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A dielectric theory of chemical shifts of ground-state donor energies of group-V impurities in Si and Ge is
developed. With three disposable parameters, good agreement with experiment is obtained for P, As, and
Sb impurities in Si and Ge and Bi in Ge. Predictions are made for N in Si and Ge.

1. INTRODUCTION

MPURITY states in semiconductors have been the
subject of intensive investigation for several dec-
ades. It was recognized at an early stage! that when the
binding energy, labeled E7, is small compared to the
minimum energy gap AE., between the conduction and
valence band edges, one may treat the particle in a
bound state as a wave packet, moving with a kinetic
energy described by an effective-mass tensor. Denote an
appropriate average of the principal values of this tensor
by m™* and let € represent the low-frequency limit of the
electronic dielectric constant of the crystal. Then in the
wave-packet or effective-mass approximation (EMA),
the binding energy E, is given by dimensional analysis

as
Eo= (m*/mes?) Ry. (1.1)

For group-V donor impurities in Si and Ge, Eq. (1.1)
gives Ey~0.03 and 0.01 eV, respectively.

Experimentally, one finds that all p energy levels with
principal quantum number %2> 2 are independent of the
particular impurity to which the electron is bound.?
This means that the details of the interaction of the
donor electron with a given impurity are unimportant,
and one is justified in replacing the impurity potential
with the potential of a point charge, screened by the
dielectric polarization of the crystal. One is also justified
in treating the kinematics of the electron motion by
wave-packet techniques based on the energy bands
E, (k) of the pure crystal.

The situation is quite different for the s states, and
for the 1s state in particular. Because the impurity wave
function ¥ (R) is nonzero at R=0 the 1s energy levels
are found to vary with the potential of the given im-
purity. In the case of many-valley semiconductors the
impurity potential lifts the degeneracy and the splittings
can be treated by group theory.? It is clear, however,
that specific calculations will be required to account for
the variations in the central cell interaction from one
impurity to another.

Although the impurity potentials are quite compli-
cated, one might hope to be able to estimate the ap-
proximate magnitude of the corrections from macro-
scopic arguments. If we denote the locations of the

1 G. Wannier, Phys. Rev. 52, 191 (1937).

2 W. Kohn and J. M. Luttinger, Phys. Rev. 98, 915 (1955); W.
Kohn, Solid State Phys. 5, 257 (1957), see especially Eq. (5.44),
pp- 281 and 290.

1

symmetrically equivalent band edges in k space by k.,
then corrections to the hydrogenic model will arise from
terms in [, (k—ka) which are fourth order in (k—k,).
Similarly, the EMA makes the approximation of
neglecting variations in the impurity potential within
one atomic cell of radius a, compared to the Bohr radius
ao of the orbit in question. These terms can be shown? to
be of order ¢, where the macroscopic quality factor ¢
is given by

¢=(AEw/E1) (ag/a)>>1. (1.2)

Kohn argued? that these terms would be small in
semiconductors.

The fact that corrections to the EMA were not an
important factor in determining central-cell interactions
was brought out further by consideration of parallel
terms in the exciton and substitutional rare-gas im-
purity levels of rare-gas solids. In that case it turned out
that the central cell interaction could have either sign,
although the corrections to the EMA always act to
lower the 1s energy. Hermanson and Phillips® have
noted that the macroscopic corrections associated with
q give a poor account of the difference between the
EMA ground-state energy £y and the observed energy
Ejp. It is convenient to define a relative hydrogenic
defect d as ’

d= (E;—Eo)/E,. (1.3)

One would expect that large values of the macroscopic
quality factor ¢ would correspond to small values of the
hydrogenic defect d, and vice versa. If one compares®
values of ¢ and d in semiconductors with those in rare-
gas solids, one finds that although ¢ in the former
exceeds ¢ in the latter by factors of order 100, d in the
former exceeds d in the latter by factors of order 3.

