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our experiments it is evident that the formation of
vacancy-impurity complexes in Si depends on the
charge states of the defects. (5) Our results are con-
sistent with the argument that the 175'K stage is due
to the migration of the neutral vacancy and the 350'K
stage is due to the annealing of some secondary defects,

among which there are various vacancy-impurity
complexes.
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Far-Infrared Properties of Lattice Resonant Modes. III. Temperature Effects*
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We have measured the temperature-dependent absorption spectrum associated with resonant modes in
KBr.Li+, NaCl: Cu+, KI:Ag+, and MnF2. Eu'+. A comparison is given of the measured temperature de-
pendence with that expected from a linear-coupling theory using the known static stress coupling coefficients.
We find that the linear-coupling model is capable of explaining the measured temperature dependences
provided the active resonant mode is coupled to another inactive resonant mode, but not if the coupling is
to a Debye spectrum of lattice modes.

I. INTRODUCTION

EMPERATURE-DEPENDENCE studies of the
far-infrared absorption spectra from low-lying

resonant modes can be used to measure the anharmonic
nature of weakly bound impurities in crystals. In the
harmonic approximation, the normal modes of a lattice
containing a heavy mass defect can be considered to
consist of a resonant mode Q and a set of other lattice
modes q. Strictly speaking, the resonance is not a
single mode, but when it occurs at low frequency as a
sharp peak in the density of states, it is a reasonable
approach to regard the resonance as being in a single
mode. If only the mode Q is infrared-active, the absorp-
tion spectrum consists of a single sharp line at frequency
0 which is temperature independent.

Previously, we have used this approach to charac-
terize the isotope shift' and stress shift' experiments on
infrared active resonant modes associated with im-
purities which are weakly coupled to the host lattice
(hereafter referred to as I and II, respectively). In
this paper we describe temperature-dependent proper-
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ties observed in practice and attempt to explain their
presence in terms of various anharmonic effects.

The first investigations of the temperature-dependent
properties of resonant modes presented some puzzling
results. With increasing temperature, the center fre-
quency of the impurity-induced absorption line de-
creased, the linewidth increased and the integrated
absorption intensity decreased for both KI:Ag+ and
KBr:Li+.' On the other hand, for NaCl: Cu+ although
similar temperature dependences were observed for the
center frequency and the linewidth, the integrated ab-
sorption intensity was almost independent of tempera-
ture. ' Attention then focused on the most dramatic
effect, the temperature dependence of the integrated
absorption and a great deal of confusion followed be-
cause it was not clear how much of the absorption
spectrum was being considered in each experiment.

In discussing the intensity of the integrated absorp-
tion due to the resonant mode it is important to be
quite clear as to how much of the absorption spectrum
is being discussed. As stated previously if the potential
energy is purely harmonic the spectrum consists of a
sharp single line at Q. When anharmonic terms are
included this line may shift, broaden, and change in
strength, but in general the anharmonicity would also
induce other lines to appear elsewhere in the spectrum.
These may be described in the language of molecular
spectroscopy as combination bands, overtones, etc.,
or in solid-state terms as sidebands, two-phonon transi-

3S. Takeno and A. J. Sievers, Phys. Rev. Letters 15, 1020
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4R. Weber and P. Nette, Phys. Letters 20, 493 (1966); R.
Weber and F. Siebert, Z. Physik 213, 2'/3 (1968).
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tions, etc. The original line near 0 would then be
referred to as the "fundamental, " or as we prefer, the
zero-lattice-phonon (ZLP) line. We are concerned
with the intensity of this line only, and not with the
complete absorption spectrum associated with the
resonant mode. In fact it can be shown' that if the
complete spectrum is taken into account then

n(cu)d&u =const.

This "sum rule" is exact for an anharmonic system
with a linear dipole moment, and a simple proof appears
in Appendix A. In contrast, we are interested in the
temperature dependence of the quantity I(T), where

with
I(T)=e—&,

'r =P S,(2n~+1),

where S~ is a dimensionless linear coupling parameter
usually known as the Huang —Rhys factor. The ex-

ponential form of I(T) has lead to the use of the term
"Debye —Wailer factor" in describing the temperature
dependence. The temperature dependence of an elec-

tronic transition, the E& band in KCl has been treated

5 D. Strauch, Phys, Status Solidi 33, 397 (1969).
'R. H. Silsbee and D. B. Fitchen, Rev. Mod. Phys. 36, 432

(1964).
A. A. Maradudin, in Solid State I'hysics, edited by F. Seitz

and D. Turnbull (Academic Press Inc. , New York, 1967),
Vol. 18.

M. Lax, J. Chem. Phys. 5, 221 (1964).
D. E. McCumber, Phys. Rev. 135, A1676 (1964).

' R. H. Silsbee, in Optica/ I'roperties of Solids, edited by S.
Nudelman and S. S. Mitra (Planeum Press, Inc. , New York,
1969).

Historically, the first attempted explanation of the
temperature dependence of the ZPL intensity3 made use

of the well developed theory for the intensity of elec-
tronic transitions at impurities in crystals, when

coupling to the lattice modes is considered. This
problem is itself frequently referred to as the optical
analogue of the Mossbauer effect, ' and has received
extensive coverage in the literature. ' "

The essential results of the electronic theory are the
following. If the electronic transition energy is assumed
to depend linearly and quadratically on the phonon
coordinates, then it is found that the spectrum consists
of a sharp line (zero-phonon line) plus broader phonon-
assisted sidebands. The temperature dependence of
the zero-phonon line is qualitatively similar to that
observed for the resonant modes. Quantitatively, the
main result of the theory is that the intensity of the
zero-phonon line when only linear coupling is included
in given by'

successfully in this manner. ""A similar calculation has
also been made for a localized mode, the U center in

KCl, using the data of Fritz et a/. ""In this case there
is good reason to beheve that the electronic theory is
applicable. ""It is not yet clear whether this theory
can justifiably be applied to the case of the resonant
mode. One of the purposes of this paper is to compare
the measured temperature dependence with that
expected from a linear-coupling theory using the known
static-stress coupling coeKcients to calculate the
coupling of the system to the dynamical strains, i.e.,
the lattice modes.

