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A theory for rate processes in solids is presented which includes the effects of quantum statistics, tun-
neling, and the N-dimensional character of the problem. Tt utilizes the concept of an ensemble of appropriate
minimum-uncertainty wave packets to describe the conditions of thermal equilibrium in an N-dimensional
potential well. An exact solution is found for the motion of Gaussian wave packets on a second-degree
N-dimensional potential surface. This solution is valid also when the initial principal directions of the
wave packet differ from those of the potential surface so that the problem is not separable. It is used to
compute the tunneling probability for a Gaussian wave packet on a second-degree N-dimensional potential
surface containing a saddle point. This probability depends only on the wave-packet characteristics in the
saddle-point direction, and this facilitates its incorporation in the rate expression. Since the initial char-
acteristics of the wave packets of the ensemble are determined by the potential-well character, and their
subsequent tunneling probability is determined by the saddle-point character, the theory includes the effect
of a difference in orientation between the two sets of principal directions. For an artificial two-dimensional
problem formulated specifically to study this aspect of the process, an orientation difference is found to
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produce large effects only at low temperatures where tunneling is important.

1. INTRODUCTION

HE general problem treated in this paper may be
described as follows: Consider a system with N
degrees of freedom in a potential well corresponding to
a stable equilibrium configuration S. Adjacent to this
well is a second one containing a stable equilibrium
configuration S’, and between the two is a saddle point.
The system is in thermal equilibrium at temperature
T; what is desired is the rate of transition from .S to .S’.
A typical example is the interchange of an atom and
vacant site in a crystal lattice.

In a previous paper! (hereafter referred to as I),
the effect of employing quantum statistics for the
description of thermal equilibrium was studied. By
the use of the concept of an ensemble of appropriate
minimum uncertainty wave packets (coherent states?),
it was found possible to keep the treatment close in
spirit to the classical approach of Vineyard.? The
formulation was N-dimensional; however the effects
of tunneling were not included.

In a second paper? (hereafter referred to as II), the
effects of tunneling together with the use of quantum
statistics were studied in a one-dimensional treatment
of the problem. It was found, at least in the present
approach with quantum statistics described by an en-
semble of coherent states, that the inclusion of tunnel-
ing effects along with quantum statistics was essential.
Utilizing the latter without the former predicts much
larger divergence from the classical results than is the
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case when both aspects of quantum behavior are in-
cluded. For the study of the tunneling aspects of the
problem, an exact formula for the motion of a wave
packet on a parabolic barrier was developed, together
with an approximate expression for the tunneling
through a piece-wise quadratic barrier which repre-
sented a well plus barrier combination.

In the present paper the methods of I and II are
combined to yield an N-dimensional treatment of the
problem which includes both the effects of quantum
statistics and tunneling.

In the spirit of classical rate theory, the present
quantum theory does not deal with the subsequent
behavior of the system immediately after the transition
from S to S, that is with the question of whether or
not or how soon the reverse transition occurs. This
question would require knowledge of the character of
the potential wells at both .S and .S’ in addition to the
shape of the barrier between them, whereas from the
present viewpoint the rate of transition from S to .S’
does not depend on the specific character of the well
at S’. The utility of a theory of this type is thus re-
stricted to the regime where the time between such
transitions is long compared with the time required for
reestablishment of thermal equilibrium after a transi-
tion has occurred. The plan of the paper is as follows:
In Sec. II the general problem of the motion of a wave
packet on an N-dimensional second-degree potential-
energy hypersurface is discussed. A system of second-
order ordinary differential equations is derived for the
time variation of the covariance matrices of the co-
ordinates and momenta. This derivation generalizes to
N dimensions the one-dimensional treatment given in
Messiah.5

This discussion is specialized in Sec. III to Gaussian
wave packets. It is shown there that such a wave packet

5 A. Messiah, Quantum Mechanics (North-Holland Publishing
Co., Amsterdam, 1964), Vol. I, p. 220.
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remains Gaussian in its motion on a second-degree V-
dimensional potential-energy hypersurface, even when
the wave-packet principal directions are not aligned
with that of the potential energy hypersurface.

A further specialization is made in Sec. IV to the
case of a second-degree NV-dimensional potential-energy
hypersurface which contains a saddle point; that is, a
point at which the first partials are all zero and the
matrix of second partials has precisely one negative
eigenvalue. In the motion of a Gaussian wave packet
on such a surface its principal axes rotate while its
spread in the saddle-point direction grows exponen-
tially. An exact simple formula for the tunneling
probability of such a wave packet is derived. Sur-
prisingly, and fortunately in view of its intended use,
the tunneling probability depends only on wave-packet
characteristics in the saddle-point direction.