From this discussion we see that to understand the
nature of impurity binding energies it is necessary to go
beyond macroscopic arguments and come to grips with
the nature of the impurity potential, especially in the
central cell occupied by the impurity itself. A dramatic
example of the importance of the central-cell potential
is afforded by isoelectronic impurities, where the macro-
scopic Coulombic potential is zero, yet electrons or holes
can be bound by the short-range force associated with
the central-cell impurity potential.4

There have been two apparently successful attempts

8 See Table T in J. Hermanson and J. C. Phillips, Phys. Rev.

150, 652 (1966).
¢D. G. Thomas and J. J. Hopfield, Phys. Rev. 150, 680 (1966).
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1 IMPURITY BINDING ENERGIES. I

to treat central-cell interactions quantitatively. For the
rare-gas solids Hermanson and Phillips, using no
adjustable parameters, succeeded in fitting energy levels
and oscillator strengths quantitatively for Xe impurities
in Ne, Ar and Kr, and excitons in Kr and Xe. The sign
of the central-cell correction to the ground-state energy
is reversed in Xe compared to Kr, and this too was
explained with the aid of no adjustable parameters.

A different approach to the problem of ground-state
donor binding energies in semiconductors was taken by
Kohn and Luttinger.? They considered only one case in
detail, P in Si. No attempt was made to calculate E;.
Instead this value was taken from experiment, and the
hydrogenic wave equation was integrated inwards from
r= . Because E; is not an eigenvalue of this Sturm-
Liouville equation, the solution so obtained is a linear
combination of the solutions which are regular and
irregular at r=0. This means that for » < ay, the solution
grows rapidly (see Fig. 11, p. 293 of Ref. 2). In order to
make ¥ (0) finite, it is assumed that ¥ (0) =~y (a), where a
is the atomic radius. It is then pointed out that the
value of ¥ (0) so obtained is in good agreement with the
value obtained by ENDOR studies of the hyperfine
interaction. For other impurities in Si such as As and
Sb, it is stated that the perturbation is much more
violent, presumably because the cores are not isoelec-
tronic to Si. How the hyperfine interactions are to be
related to the cutoff parameter a is not stated.

While the agreement between theory and experiment
for [¢(0)|? obtained in this way is gratifying, one should
note that one experimental number is explained through
the introduction of one free parameter. Moreover, the
central-cell correction for Sb is smaller than for P, yet
[¢(0)|2is larger. This is explained by assuming that the
cutoff radius is larger for Sb. But Kohn and Luttinger
also argue that [¢(0) |2 is insensitive to the choice of
cutoff, because a<Kao. At the same time, one would
expect a larger cutoff to give rise to a larger, and not a
smaller, central-cell defect.

These questions become even mcre perplexing when
we turn to the case of group-V donors in Ge. There the
smallest central-cell correction occurs not for As im-
purities (whose cores are isoelectronic to those of the
Ge host), but rather for Sb, where according to Kohn
and Luttinger a ‘“violent” perturbation is expected. It
is evident that the approach based on using experi-
mental values of £ together with an adjustable cutoff
radius to explain the hyperfine coupling has left us
where we began. This is not surprising, because there is
one free parameter (the cutoff radius) for each experi-
mentally measured value of [¢(0)|2 Thus one is forced
to conclude that little can be learned from |¢(0) |2 about
the difference £;— E,.

Our view here is that central-cell interactions are best
analyzed by employing, insofar as possible, scaling
arguments which are free of specific assumptions con-
cerning the behavior of ¢ (r) for r<ao. For example,
associated with each impurity there is undoubtedly a
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TaBLE I. Central-cell corrections in meV to group-V donor
impurity binding energies. The EMA values are from Ref. 6, and
the remaining three columns are from this paper. One may com-
pare AEg=AFEy+AE,; with (AE.)expt the experimental values.
The latter are based for Ge on J. H. Reuszer and P. Fisher [ Phys.
Rev. 135, A1125 (1964)] and for Si on R. L. Aggarwal [Solid
State Commun. 2, 163 (1964)7]. The values actually quoted are
corrected values obtained from Ref. 8. The values marked by an
asterisk have been adjusted to fit experiment.

Si Impurity (AEg)expt (AE)Ema AL AEp; AEg
(Eo=31.27) N ce 98 16 114
P 14.26 7 14* 0* 14*
As 22.46 17 7 9 16
Sb 11.46 19 0 11* 11*
Bi 39.68 ae 2 13 15
Ge Impurity (AEc)expt AEy AEp AE,
(Ey=9.81) N se 36 2.5 39
P 3.09 7.0 —2.5 4.5
As 4.38 4.4* 0.0 4.4*
Sb 0.52 1.0 0.5 1.5
Bi 2.98 3.0 0.7 3.7

strain field which extends well beyond the central cell.
Therefore we will not assume that ¥ () can be obtained
from a hydrogenic wave equation valid in the region
aSr. Instead we will examine the experimental values
of E;— Eyand attempt without prejudice to construct a
satisfactory model for the chemical shifts in £;— E,. By
satisfactory we mean a model in which the ratio of free
parameters to observables is, say, less than 0.5, com-
pared to the Kohn-Luttinger value of 1.0.