In Sec. II we report temperature-dependent measure-

ments of resonant modes at higher resolution than used

in previous studies. Most of the studies were made on

KBr:LiBr, NaCl: CuCl, and KI:AgI with the crystals
containing isotopically pure dopants. Some measure-

ments for a resonant mode in MnF2. Eu'+ are also

presented here.
In Sec. III we compare the measured temperature

dependence of the linewidth and the center frequency
with that derived from anharmonic effects. Good

agreement is found as long as low-frequency phonons

play the dominant role. We then show that linear

coupling of a Debye spectrum of phonons with the
known coupling coefficients does not explain the ob-

served change in the integrated intensity. Somewhat
better agreement is obtained, however, if linear

coupling to an even resonant mode is assumed.

Finally, in Sec. IV we speculate on the applicability
of a linear-coupling model for lattice-resonant modes.

II. EXPERIMENT

A. Pxocedures

Our first measurements of the temperature eGects of

doped alkali halides were made with a grating mono-

chromator which required three grating and Alter

changes to measure the frequency region from 10 to
50 cm '.3 These grating changes together with the
problem of second-order radiation have introduced
experimental uncertainty in the identi6cation of broad
resonances which may appear as the integrated in-

tensity of the ZPL decreases with increasing tempera-
ture. To overcome this problem we have used the

Strong-type lamellar interferometer described in II
to investigate temperature effects. In one pass, the

frequency interval from 10 to 50 cm ' can be measured.
Also because of the large throughput of this instru-

"D.B. Fitchen, R. H. Silsbee, T. A. Fulton, and E. L. Wolf,
Phys. Rev. Letters 11, 275 (1963).

"R.H. Silsbee, Phys. Rev. 138, A180 (1965).
"B.Fritz, U. Gross, and D. Bauerle, Phys. Status Solidi 11,

231 (1965).' B. Fritz, in Localized Excitations in Solids, edited by R. F.
Wallis (Plenum Press, Inc. , New York, 1968).

"A. E. Hughes, Phys. Rev. 173, 860 (1968)."I.P. Ipatova, A. V. Shubashiev, and A. A. Maradudin, in
Localized Excitations in Solids, edited by R. F. Wallis (Plenum
Press, Inc., New York, 1968).
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ment, '~ measurements at a factor 5 higher resolution
have been possible. For low-temperature samples, the
transmission spectrum was determined with a resolu-
tion of 0.18 cm '. At sample temperatures above 30'K,
where the absorption lines are quite broad, a resolution
of 0.36 cm 'was used.

The impurity-induced absorption coeKcient was ob-
tained in the usual manner by dividing the transmission
spectrum of the doped sample by the transmission of
the pure crystal at the same temperature. Below 30'K
this procedure should measure the total impurity-
induced absorption since the pure crystal is transparent
and simply normalizes out the frequency dependence
of the interferometer and detector. Above 30'K,
the pure crystal is no longer completely transparent
because of the temperature-dependent difference-band
absorption. Some uncertainty then exists in the back-
ground level of our high-temperature data and this
effect will contribute to a large experimental uncertainty
in the strength of an absorption line. Moreover, because
it is difficult to measure the zero level of a transformed
interferogram accurately, the interferometer itself con-
tributes an additional absolute uncertainty in the
background level at all temperatures. We have been
able to measure the center frequency and linewidth
with increased precision but not the integrated absorp-
tion intensity under the ZPL. Our only contribution
to this latter measurement is to note that all systems
have been measured with the same instrument, the
intensities agree with those previously reported and
no new lines appear in the alkali halide crystals as the
temperature is increased.

The low-temperature sample and detector cryostat
used for these measurements has been described
earlier. '8 It is a straightforward transmission cryostat
in which the radiation passes first along a light pipe
through the sample compartment then through a
vacuum window to the detector chamber. The detector
is a chip of gallium. -doped germanium" with a sensi-
tivity at 1.2'K of about 10' V/W.

The separation of the sample chamber from the
detector chamber by the crystal quartz window made
temperature-dependence measurements possible over a
fairly wide range. A small amount of He4 exchange
gas coupled the samples to the bath sufficiently well
so they reached a temperature of about 2'K. By re-
moving the exchange gas and heating the sample ring
with a resistance heater, sample temperatures as high
as 70'K could be maintained. Even at this temperature
the samples were sufficiently decoupled from the
helium that the bath temperature changed by only
0.1 K. Between 30 and 70'K the detector sensitivity
decreased because of this small rise in bath temperature.

The temperature was measured by determining the
resistance of ~~& Allen —Bradley carbon resistor of
either 1000 or 47000 nominal resistance. The resistors
were calibrated at boiling helium and boiling nitrogen
temperature at atmospheric pressure. The resistances
at these two temperatures were used to determine the
constant 2 and 8 in'0

A logR

(logR —8)'

The resistance was measured using a, 25 cps ac bridge
which dissipated less than 1.0 W in the resistor. '

The sample temperature was regulated by controlling
the current in a nichrome wire hea, ter. The current was
controlled by a temperature regulator designed by
Blake and Chase, "modified to operate at 25 cps, which
used the bridge output as an error signal. In practice
the heater current was adjusted manually to give
approximately the desired temperature and then the
current control was switched to the regulator. The
regulator held the temperature constant to within 1%.

B. Results

Three features of the resonance have been measured
as a function of temperature. They are the following:
(1) the full linewidth at one-half the maximum absorp-
tion, F(T); (2) the center frequency of the absorption
maximum, Q(T); and (3) the integrated absorption
intensity I(T) de6ned by Eq. (2). Most of our measure-
ments have been made on crystals of KBr:Li+ and
NaC1:Cu+. Isotopically pure dopants have been used
so that the linewidth and resonant frequency are not
masked by the presence of two closely spaced lines.
The aging process described in I for KI:Ag+ has dis-
couraged us from devoting much time to this system
and only a few measurements which are complementary
to those previously reported' have been made. Some
interesting measurements on a resonant made in
MnF2. Eu'+ are reported but because of problems with
sample preparation the measurements are not as
complete as for the alkali halide crystals.

The temperature dependence of the linewidth and
center frequency is shown in Fig. 1 for both the Li'
and also the Li7 isotope. No significant difference is
observed in the temperature-dependent properties of
the two isotopes. For the crystal doped with Li', the
concentration was 2.4X10" Li/cm'. For the crystal
doped with Li7, the concentration was 2.3&(10'~
Li+/cms. Although at low temperatures the linewidth

I. G. Nolt, R. D. Kirby, C. D. Lytle, and A. J. Sievers,
Appl. Optics 8, 309 (1969).

I. G. Xolt, R. A. Westwig, R. W. Alexander, Jr., and A. J.
Sievers, Phys. Rev. 157', 730 (1967)."F.J. Low, J. Opt. Soc. Am. 51, 1300 (1961}.