In Sec. V, a rate formula is derived, based on an
ensemble of coherent states and utilizing the tunneling
probability obtained in Sec. IV. It assumes the same
form as the one-dimensional result of II. However, the
N-dimensional character of the problem plays an
important role in that the parameters depend upon
the relative orientation of the principal directions of
the potential-energy surface in the well and those at
the saddle point. This dependence is explored quanti-
tatively for an artificial two-dimensional problem. It is
found that an orientation difference produces large
effects only at low temperatures where tunneling is
important. Finally, conclusions and summary are pre-
sented in Sec. VI.

2. MOTION IN QUADRATIC
POTENTIAL FIELD

In this section we generalize some results given in
Messiah® for the quantum-mechanical one-dimensional
motion in a quadratic potential to the case of V dimen-
sions. We are dealing, therefore, with a system with
coordinates ¢; and momenta p;, 2=1, ..., N, whose
Hamiltonian is

H=1/2m)pipi+3V:iqiq;, (2.1)
where summation from 1 to V over repeated indices
is understood. Consider a time-dependent state of the
system with wave function ¥(q,f). We denote the
associated time-dependent quantum means of ob-
servables for the system by either carets or super-
posed bars, e.g., {¢:)(t) =g:({). For the quadratic po-
tential, it then follows from Ehrenfest’s theorem that
the mean motion behaves classically, that is,

pi=mdg;/dt, (2.2a)
dpi/dt=—V iq;, (2.2b)

or
md?q;/dt= —V ;g;. (2.2¢)
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Furthermore, let

(2.3a)
(2.3b)

Xii=(q:q) —{g:Xq) »
Qi=(pip) —(p:)p3)

be the covariance matrices for the coordinates and
momenta, respectively. Then X;;(f), Q.;(f) satisfy a
system of coupled second-order ordinary differential
equations which may be derived in a manner analogous
to that employed by Messiah® for the one-dimensional
case. The derivation is based on the general equation

in(d/di){d)=([4,HD+in(04/ot),  (2.4)
valid for any observable 4. We begin by setting

A =q:g;—(g:)g5
so that (4)=X,;. It is then found that

dXii/dt={qipitpipi) — (gXp+{pi)Xg:)) -

This equation is now again differentiated with respect
to time. In this process, Eq. (2.4) is again employed
with 4 =g¢:pj+pe«q; together with the equations of
motion for {g.), (p:), Eqs. (2.2). The final result is

d2Xi,-/dt2 = (2/1%2) Qi— l/m(Vi,,ij—I— Vjpxm') . (25)

The equations for the second derivatives of the
momenta-covariance matrix elements Q;; are obtained
in an analogous fashion. The final result is

dzﬂij/dt2= 2V inV X pg— (1/m) (VipQpitVipQpi) . (2.6)

With prescribed initial values of i, dgi/d¥, Xsj, Xsj, Qij,
Q.;, the system of Egs. (2.2¢), (2.5), and (2.6) allows
the computation of the subsequent time evolution of
these quantities. In Sec. 3 we show that if the wave
packet is initially Gaussian on a quadratic potential it
remains Gaussian. Therefore the values of g.;(f) and
X;;(#) are sufficient (in the coordinate representation) to
completely characterize the wave-packet probability
distribution.

3. GAUSSIAN WAVE-PACKET MOTION

We continue to consider wave-packet motion of an
N-degree-of-freedom system subject to a quadratic
potential, specifically with Hamiltonian given by Eq.
(2.1). However, in this section we specialize the prob-
lem to that of an initially N-dimensional Gaussian
wave packet, and we show that such a wave packet
remains Gaussian. The result is thus an extension to
N dimensions of the one-dimensional treatment previ-
ously presented in II. If the principal axes of the
initial coordinate covariance matrix of the wave packet
coincides with those of the quadratic potential, then
the problem is separable and the one-dimensional treat-
ment is immediately applicable. The analysis of this
section is valid, however, for general relative orienta-
tion of the two sets of principal axes.
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Let the wave function ¥(q,#) be written in the form
¥(q,t) =4 (q,p)etMs@n, (3.1)

Then the time-dependent Schrddinger equation for the
Hamiltonian of Eq. (2.1) leads to the following equa-
tions for 4 (q,f) and S(q,?):

m(9/3)(4%) = —(42S ) .,

3S/0t= 12/2m) (4 s/ A)— (1/2m)S :S i
—Vigigi.  (3.3)

In writing these equations we have employed the
comma notation for partial differentiation with respect
to the coordinates g;, that is,

aS/aqi=S,1-,

and again employed the summation conventions on
repeated indices.