An obvious approach to the nature of the central-cell
potential is a chemical one based on electronegativity
differences.?'® The values of E;— Eare shown in Table I
for group-V donors in Si and Ge. At first the chemical
shifts appear random, with the possible exception of the
fact that E;— E, is smallest for Sb in either Si or Ge.

The purpose of this note is to suggest that the eight
values of E;—E, can be explained in terms of three
basic mechanisms, the difference in bond strengths be-
tween impurity and host, the difference in core-core
repulsive forces,®and the difference in p-d hybridization.
We believe that the electronegativity difference is im-
portant not primarily through its contribution to the
central-cell potential, but through the way it affects the
valence-bond energy, and the dynamical changes in this
bond energy produced by the presence of the impurity
electron. The latter alters bond energies and produces
additional local strains near the impurity of an electro-
strictive character. These dynamical strains in turn
affect the energy associated with core-core repulsion.
All these energies contribute to E;— E,.

An interesting discussion of E;— E, for shallow donor
levels in Si from the EMA point of view has been given
by Morita and Nara.” Local strain effects on the static

8 J. A. Van Vechten, Phys. Rev. 182, 891 (1969).
(166%) C. Phillips, Phys. Rev. Letters 22, 285 (1969); 22, 645
969).
7 A. Morita and H. Nara, J. Phys. Soc. Japan 21, $S234 (1966);
G. Weinreich, J. Phys. Chem. Solids 8, 216 (1959).
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EMA impurity potential are estimated from deforma-
tion potentials. Agreement with experiment is only fair,
as shown in Table I. The EMA calculation omits
dynamical rearrangement energies of central-cell valence
electrons.

The dynamical corrections to the long-range (Cou-
lombic) part of the impurity potential arising from
electron-electron interactions have been discussed by
Sham,8 who has shown that as 7 — an additional term
of order b2 may be present in the Coulombic potential.
The importance of this term can be estimated by
studying #p impurity levels with #=2 and 3, for which
central-cell corrections are negligible. Faulkner has
shown? that the ratio of these binding energies is given
correctly (within the limits of experimental error) by the
Coulomb potential, with =0. The error is at most
0.05 meV, compared to central-cell corrections of order
10 meV. Sham’s long-range dynamical corrections are
therefore 200 times smaller than the short-range dy-
namical ones discussed here.

Before we discuss the details of our dielectric model,
we estimate the order of magnitude of central-cell
dynamical corrections for a frozen lattice. If the valence-
bond energy associated with the impurity were the same
as that of a host atom, there would be no local strain
(apart from core effects) and no valence contribution to
AE,= E;—E,. The valence bond energy is of order the
average energy gap E,, where

Ep=Ep+C (1.4)

and- where E; and C are the dielectrically defined!?
covalent and ionic energy gaps. Introduction of the
group-V impurity alters boik Ey and C, although only
the latter measures electronegativity differences. We
expect that four bond energies will contribute a term to
AE, of order

AEy~4|E  (host)— E,(impurity) | P.,  (1.5)

where P, is the EMA probability (based on the macro-
scopic parameters of the host crystal) that the impurity
electron will find itself in the central cell of volume %d?,
where ¢ is the lattice constant. In terms of the EMA
envelope wave function ¥ (r) one has'

P,=1|¥(0)|2%53. (1.6)
From the EMA expressions? for |¥(0)|%, one finds
P.,=0.010 and 0.0006 in Si and Ge, respectively,
allowing for the multivalley nature of the conduction-
band edges. As we shall see, energy-gap differences are
of order 1 €V, so that (1.5) predicts values of AEj of
order 40 meV in Si and 2.4 meV in Ge, in rough agree-
ment with the experimental values shown in Table I.