2' G. K. White, Experimental Techniques in I.om Temperature
Physics (Oxford University Press, London, 1959)."W. D. Seward, Ph.D. thesis, Cornell University, 1965
(unpublished)."C.Blake and C. E. Chase, Rev. Sci. Instr. 34, 984 (1963).
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estimated experimental error of 20%. The data are
in good agreement with those reported earlier.

Z. NaCl:CN+

The temperature dependences of the linewidth and
center frequency for XaCl: Cu"Cl are shown in Fig. 3.
For measurements below 30'K, the copper concentra-
tion was 1.1)&10'r Cu+/cm', while for measurements
at higher temperatures a higher concentration of
6.2&&10" Cu+/cms was used. It was necessary to use
fairly high concentrations in the sample so that the
two phonon absorption would not dominate the absorp-
tion coefFicient. The temperature dependences are very
similar to those observed for KBr:I.iBr.

As previously reported, 4 the integrated absorption
strength shows a much weaker temperature dependence
than observed for KBr:I.iBr. Our measurements are
shown in Fig. 4. At 80'K the resonant mode strength
is still 60% of its value at 2'K.

2C)

I

l-

3 EI.Ag+

Some experimental results for KI:Ag+ have been
reported earlier. ' The temperature dependence of the
linewidth and center frequency are shown in Fig. 5.
We have extended the measurements to lower tempera-
tures and used isotopically pure silver 109 dopant. In
Fig. 6 we show the temperature dependence of the

0
O.

0
I

IO 20
Temperature ( K)

I.
50

I.O

Fro. 1. (a) Temperature dependence of the center frequency
of the KBr.'Li+ resonant mode. The measurements of 2.4&10'
(Li')+/cm' are designated by the circles, and for 2.3 X10"
(Li')+/cm' by the squares. The lower dashed curve is calculated
from Eq. (9). The solid curve is the sum of Eqs. (8) and (9) with
0,=26'K or 0~, =174 K as indicated. The heavy dashed curve
with Tz= 29'K is given by Eq. (23). (b) Temperature dependence
of the linewidth of the KBr.'Li+ resonant mode. The circles,
squares, and concentrations are the same as in 1(a). The solid
curve is calculated from Eq. (7) with 0~, =26'K and 0~, =174'K
as indicated. The heavy dashed curve with TE=29'K is given by
Eq. (22).
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and center frequency have been observed to depend
weakly upon the concentration (see I), such an affect
appears to be masked by the relatively large uncertain-
ties in the measurements at higher temperatures. The
solid and dashed curves shown in this and later 6gures
are described in Sec. III.

Figure 2 shows the decrease in the integrated absorp-
tion strength with increasing temperature for both
isotopes. By 30'K the strength is about 15% of its
value at 2'K.

No difrerence is observed between the temperature
dependence of KBr:I.i'Br and. KBr:I.i Br within the

0
0
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I

Io
I

20

Temperature ('K)

FIG. 2. I(T)/I(0) versus temperature for the KBr.'Li+ resonant
mode. The measurements on 2.4)&10'8 (Li')+/cm' are designated
by the circles, and for 2.3&&10" (Li')+/cm' by the squares. A
curve calculated from Eq. (19) with 0@=20cm ' is also shown.
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increases with increasing frequency. The sharpest line
occurs at 16.05 cm ' and the absorption spectrum is
shown for 2'K in Fig. 7. The other broad line occurs
at 42.1 cm '. Here we argue that the absorption line
is due to a lattice resonant mode although the valance
state is not known and may be either 2(+) or 3(+).
The observed absorption cannot correspond to a low-

lying crystal-field level because the 2(+) state has an
57t2 ground state and the 3(+) ion has a singlet

ground state with higher electronic levels at energies
greater than 100 cm '. Because a 50-kG magnetic
field shifted the absorption by less than 0.05 cm ',
the absorption is not magnetic in origin. Thus we
conclude that an impurity-induced resonant mode in
the phonon spectrum is being observed.

For MnF2. Eu'+, two resonant modes separated in
frequency are to be expected. Each threefold degenerate
T&„mode in a cubic crystal will split into a singly
degenerate A~„and a doubly degenerate E„mode for
the tetragonal MnF2 lattice. In a previous paper" the
absorption line at 16.05 cm—' has been identihed with
the nondegenerate mode and the absorption line at
42.1 cm ' with the other doubly degenerate resonant
mode. Preliminary measurements of the temperature
dependence of the low-frequency mode were reported
at that time.

The spectrum at 2, 15, and 25'K is shown in Fig. 7.
As the temperature of the sample is increased, the
absorption strength decreases, while a shoulder begins
to appear upon the high-frequency side of the line.
The total area under the line plus shoulder appears
to be independent of temperature. As shown in Fig. 7,
the linewidth and center frequency change very slowly
with temperature and an accurate measurement of
these dependences has not been possible,

OQO

0
t

20
l

40 60
Temperature ('K)

80

FIG. 3. (a) Temperature dependence of the center frequency
of the NaCl: Cu+ resonant mode. The dashed curve is calculated
from Eq. (9). The solid curves is the sum of Eqs. (8) and (9)
with 0,=33'K or 0=321'K as indicated. The heavy dashed
curve with Tz=45'K is given by Eq. (23). (b) Temperature
dependence of the linewidth of the NaCl:Cu+ resonance. Data
below 30'K is for NaCl containing 1.1X10" (Cu")+/cm', data
above 30'K for NaCI containing 6.2&&10" (Cu+)/cm'. The solid
curve is calculated from Eq. (7) with 0~,=33'K. The heavy
dashed curve with 2'+= 45'K is given by Eq. (22).
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integrated absorption strength which decreases even
more rapidly with increasing temperature than for
KBr:LiBr. As a result of this phenomenon measure-
ments cannot be made much above 15'K.

OO 20
I C

00 60
Temperature ('K)

80

4. 3feIi, :En'+

The impurity-induced Eu'+ spectrum contains two
lines superimposed on a background absorption which

Fro. 4. I(2')/I(0) versus temperature for the NaCI:Cu+
resonant mode. The solid curve is calculated from Eq. (I9) with
0~=31 cm '.