A solution to these equations may be obtained in
the form

A= (2m) N X| "V exp—i (X 1EiEy) ,  (3.4a)
S=3aitEi+bikitc, (3.4b)

where £:=¢;—g:(f), |X| is the determinant of the
matrix X with components X;;(), X~1; are the compo-
nents of X7, and a4, b;, and ¢ are functions of time.
It is seen that the postulated solution is in the form
of a moving N-dimensional Gaussian wave packet with
mean §;(#) and coordinate covariance matrix X;;(z). It
may also be verified that for this wave function

(3.2)

Qii = %ﬁzx_lii-i_aimajnxmn . (3 .5)

Substitution of Egs. (3.4) into Eq. (3.2) leads to the
equation

m (XX X Ed s/ dE— $X k)
=X"TyaiEir+X ik — i

By comparison of like powers of £ we see that Eq.
(3.2) will be satisfied if

b,-=mdqi/dt=§,~ ,

mXij= — (X i+ X LnjAmi) -

(3.6)
(3.7

Similarly, by substitution of Eq. (3.4) into Eq. (3.3),
it is seen that the latter equation will be satisfied if

bi=mdq;/dt=—V iiq;, (3.8)
(3.9)

. Lrovel A
masitariary=—mVi;~+3h*X X4,

c= (%m P —%Vijqiq]) — (h2/4:m)x_1i¢. (310)

The matrix a;; may be eliminated from Egs. (3.7) and
(3.9) by differentiation of the former with respect to
time. If Eq. (3.5) is then employed, the result is the
previously derived equation for @2X;;/de, Eq. (2.5).
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4. SADDLE-POINT TUNNELING

We now consider the case in which the quadratic
potential surface possesses a saddle point at q=0. For
this discussion it is convenient to employ a coordinate
system® g, in which the potential-energy matrix Vg is
diagonal, that is (with the summation convention not
employed in this section for repeated indices),

Vaa=ka y Vaﬁ=0 5 a#ﬂ. (4.1)
It is furthermore assumed that
k1<0, k>0, a=2,...,N. 4.2)

In this coordinate system, Eqgs. (2.2¢c), (2.5), and (2.6)
assume the form

md?q o/ APk afa=0, 4.3)
AXap/dlt= (2/m?) Qap— (1/m) (katkp)Xap, (4.4)
A2 Qap/ At =2k ok gXapg— (1/m) (katkp) Qag. (4.5)

As initial conditions for these equations we take the
following:

Ga(0)=—qa®, dJa/dl}s—o=04", with ©,°>0
Xap(0) =Xop, Xap(0)=0,
Qap(0) = Qg 245(0)=0.

The solution to Egs. (4.3), (4.4), and (4.5) with these
initial conditions are (for a, 371)

(4.6)

Ta=—%a® COSWa+ (Va/we) SiDwat

Qeos®
i’ @.7)

Xap=Xag® COSW.E COSwpl+ sinwg! sinwgt ,

mzwawg
Qap= — 2w wsXag? SiNw,t sinwgl~+Qag® cOswat cOswpE ,

where wa= (ko/m)!2, a7%1. Since k1<0, the correspond-
ing solutions involve hyperbolic in place of the trigono-
metric functions. In particular, we note here for future
reference the solutions for §; and Xy::

g1=—q1° coshwit+ (v1%/wy) sinhw;?, (4.8)

) Q12°/%X11°
X=X {1— ———

mk1

cosh2w;t

+(1+

where wi2= —k1/m. An example of wave packet motion
on a two-dimensional saddle point is shown in Fig. 1.
It is seen that as the mean moves classically, the
principal axes of the wave packet change direction and
the wave packet spreads rapidly in the direction of

Gy

mk1

6 We are here using the kernel index notation of J. Schouten
[ Tensor Analysis for Physicists (Clarendon Press, Oxford, 1954)],
in which only the subscript alphabet changes, so that ¢; and ga
refer to different coordinate systems. This notation is further
utilized and discussed in Sec. 5 of this paper.
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Fi1c. 1. Gaussian wave-packet motion on two-dimensional
saddle-point surface V=E;+3Vu¥(q1—q:?)?+3VaVq?; — Vil
=VuU=2, ¢:>=4, E;=16. (Units in which m=%, #=1 are
employed.) Initial wave-packet conditions: ¢ =g, =0,dq:/dt =43,
dg>/dt=0, (Ex=12); the initial wave-packet principal directions
are at an angle of 45° with the ¢1, ¢; axes, with principal values
of X given by x1=3%, Xa=%. The axes of the ellipses shown are
equal in length to o1(f) and ¢2(f), where o= (2x)2; they are
drawn to a scale 1% that used for the ¢ axis. The trajectory is
shown in the phase plane (Gi,$1); the wave-packet shape is
shown as projected on the (g1,q2) plane.

negative curvature because of the hyperbolic time
dependence of X;j;.