81 J. Sham, Phys. Rev. 150, 720 (1966).
9 R. A. Faulkner, Phys. Rev. 184, 713 (1969).

1 J, C. Phillips, Phys. Rev. Letters 20, 550 (1968).

1'W. Kohn and J. M. Luttinger, Phys. Rev. 97, 883 (1955).
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2. DIELECTRIC ESTIMATES OF
CHEMICAL SHIFTS

In the presence of the donor impurity, but in the
absence of the donor electron, there is local strain
around the impurity. Qualitatively speaking this strain
arises from mismatch of the valence bonds of the im-
purity with valence bonds of the host lattice. The
addition of donor charge to the central cell displaces
some valence charge from that cell. We may expect that
the bond mismatch reduces the itinerant part® of the
total valence energy, regardless of the sign of [ £, (host)
— E,(impurity) . This loss in energy is itself reduced by
the displacement of valence charge by the donor charge.
Thus the presence of an energy-gap difference between
host and impurity may ¢ncrease the binding of the donor
electron regardless of the sign of this difference, which
accounts for the absolute value used in (1.5). We believe
this valence resonance argument is also important for
isoelectronic impurities.*:¢

The magnitude of the local lattice deformation in-
duced by bond mismatch is determined primarily by
valence-electron deformation potentials, which are simi-
lar for Si and for Ge. However, because the conduction-
band edges in the two crystals fall, respectively, at
points along [100] and [1117] symmetry directions,
where the deformation potentials are very different, the
amount of lattice deformation required to reduce P, to
a value consistent with the local strain is different for
the two crystals. We therefore multiply (1.5) by two
adjustable constants, one for Si and one for Ge, chosen
so that for P in Si,

AE(calc, P)=AE, (expt, P) (2.1)

and similarly for As in Ge. These cases are chosen be-
cause the cores of P and Si, as well as As and Ge, are
isoelectronic, so that the core-core energies discussed in
the following section make little contribution to AE..

We may define E,(impurity) as follows. Let B denote
the impurity, and let £,(4B) denote the average energy
gap of the 4 B crystal, where 4= Al when Si is the host
crystal, and 4= Ga when Ge is the host crystal. Then
the definition is

Ey(B)=3LE,(host)+L,(4B)]. (2.2)

Values of E,(4B) so defined are taken from tabulated
values® of £ and C and are listed for group-V donors in
Si and Ge in Table II. The definition (2.2) is analogous
to the one used to extract atomic form factors from
symmetric and antisymmetric pseudopotential form
factors.”> It also corresponds to noticing that the
situation in the host-B bond is halfway between that of
the host-host bond and an 4-B bond.

Our expression for AE, is therefore

(Ex—Eo) y=AEy=2asi | E 4 (host)
—E,(4B)|P.(S1,Ge) (2.3)

(1;261%%. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
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TasLE II. Average energy gaps for group-V donors in Si and
Ge in eV. All of the values are obtained from the tables of Ref. 10
using the methods discussed in the text, except for Bi. There a
covalent radius (Ref. 14) of Pb which is 69, greater than Sn has
been used together with the methods of Ref. 10.

Si Impurity E, (impurity)
(Eg=4.7) N 7.8
P 5.15
As 4.92
Sb 4.70
Bi 4.63
Ge Impurity E,(impurity)
(E,=4.3) N 7.9
P 5.0
As 475
Sh 4.20
Bi 4.0
with
a5i=0.78, ag.=4.0 (2.4)

fixed by (2.1). The resulting values for AE, are shown
in Table I. The large difference between as; and age In
(2.4) is attributed to the fact that L; is about five times
more sensitive!® to pressure and to chemical shifts than
iS X 1.

From the table we see that the bond theory correctly
predicts that the central-cell correction is smallest in
either Si or Ge for Sb impurities. Good quantitative
agreement is also obtained for Sb and Bi in Ge. Poor
quantitative agreement is obtained for P in Ge, and for
As, Sb, and Bi in Si.

3. VALENCE HYBRIDIZATION

A striking feature of the cases where AE; fails to
account for AE, is that it fails for P (no d core) in Ge (d
core) and for As, Sb, and Bi (d core) in Si (no d core).
Moreover, in the former case, AE ;> AE,, whereas in the
latter cases AE,<AE.. This suggests that d states play
an especially important role in the valence rearrange-
ment energies.