~ R. W. Alexander, Jr., and A. J. Sievers, in Opticg/ Properties
of Iorts srt Crystals, edited by H. M. Crosswhite and H. W. Moos
(Interscience Publishers, Inc. , New York, j.96'l).
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Fro. 5. (a) Temperature dependence of the center frequency
of the KI:Ag+ resonant mode. The dashed curve is calculated
from Eq. (9). The solid curve is the sum of Eqs. (8) and (9) with
0~,=25'K. The heavy dashed curve with Tz ——16'K is given by
Eq (23). (b. ) Temperature dependence of the linewidth of the
Kl:Ag+ resonance. Solid curve from Eq. (7) with 0,=25'K.
Data from Ref. 3. The heavy dashed curve with Tg ——16'K is
given by Eq. (22).

III. DISCUSSION OF RESULTS

A. Temperature Dependence of Center Frequency
and Linewidth

In this section we attempt to describe the various
temperature-dependent effects observed in practice in
terms of anharmonic effects. Anharmonic terms in the
total potential energy of the system are considered in
the form of powers of the normal mode coordinates Q
and q, and in this context it is convenient to distinguish
three different classes of terms:

(a) Terms involving only the mode Q, such as Qs

and Q' (Qs does not occur for an odd-parity mode such
as we are considering). These terms affect the energy
levels of the resonant mode, but not the other lattice
modes.

(b) Terms involving only the lattice modes q, such as
q'q"q'". Peierls' has shown that these can be regarded
as giving rise to a temperature-dependent lattice
parameter, i.e., thermal expansion.

(c) Terms involving both the resonant mode and
the lattice modes, such as Qq'q". These terms couple

'4 R. E. Peierls, Quantum Theory of Solids (Oxford University
Press, London, 1956).

the resonant mode to the lattice modes and are referred
to as coupling terms. It is through these terms that
most of the effects we are considering will be discussed.
Since the temperature-dependent linewidth and shift
are more readily understood than the line intensity,
we discuss these erst.

The contribution of anharmonic terms in the po-
tential energy to the broadening and shift of the
absorption lines due to localized and resonant modes
has been discussed widely in the literature, especially
with reference to high-frequency localized modes. '5 3'

In all these treatments the anharmonic terms have been
handled by perturbation theory. To apply the results
to the present data we follow the discussion by Klein. 28

The various processes contributing to the width and
shift can be divided into two types: decomposition
processes and scattering processes. Both can be re-
garded as broadening the line by limiting the lifetime
of the excited resonant-mode state, and although this
approach to the problem does not give detailed line
shapes, etc., it does provide a simple framework for
discussing features such as temperature dependence
with which we are concerned.

In a decomposition process the resonant-mode
excited-state decays into one or more phonons. One-
phonon decays can result from anharmonic terms such
as Q'q, and schematically we can represent these by a
trans&tron

O&ln, +

Conservation of energy requires, of course, 0=~,. Since
0 is a low frequency where the density of phonon
states is small, we expect one-phonon decays to be
unimportant for resonant modes.

Two phonon decays can be of a sum or difference
type, and originate from coupling terms such as Qq'q".
For these we can write a relaxation rate"

1
A (q,q') (1+n,+n;)

7 2 Q=atq+atqr +»(q q') (n.—n'), (5)
Q= 47 q co q &

where A and 8 are the appropriate coupling coefficients
and n denotes the equilibrium value of the phonon-
occupation number at temperature T. In the limit of
high temperature, 1/rs is proportional to T, while for
small T, 1/rs approaches a constant.

"K.H. Timmesfeld, phys. status solidi 30, 73 (1968).
"A. A. Maradudin, in Solid State Physics, edited by F. Seitz

and D. Turnbull (Academic Press Inc. , New York, 1966), Vol. 19."R.J. Elliott, W. Hayes, G. D. Jones, H. F. MacDonald, and
C. T. Sennett, Proc. Roy. Soc. (London) A289, 1 (1965).

28 M. V. Klein, in Physics of Color Centers, edited by W. Beall
Fowler (Academic Press Inc. , New York, 1968), Chap. 7.

2~ M. A. Ivanov, M. A. Krivoglaz, D. N. Mirlin, and I. I.
Reshina, Fiz. Tverd. Tela 8, 192 (1966) /English transl. : Soviet
Phys. —Solid State 8, 150 (1966)j.

~ H. Bilz, D. Strauch, and B. Fritz, J. Phys. Rad. Suppl. 27,
C2—3 (1966).
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Similarly, three-phonon decays have the limiting
temperature dependence

1/rs~const (low T)

1/rs Ts (high T) .

Again we expect two- and three-phonon decays to be
unimportant, except possibly the difference processes
such as the second term in Eq. (5), where the phonons
are not restricted to low frequencies.

Scattering processes are perhaps more subtle than
decomposition processes. They broaden the absorption
line by limiting the lifetime of the overall excited state
of the form ~1)t ns ). Schematically, the decay
involved is of the type

[1)( n„e, , . . .) ~1)( n, a1, n, W1, . . .),
and can be brought about by anharmonic terms like
Q'q (taken to second order in perturbation theory) or
Q'q'q" (taken to first order). In either case these give a
relaxation rate"

I.O

.8—

O
.6-

H

4—

C(qq')n, (n;+1) .

0~c/F g6~x

ar„=r(T)—r(o) =p
Q~

dx, (7)
(e' —1)

In the Debye approximation for the phonons, this
expression for the line broadening becomes~ '

I I

5 IO

Temperature ('K)

I

l5

0

hr„-T' (low T)
Ar„Ts (high T).

The scattering terms also give rise to a frequency shift'~

(T~4 e&& x'dx
sn..=n(o) —n(T) =&i

&o) . (e*—1)

There will, of course, also be a frequency shift from the
anharmonic terms which give rise to thermal expansion.
This contribution can be estimated through the hydro-
static strain coupling coefficient 2 (A i,)', by

an..=W (W „)LAa/a(0) j, (9)

where a(0) is the lattice parameter and Aa =a(T) —a (0).
To account for the effects of thermal expansion of

the lattice on the temperature dependence of the
center frequency, we have used the data of White"
for the lattice parameter a(T). An, has been calculated
form Eq. (9) using the value of 2 (Ai, ) obtained from
II. The temperature dependence is largest for KBr,
which has the largest hydrostatic coupling coefficient,
and is shown as a dashed line in Fig 1(a). Som. ewhat

s' G. K. White, Proc. Roy. Soc. (London) A296, 204 (1965).

where k 0~,/h is the Debye cutoff frequency. This formula
demonstrates the limiting behavior of the scattering
relaxation rate

Fro. 6. I(T)/1(0) versus temperature for KI:Ag+. Solid
curve is calculated from Eq. (19) with 0@=11 cm '.

smaller shifts due to thermal expansion are expected
for NaC1 as illustrated by the dashed line in Fig. 3(a)
and for KI, by the dashed line in Fig. 5(a).

