is computed rather than
arbitrarily chosen in order to permit a meaningful corn. —

parison of glow-curve shapes with different rates, as
mentioned previously.

(6) The above steps are repeated with the equations
modified for a constant heating rate. Because of the
numerical evaluation of the integral in Eq. (9), the
accuracy of steps 4 and 5 is reduced to &10 ' .