From cohesive energies of diatomic molecules it has
long been known!* that strong p-d hybridization en-
hances bond energies. The enhancement is greatest for
atoms from the Si row, because of the smallness of 3p-3d
promotion energies. We have recently suggested® that
the magnitude of the enhancement for saturated mole-
cules in crystals can be estimated from scaling argu-
ments. These arguments assume that in the absence of
p-d hybridization the cohesive energy of diamond-type
lattices should scale like " with =2 (where d is the
nearest-neighbor distance). Deviations from this be-
havior are attributed to p-d hybridization, which is
assumed to be negligible in diamond itself (because the
2p-3d promotion energy is so large). The significance of

13 J. C. Phillips, in Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., New York, 1966), Vol. 18.

W 1. Pauling, The Nature of the Chemical Bond (Cornell Uni-
versity Press, Ithaca, N. Y., 1960), p. 142 ff.
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n=2 can be understood by scaling the cohesive energies
of MH,4, where M is a group-IV element. Then one
finds'® n=%, which suggests that four of the eight
electrons (those on M) are itinerant, corresponding to
n=2, while the other four (those centered on the
protons) are localized, corresponding to n=1. Other
examples, such as MHj, where M is a group-V element,
confirm the analysis. (In the case of MHj;, one finds
n=1.0, corresponding to the fact that the three bonds
are almost at right angles, and therefore fully localized.)

The p-d enhancements §E,q4 of valence-bond energies
estimated in this way are (in eV/atom): diamond,
0.0 eV; Si, 0.90 eV; Ge, 0.45 eV; Sn, 0.36 eV. To esti-
mate the effect of group-V impurities, assume that p-d
valence enhancement is similar for SiP as for Si,, for
SiAs as for SiGe, etc.

When the impurity charge e, appears in the central
cell, it displaces valence charge of roughly the same
amount to other cells.!® For P in Si, this leads to little
change in valence energy. For As in Si, however, there
is an energy gain of

AE,q(As:Si)=bagiP:(S1)[0E,a(S1) —0E ,a(Ge)], (3.1)

where b is a number of order unity. Fixing & by the value
of AE,=AEqy, i.e.,

AE4—AEy=AFE,, (3.2)

for Sb in Si, we obtain 2.5. One can then calculate
AE ,q(Sb:Si) by replacing Ge in (3.1) by Sn. Then (3.2)
gives AE, for Sb in Si shown as AE; in the last column of
Table I. A reasonable guess for £, in Pb is 0.30 eV;
this gives the value of AE, for Bi also shown in the last
column of Table I.

We see that our model gives good results for As, but
poor results for Bi. This is explained by d-core repulsive
energies, which are!! especially large for Bi.

For Si we have fitted three values of AE,; with two
parameters, not an impressive result. For Ge, however,
we now have only one free parameter (ag.) which is
fixed by AE,(As:Ge). Our remaining three values of
AEg for P, Sb, and Bi in Ge are given by, e.g.,

AE4(P: Ge)=AEy+bag.P.(Ge)
X[6Ea(Ge)—dEa(Si)] (3.3)

in analogy with (3.1) and (3.2). As seen from Table I,
the reversal of sign of AE,q(P:Ge) compared to
AE,q(As:Si) materially improves agreement with
experiment.

4. CONCLUSIONS AND DISCUSSION

We have used three parameters to construct a model
which produces values of AE; which agree with experi-
mental values of AE, to within 2 meV for seven of the
eight cases of group-V impurities in Si and Ge for which

15 J. C. Phillips, Covalent Bonding in Crystals and Molecules
(University of Chicago Press, Chicago, 1970).
16 G. Srinivasan, Phys, Rev. 178, 1244 (1969).
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data are available. The case which fails (Bi in Si) is not
surprising, as Bi also behaves oddly™ as an isoelectronic
impurity in GaP.

A theory which contains three parameters and
roughly fits only seven observables is scarcely unique.
However, Egs. (3.1)-(3.3) predict rather large central-
cell corrections for N impurities in Si or Ge. As can be
seen from Table I, these corrections arise primarily from
AE;, although AE,q is also significant for N in Si.

We believe that although the present theory is not
unique, it does give a useful qualitative picture of the
hitherto mysterious variations of AE, shown in Table I.
Our theory explains why A, is smallest in Si or Ge for
Sb impurities, and it shows that the role of d states is
important in accounting for differences between second-
row host or impurity compared to third-fifth-row host
or impurities. Differences between first-row host or im-
purity and other-row host or impurities are found to be
dependent chiefly on the large difference in size between
first-row atoms and atoms from other rows.