In 6tting the remainder of the temperature depend-
ence of the center position with Eq. (8) we find it
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FlG. 7. Temperature dependence of the absorption coefficient
in the vicinity of a resonant mode in Mnp2. 'Eu'+. The absorption
is shown for three sample temperatures. The solid curve is for
2 K, the dashed curve for 15'I, and the dash-dot curve for 2$'K,
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FIG. 8. Integrated absorption strength of the resonant mode
in MnF2.' Eu'+. The solid circles illustrate the temperature depend-
ence of I(T). The X's measure the strength of the line plus the
high-frequency shoulder shown in Fig. 7. Solid curve represents
the intensity for the 0 —+ 1 transition for a simple oscillator as
given by Eq. (10). The dashed curve is the intensity for the
0 —+ 1 transition of a one-dimensional square well.

necessary to set 0', =26'K for KBr:Li+. Two calculated
curves are shown in Fig. 1(a), one for 0'=26'K and
one for 0,=174'K, which is the Debye temperature
of KBr. The smaller value of 0', gives a much better
fit to the experimental data. In fact fits with 0',
=26&10'K work equally well because of the scatter
in the experimental data.

It is perhaps more interesting that similar values of
0', must also be used for the other resonant mode
systems. For NaCl:Cu+, 0', =33'K fits the experi-
mental temperature dependence much better than
setting 0', equal to the Debye temperature as shown in
Fig. 3(a). Similarly, for KI:Ag+ Fig. 5(a) shows that
0', =25'K fits the temperature dependence of the line
shift reasonably well.

To account for the temperature dependence of the
linewidths we first try the scattering contribution
described by Eq. (7). For KBr:Li+ we find that a
reasonable fit is obtained for 0'=26'K, but not for 0",
equal to the Debye temperature. These curves are
shown in Fig. 1(b). Good agreement with the experi-
mental results is also obtained for NaCl:Cu+ LFig.
3(b)) and for KI:Ag+ )Fig. 5(b)) using the same 0', 's
as found for the frequency shift.

So far we have neglected all decay processes. If
decay processes are important, the significant contri-
butions to the sums in Eq. (5) come from regions of

large density of states. Weber and Nette4 have fit the
linewidth for NaCl: Cu+ using such a two-phonon
decay. Their 6t requires that there be peaks in the
density of states separated in frequency by the resonant-
mode frequency. Because all three resonant-mode
systems have essentially the same temperature depend-
ence, it seems fortuitous that there should be density
of states peaks separated by the resonant mode fre-
quancy in all three cases. Unfortunately the difference
between the scattering processes and decay processes
are largest at high temperatures where the experi-
mental uncertainty is also largest so we cannot dis-
tinguish between these two processes unambiguously.

B. Temperature Dependence of Intensity

One simple explanation of the temperature depend-
ence of the ZLP line lies in the anharmonicity of the
resonant mode itself, i.e., terms such as Q' in the
potential. These have been shown to be important for
the interpretation of electric-field experiments. "Terms
such as these will break down the regular spacing of
the harmonic oscillator levels, so that the 0 —+ 1
transition does not coincide with the 1—& 2 and higher
transitions. If the shift in levels is larger than the
linewidth of the individual transitions, then only the
0 —+ 1 transition contributes effectively to the ZLP
line and its intensity will decrease as the ground state
is thermally depopulated. Assuming that the an-
harmonicity is not too large so that we can still use
the harmonic-oscillator partition function, one finds
for a one-dimensional oscillator that

1(T)/1(0) (1 g
—AolkT)2

For a three-dimensional oscillator, on the other
hand, the first-excited state is threefold degenerate but
only one state is important for each polarization. Thus

I(T)/I(0) as given by Eq. (10) is plotted for the
resonant mode in MnF2'. Eu'+ in Fig. 8. To estimate
the change in intensity when the anharmonicity is very
large, we have also used a square-well potential for
the resonant mode and plotted the intensity as the
dotted line in Fig. 8. The experimental data for
MnF2'. Eu'+ lies between these two extremes. Also
from Fig. 7, the 1~2 transition may be identified as
the line appearing about 1.5 cm higher in energy than
the 0—& 1 line. The total integrated intensity of the
main line plus the side band remains essentially
temperature-independent as illustrated by the X's in

Fig. 8. Thus for MnF2'. Ku2+ the anharmonicity of the
resonant mode itself gives a simple, satisfactory explana-
tion of the temperature dependence of the absorption
strength.

328. P. Clayman and A. J. Sievers, Phys. Rev. Letters 2I,
1453 (1968).
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Figure 9 shows a plot of the absorption strength
versus temperature for KBr:Li+, NaC1: Cu+, and
KI:Ag+. The solid line is for a simple three-dimen-
sional harmonic oscillator 0 —+ 1 transition as given by
Eq. (11). We have normalized the temperature scale
by setting hO=kTO. For these systems it appears that
the explanation in terms of the resonant mode an-
harmonicity does not work except perhaps for KBr:Li+.
Since other measurements of the anharmonicity of
these three systems (such as the splitting of the line
under a uniaxial stress') suggest that all three reso-
nances are rather similar, it is somewhat unsatisfactory
to accept an explanation for KBr:Li+ which fails
disastrously for the other two. Also there is no evidence
for a resolved 1 —& 2 transition in any of these systems.
Thus we suggest that anharmonicity of the resonant
mode itself is not the answer for these three alkali
halide modes, and instead we look for another mecha-
nism which will produce a temperature dependence of
the ZLP line.

At this point a model recently proposed by Svare"
deserves some comment. His idea is that the Li+ is
displaced from the normal lattice site and moves in a
curved potential box around this lattice site. Although
he can roughly account for the observed lines at 16,
43, and 83 cm ', a weak point in his model is that it
predicts a line at (43—16)=22 cm ' to appear as the
16-cm ' line disappears with rising temperature. No
such line has been observed so we continue our search
for the appropriate model.

Anharmonic coupling of the resonant mode to the
lattice modes would appear to provide the next explana-
tion of the ZLP intensity. However, here we come up
against some problems. We have seen that the widths
and shifts of the resonant mode lines can be interpreted
well in terms of coupling terms, using perturbation
theory to calculate the relevant expressions.

On the other hand, the changes in intensity are
sometimes so large (DIP 1) that we cannot seriously
expect perturbation theory to be very useful except
where the changes are small; i.e., at very low tempera-
tures. There appear to be two methods of escape from
this predicament, neither of them very satisfactory.
The first is to extrapolate the results of perturbation
theory blindly beyond their region of validity. This
procedure has been hinted at in a number of treatments
of this problem, 5 ~4 the idea being to write

I(T)=1 x(T)+ = e—*&r&— (12)

This clearly has little to recommend it and we do not
pursue it any further at this stage.

The second approach makes use of the well developed
theory for the intensity of electronic transitions at
impurities in crystals, when coupling to the lattice

"I.Svare, Solid State Commun. V', 1051 (1969).
'4G. Benedek, in Localised Recitations in SoNds, edited by

R. F. %allis (Plenum Press, Inc. , New York, 1968).
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Fro. 9. I(T)/I(0) versus normalized temperature (T/To) for
three resonant mode systems, where kTO ——hQ. c—NaC1:Cu+,
p—KBr.'Li+, and &&

—KI:Ag+. The curve is for the three-
dimensional simple-oscillator model described by Kq. (11).

modes is considered. It is not clear whether this theory
can justifiably be applied to the case of a resonant
mode, but nevertheless we now try to describe the
experimental data in these terms.

A'(1' )
S,=

2M,e'Rheo,
(13)

where A(F ), is the static-strain coupling parameter
for a strain of symmetry F, M~ is the effective mass of
mode q, v is the Debye sound velocity, and i7 is the
number of unit cells in the crystal. The assumption
implicit in Eq. (13) is that the linear coupling to
dynamic strains (phonons) is the same as to the static
strain of the same symmetry. Since we are using the
Debye model the appropriate effective mass for ns,

1.Linear Colp/ing to a Debye Spectrmm of Modes

One of the attractions of the linear coupling model is
that it is possible to estimate the parameters 5„ the
dimensionless linear coupling parameter, from the
results of uniaxial stress measurements, since these
measure the coupling of the resonant mode to lattice
strains. This is outlined in Appendix It (see also Refs.
7 and 10). Using the Debye model for the phonons it is
shown in Appendix 8 that
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TABLE I. 9 from temperature dependence of I(T)
and uniaxial stress measurements.

Defect
system

A

~ ~

1(T) (from uniaxial
from ln versus T~ stress using

1(o) bulk elastic
compliance s

erg/unit strain erg/unit
strain)

KCl R
center"

KCl:H b

KBr.' Li6Br'
NaC1: CuCl'
KI:AgIo

4.6X10-»

6-9X10 '4

5.7X10 "
2.8X10 '3

7.7X10-»

2.0X10-»

2.9X10 14

3.5 X10-~4

3.5X10 14

3.2X10 '4

157'K

290'K
~ ~ ~ d

~ ~ ~ cI

a Stress coefficients from Ref. 12.
b Stress coefficients from Ref. 14.' Stress coefficients from Ref. 2.
d eo cannot be determined because I (0)/It t&l is not known for resonant

modes.

is the acoustic mass nz=rs(mt+rws) of a diatomic
lattice. Knox" has shown that the fraction of normal
modes of point symmetry with respect to the impurity-
point group is

f(F.) =n.'/g+0(E '"),

the results of uniaxial stress experiments. The results
are shown in Table I, where it can be seen that the
measured strain-coupling coefficients are ten times too
small to explain the temperature-dependence data.
Since the "Debye —Wailer factor" depends on the square
of the coupling coeKcients, this means that the calcu-
lated temperature dependence would be 100 times too
slow. Taking co,«~D so that we cannot use the approxi-
mation Eq. (18), makes the disagreement worse. Thus
it appears that linear coupling to a Debye spectrum of
lattice modes cannot explain the temperature depend-
ence. On the other hand, there is reasonable agreement
between stress and temperature dependence data for
the U center in KC1 and also the E~ band in KCl as
can be seen in Table I, so perhaps the idea of correlating
the two measurements does have some justification.
This could, of course, simply mean that the model we
have been using is inapplicable in this case, but for the
time being let us assume this is only the case as far as
a Debye spectrum is concerned, and pursue the linear
coupling model further.

Z. Linear CoNPtieg to Other Resorsaet Modes

where e is the dimension of the irreducible represen-
tation F and g is the order of the point group. We are
concerned with a point group 0~ so that the relevant
A (F ) are the coupling coefficient for At„Eg, and Tsg
strains as measured in stress experiments. Weighting
each 5, according to Eq. (13), the final result is

So far we have assumed that the only lattice modes
coupled to the resonant mode could be represented by
a Debye spectrum. This assumption. was able to explain
the width and shift data, where it was found that only
low-frequency lattice modes were effectively coupled
to the resonant mode. However, such a picture is not
capable of explaining the intensity measurements, and
we therefore look for a modification of the coupled
mode spectrum which may be able to improve the
situation.

It is known from thermal conductivity measurements
that an impurity, as well as inducing an infrared active
resonant mode, can induce inactive modes of similar
frequency. In fact such modes have been observed in
KI Ag+,"KBr Li+" and NaCl: Cu+."Table II shows
the frequencies determined from thermal-conductivity
resonances for the inactive modes, the uncertainty in
the determination being about 20%. We now assume

(T ' 8'r xdx
I(T)=exp —5eA' 1+4~

(O~, s e' —1
(15)

where

and"
Se——9(o,s/4m''A(vns, O'. =Ate. /k

A'=A'(Atg)/48+As(Eg)/12+(3/16)A'(Tsg). (17)

This is obtained using a slight generalization of a
Debye spectrum in which there are 3S normal modes
with maximum frequency ~D, but we assume that only
those modes with frequency less than co, are coupled
to the resonant mode. This is to allow for the possi-
bility that only low-frequency modes are coupled, as
was the case for the width and shift.

Note that for T«O', we have

TABLE II. Qz from thermal conductivity and the value of S@
required to fit temperature dependence. [The values of QE in
parenthesis are those used in the fits to Eq. i18).]

Thermal
conductivity
n~ (cm-~)I(T) exp{ p+2L1+6 6(Ts/OH 2)$} (18) Defect system

i.e., a plot of lnI(T) versus T' should yield a straight
line, a result found to hold experimentally. 3 From the
slope of such a plot it is possible to calculate 2, since
the unknown ~, cancels in the slope. This value of 9
can then be compared with the value calculated from

KBr.Li'Br
KBr 'LizBr
KI:AgI
NaCl: CuCl

a Reference 36.