Because the dielectric-bond method of representing
dynamical central-cell energies is so different from a
conventional one-electron wave-packet (EMA) treat-
ment, it may be useful to indicate here some of the
salient differences.

In discussing chemical trends involving either a
series of impurities in one host or an impurity in a series
of host crystals, one must carefully distinguish the
microscopic characteristics of the impurities from the
macroscopic ones of the host. The latter include princi-
pally the EMA binding energy Z, of the 1s ground state,
and the EMA probability P, that the additional particle
will be found in the central cell. If one wishes to develop
a modified wave-packet or EMA theory of central-cell
corrections containing as input E, and P., then it is
clearly necessary, in order to account for variations from
one impurity to another, to add? some microscopic
information, e.g., the observed binding energy Ez(e) for
each impurity «. But if one wishes to understand the
trends in Ez(a), this procedure suffers from the obvious
defect that it begs the question.

To circumvent this situation we have inserted here
the macroscopic parameters E; and P, and scaled
Er(a)—E, to first order in P, which plays the role of a
macroscopic scaling factor. It is clear that as soon as
| Er{a)— Eo| >0, the value of P, must change, and that
microscopic change should be calculated self-consistently
if one wishes to determine E(a) — E, to better than first
order in P.. We have settled here for a first-order model
{although d= |[Er(e)—Eo]/Eo| is not always small
compared to one} because the higher-order corrections
would require evaluation of valence strain energies, a
calculation not appropriate to our present knowledge of
deformation potentials of the valence bands.

Our dynamical model fits the observed central-cell
corrections in seven cases with only three parameters,
which suggests that the model is at least semiquanti-
tative. No mention is made of two one-electron effects,
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dielectric breakdown and mass enhancement, which had
previously been invoked? to explain the origin of the
central-cell corrections. What became of these terms?

In order to estimate the magnitude of these terms, we
consider a case in which many-electron effects associated
with gap mismatch and differences in p-d hybridization
are almost absent. Such a case is Sb in Ge, as shown in
Table I. It is estimated that the one-electron effects are
of order 1 meV in Ge and 3 meV in Si, ie., they are
about three to seven times smaller than the observed
values of AE..

It is thought that the one-electron terms are small
because in addition to dielectric breakdown and mass
enhancement (which makenegative contributions to £5)
there is a third one-electron term,® the change in
repulsive potential (orthogonality terms) of valence
states seen by conduction states. This term was not
considered in early work,27? but it has been shown!” that
in the rare-gas solids this positive term approximately
cancels the two negative terms, thereby accounting for
the small values of AE, and even its reversal of sign in
some cases. To first order the electronegativities of the
rare gases are all the same, so that they represent the
best test case of one’s theory of one-electron effects.

Our theory contains two microscopic scaling factors
asi and ag. for describing dynamical effects. It was
found that their ratio is characteristic of the strain and
chemical properties of the valence contributions to the
self-energies of the band edges of the host crystals. The
ratio is consistent with experimental values of band-
edge sensitivities obtained both from studies of Si-Ge
alloys and from the effects of hydrostatic pressure. Thus
the dielectric theory has produced a deep result which
would never appear in a superficial one-electron theory
based on macroscopic mechanisms only. If the cancella-
tion of one-electron effects found both for closed-shell
systems (rare-gas solids) and covalent systems (Si and
Ge) holds for other cases, then the general theory of
impurity states may emphasize electronegativity as the
most important parameter determining central-cell
interactions.

The argument has sometimes been made that all
central-cell corrections can be accounted for in terms of
differences in impurity and host atomic radii. No one
has actually done so, however. Some reasons why such
an approach is inadequate are the following: (a) In
ANBS N crystals the atomic radii for all atoms belonging
to column NV can be increased by an arbitrary amount
providing that the radii for all atoms belonging to
column 8—N are decreased by the same amount. Thus
the “difference in radius” between an N=5 impurity
and an V=4 host atom is a meaningless phrase. (b)
Even if the “difference in radius” could be defined,
converting this difference, with dimensions of length,
into a central-cell correction, with dimensions of energy,
is a formidable task indeed.

17 J. Hermanson, Phys. Rev. 150, 660 (1966).