31~
31.a
12b
46'

b Reference 37. e Reference 38.

1.7(0@=20cm ', T~——29'K)

1.94(Q =11 cm ', T =16'K)
0.33(0~=31 cm ' T~=45'K)

"R.S, Knox, Solid State Commun. 4, 453 (1966).
"Note that A' should be used in place of A' in I and that

A (Aig), A (E,), and A (T2,) are denoted by A, 8, and C, respec-
tively, in II.

3'F. C. Bauman and R. 0. Pohl, Phys. Rev. 140, A1030
(1965).

'8 F. C. Bauman, J. P. Harrison, R. 0. Pohl, and D. W. Seward,
Phys. Rev. 159, 691 (1967).

'9 R. F. Caldwell and M. V. Klein, Phys. Rev. 158, 861 (1967).
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that one of these modes (of even parity) is included as
one of the modes q in Eq. (6). Furthermore, since the
Debye spectrum of modes has been shown to be
ineffective in producing temperature dependence of the
intensity, we assume that we can neglect this contri-
bution and restrict our discussion to the contributions
from the even mode.

Assuming therefore just one even mode, the intensity
of the ZLP line is given by

where

and

I(T)= e—'eZ0(Cg),

y~ ——S~(2n~+1)

C~ ——S~ csch (hQ~/2k T) .

(19)

(20)

(21)

"D. B. Fitchen, in Physics of Color Centers, edited by W. Beall
Fowler (Academic Press Inc. , New York, 1968)."F.S. Ham, Phys. Rev. 166, 307 (1968).

4' G. Benedek and G. F. Nardelli, Phys. Rev. 16'7, 837 (1968).
4' G. Busse, W. Prettl, and L. Genzel, Phys. Letters 2'7A, 438

(1968l.

In this case we must include the Bessel function Zo(C~)
since Sz is now of order unity rather than E ' as for
extended lattice modes. This point is discussed in the
literature. "

Regarding S& as a variable parameter we can try
to fit the observed temperature dependence to Eq. (18).
The results are shown in Figs. 2, 4, and 6 as solid lines.
The required values of Sz are given in Table II. Some
fiexibility in the value of Qz has been allowed to improve
the fit. We can push this model a little further by again
trying to calculate Sz from the strain-coupling coe%-
cients, using a somewhat different approach from that
used in the discussion of the Debye model. In this case
we assume that the even mode involves motion only
of the defect nearest neighbors, so that we are dealing
with one of the familiar normal modes of the octa-
hedron with symmetry A&„E„or T2, . Making an
identification between the strain at the defect site and
the displacement of the nearest neighbors, we can
calculate (see Appendix B) the way in which the energy
of the resonant-mode transition depends on the even-
mode normal coordinate. This in turn gives a value for
Sz corresponding to an even mode of particular sym-
metry. The details of a calculation such as this have
also been discussed by Harn in connection with the
Jahn —Teller effect, 4' where similar considerations are
involved.

The results of calculating Sz in this way are shown
in Table III. Two sets of numbers appear. The first
set assumes that the local elastic constants are the same
as those of the bulk crystal, so that the strain coupling
coeKcients are those given in II. The second set uses
the local elastic constants calculated by Benedek and
Nardelli, 4' which produce modified values of the coupling
coefficients. ' 4' For each of the three systems considered
there is some measure of agreement with the value of
S~ from the temperature dependence data (Table II),

TABLE III. Values of Sz calculated using measured strain coupling
coeKcients and the cluster model of Appendix B.

Defect
system

Bulk lattice compliances
S(A Ig) S(Eg) S(T2g)

Local complIances
$(AI ) S(E ) S(T2 )

KBr:LiBr
KI:AgI
NaCl: CuCl

2.6 3.9
1.9 26.1

1 &(10 2 2.4

1.0
3)(10 3

~0

0.9 2.9 0.7
0.6 5.9 0.8

5 +10 2 0.23 6)(10

provided one selects the most favorable choice from the
three possible symmetries for the even mode. Some of
the numbers are embarrassingly high, but bearing in
mind the rather crude nature of the calculation the
agreement is not too bad.

The even mode can presumably contribute to the
scattering mechanism for line broadening and frequency
shift since it is really several normal modes rolled into
one and excitations could be scattered from one normal
mode to the others. In this limit the temperature
dependence of the linewidth and center frequency
reduce to

and
AF.,=P' sinh —'(Ts/2T)

AQ„=8'Pcoth (Ts/2T) —1j,
(22)

(23)

respectively. We have set hQE=kTz and used the Qz
from Table II which is required to fit the temperature
dependence of the line strength to compare Eqs. (22)
and (23) with experiment. The comparison is shown
by the dashed line in Figs. 1, 3, and 5. By choosing P'
and 6' to fit the experimental results at one temperature,
good agreement is obtained over the entire temperature
range measured. Thus there is some internal consistency
in the idea that the active resonant mode is coupled
most strongly to another resonant mode of even
symmetry, and this model is at least consistent with
thermal-conductivity measurements.

IV. CONCLUSIONS

We have found that the linear-coupling model using
the Debye-Wailer factor Eq. (3) Lor Eq. (18)j is
capable of explaining the temperature dependence of
the ZLP line provided the active mode is coupled to
another resonant mode, but not if the coupling is to a
Debye spectrum of lattice modes. However, our new
model of linear coupling to an even mode introduces
some problems of its own. This model would predict
sidebands at Q~Q~ with strength S~ compared with
the ZLP line. Since the S~ are 1, it is rather awkward
that no sidebands are in fact observed. One explana-
tion, indicated by thermal-conductivity measurements,
is that the even modes are broad resonances, and thus
would be diS.cult to see in the infrared experiments.
The fact that no lines are observed which increase in
intensity with rising temperature to compensate for
the decrease in intensity of the ZLP line is also in con-
flict with the general sum rule J'n(&u)des=const, but
again the effects may be too broadly distributed over
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the spectrum to be easily seen. Nonlinear dipole
moments are a possible explanation of some of these
anomalies, but so little is known of their relevant
magnitudes that no firm conclusions can be drawn here.

Even accepting these drawbacks, we still have to
try and justify the use of the linear coupling model,
i.e., the use of the Debye-Wailer factor and the analogy
with the treatment of electronic transitions. For a
vibrational system there can be no terms purely linear
in the q's in the potential, since these are already
incorporated in the harmonic Hamiltonian. Any
"linear" coupling must therefore originate in an-
harmonic terms, but since these will contain both Q
and q, they will, in general, not only couple the resonant
mode to the other modes, but also couple diferent
levels of the resonant mode itself. One of the basic
assumptions of the electronic theory is that the coupling
does not mix the electronic states, but only couples
them to the lattice modes, so that here there is a clear
difference between the two situations. The lowest
order anharmonic coupling term linear in q is of the
form Q'q, and it is this term which has received most
attention as a candidate for producing a Debye-Wailer
factor. In fact, it can be shown"" that this term does
result in an expression like Eq. (3), but only if Q))~„
i.e., for high-frequency localized modes. If this condi-
tion is not met then the mixing terms become important,
and it does not seem possible to carry through the proof
which results in the Debye-Wailer factor.

Thus the analogy does not seem to hold for resonant
modes, where 0 co,. All that can be done in this case
is to resort to perturbation theory, which gives as a
leading term

explains the temperature dependence, but also gives
reasonable correlation with coupling coeKcients meas-
ured in static-stress experiments. It remains to be
shown whether the agreement is fortuitous, or whether
it is 6rmly based on a (as yet undeveloped) complete
theory of anharmonic properties of low-frequency
resonant modes.
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APPENDIX A: SUM RULE J«n(u)dh«= CONST

Strauch' has proved this sum rule for an anharmonic
system with a linear dipole moment, using the an-
harmonic one-phonon Green's function. We wish to
present here an alternative simple proof of the theorem.

The Hamiltonian we consider is expressed in terms
of harmonic normal modes Q and q, and has the form

where H(Q) = —(A«/2M@) V '+kQ' etc., and H'(Q&q) is
the anharmonic part of the potential.

We take the dipole moment to be M=sQ, where s
is an effective charge.

Allowing for negative contributions from stimulated
emission, the absorption coeKcient may be written
(ignoring multiplicative constants)

~(~)=»' 2 I (flM I
i) I'~x'~(l ~x'I —~) (A1)

(nq+n, +1)(Q+(o,)
~((o)d(v =1—Q 4S«'Q

sLP ~ (2Q+ «)'

(n, —nq) (Q —«««)

(2Q —a),)'
(24)

where cur; ——(Er—E;)/A. ~i) and
~ f) are eigenstates of

H with eigenvalues E; and Ey, and Av; indicates a
thermal average over the states (i).

By expanding the commutator PQ, PI,Q)$ it is
straightforward to show that

where 5,' is again a dimensionless coupling parameter
analogous to S« in Eq. (4). Note that the above expres-
sion is somewhat different from the one given in Ref.
15, where the transition probability rather than the
absorption coefficient was calculated. Since the latter
is proportional to the transition probability multiplied
by the frequency, terms in the lineshift must be taken
into account. It can be seen that Eq. (24) reduces to
the leading term in the expansion of the Debye-Wailer
factor in the limit Q&)co,.There may be other conditions
under which the leading term has a temperature
dependence like (2n, +1), for example, if Q=cv«. How-
ever, we prefer not to speculate further on similarities
between the perturbation theory and the Debye-Wailer
factor, but rather remark that as an empirical expression
the latter seems to work, provided coupling to an even
resonant mode is assumed. This approach not only

Q (Ef E~) [ (f( Q) i) (
'=A'/2M' for all i (A2).

f

This may be recognized as a disguised version of the
Thomas —Reich —Kuhn f sum rule in atomic spectra.

Combining (A1) and (A2) it follows that

n(o&)d««= As'/2Mo ——const.

It is trivial to generalize the result to the case of an
arbitrary number of active modes, the result being

n((o)d««=h g s;«/2M;
0

in an obvious notation.
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APPENDIX B: RELATION BETWEEN STRAIN
COUPLING COEFFICIENTS AND

HUANG-RHYS FACTORS

P q~ikqna

QcV a
(81)

where a is the unit cell length and cV is the number of
unit cells. The strain at m=0 is therefore

P q(gikga 1)
a+E a

z

P k,q for long wavelengths k,a«1. (82)
E a

Thus we can identify, in the long wavelength limit, a
strain

1. Debye Model

This is most simply illustrated by considering a
one-dimensional chain. The displacement of atom e
is given in terms of the normal modes q by

The approximation C, ~ co, is discussed in great detail
using alkali halide normal modes by Maradudin. ~

Exx tpy tzz X/g q (89)

where a is the nearest-neighbor distance.
In the breathing mode the normal coordinate q~ is

related to X by

qg
——1/+6(Xg+X2+X3+X4+X5+Xq), (810)

where Xj is the displacement of ion 1, etc., and in this
normalized form the effective mass of the mode q~ is
the nearest neighbor mass m."

Clearly we have, since X&=X2=X3, etc. =X:

2. Cluster Model

In this model we assume that only coupling to the
nearest neighbors is important in both static stress
experiments and the dynamic case. Consider for example
the A~, "breathing mode" of the octahedron, and
suppose each neighbor moves a distance X towards the
impurity. The compressive strain is then given by

e, =k,q/QN (83)

with mode q. The phase factor i may be ignored.
We define a strain coupling coefficient for symmetry

I' by the equation

(34)

so that
q& =/6X

e.,=qg/a+6.

(812) is analogous to (A5).
In a stress experiment we have'

(311)

(312)

where hE is the change in transition energy for
strain e .

From (83) and (34) we can therefore write the
change in transition energy linear in q as

(35)

AEA A(A1 )(t +E +t )

so that it follows from (812), (36), and (88) that

3A'(A g,)
S(Ag, ) =

4nsAQg'u'

In the linear-coupling theory, ~ the transition energy where Q& is the frequency of the A&, mode.
is assumed to depend on q through a term The analogous expressions for E, and T2, modes are

QE, =C,q, (86)

and with this definition the Huang —Rhys factors are
given by and

6A'(Eg)

mAQ~'a'
(815)

Sg ——Cg'/2m, A(og.

From (85) and (36) it follows that

(87) 2A'(T2g)
S(Tmg) =-

3mAQz'u'
(816)

S,=A'(r )/2m, v'1VA(o„

where v is the Debye sound velocity (=a&,/k~).

(38) The numerical factors result from considerations such
as those leading up to (811) (see, for example, Ref. 41).