The probability P(¢) of finding the particle within
the region ¢1>0, i.e., beyond the crest of the saddle
point is given by

P@)= / dgs / dgo---dgnp(@sy -y awl),  (4.10)
0 —0

where

.N
p=A%= (2m)~Ni2| x| 12 exp— (% % X aptalp), (4.11)
a,fB=1

with £u=ga—ga, and the other notation is also defined
in an analogous fashion to Eq. (3.4). The integral in
Eq. (4.10) may be replaced by one over all of con-
figuration space by use of the unit step function

Uly)=1, y>0
=Oa y<0
so that
PW)=| dq--dgnp(qs, ..., qv,)U(q1). (4.12)

—o0

The integral may now be evaluated by introducing the
£e as variables of integration and use of a formula of
Schlémilch as generalized by Rice.” The result is

P() =3 erfc[—q:(t)/ (2xn)"?],

which is precisely the same as the one-dimensional
solution previously presented [Eq. (2.15) of IT]. As in

(4.13)

7S. O. Rice, Bell System Tech. J. 24, 58 (1945).
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that case we define the tunneling probability K by
the limiting process

K =£im P()

(Q1"—v1°/w1)
=3 erfcl: :I
(2X11°—2911°/(mk1))1’2
, [ a* (A= (B/E)")
=3 erfc
(2x3,°)12 (1 — 11%/ X110 (mkey) )2

] , (4.14)

where Ey= —3%1(g1%)?is the potential-energy difference
between the starting position of the wave packet mean
and the saddle point and E,=3im(v,°)? is the initial
classical kinetic energy to be ascribed to the wave-
packet motion in the ¢ direction. It is interesting to
note that although the process is multidimensional, the
tunneling probability depends only on the wave-packet
and barrier characteristics in the saddle-point direction
¢1, even when the initial principal directions of the
wave packet are not aligned with the saddle-point
principal directions. This greatly simplifies its use in
the rate expression, and we turn next to this question.

5. RATE THEORY

We consider a system with N degrees of freedom
whose potential-energy function V(g ..., qn) admits
of two stable equilibrium configurations .S and S’ with
an intermediate saddle-point configuration U (Fig. 2).
Reduced-mass coordinates® are used so that m=1 in
Eq. (2.1) for the Hamiltonian of the system. Under the
assumption that an ensemble of such systems is in
thermal equilibrium in the neighborhood of .S we wish
to determine the ensemble average rate with which
transitions from .S to .S’ occur.

In general the principal directions of the potential-
energy matrix (that is of the second partials of the
potential-energy function) will not coincide at .S and U.
Two different orthogonal coordinate systems are there-
fore utilized; ¢;, =1, ..., N in the principal directions
at S and ¢s, =1, ..., N in the principal directions at
U with ga, =1 in the saddle-point direction (Fig. 2).
Here, and throughout this section, kernel-index nota-
tion® for vectors and tensors is utilized. That is only
the subscript alphabet changes upon change of coordi-
nate system. Thus 4;; and A4 s refer to components of
the same tensor referred to the ¢; and ¢, coordinate
systems, respectively. While this notation is compact,
it does introduce possibilities for confusion when it is
necessary to refer to particular tensor components.
In the present discussion, however, it is only necessary
to specifically designate components in the saddle-point
direction, that is in the direction ¢,, a=1. Hereafter,
therefore, it is understood that ¢; refers to ¢a, a=1,
A1 refers to Aas, a=B=1, etc. In this section, unless

8 See, e.g., the discussion in I, Egs. (2.1)-(2.3).
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otherwise noted, the summation convention is em-
ployed for repeated Greek or Latin indices.

In order to describe the thermal-equilibrium char-
acteristics of the ensemble in the potential well at S,
the minimum-uncertainty ensemble? described in I is
employed. That is, the quantum states of all members
of the ensemble are observed at a given instant of time
in a manner to introduce minimum uncertainty for
conjugates and momenta. These states will then be
given in the coordinate representation by Gaussian
wave functions of the general form described by Eq.
(3.4) with a;;=c=0, b;=5;, X;; and Q,; diagonal with

Xi:Qii=112,

(N.S) (5.1)

where ‘“(N.S.)” indicates that the summation con-
vention is suspended. Furthermore, we set

Xsi=%/(2w;), (N.S.) (5.2)
where®
wi= (V52 (N.S.) (5.3)
and
2V
ViS=—| ; V=0, 457 (N.S.). (5.4)
g s

With this value of X;; (N.S.) the state would remain
one of minimum uncertainty if the system were subject
to a harmonic potential with the same character as at
S. The ensemble characteristics corresponding to
thermal equilibrium can be described in terms of a
distribution function p(g,p) defined on a phase space
whose coordinates are (g,p), the quantum means of
the coordinates and momenta of the ensemble elements
which are in the minimum-uncertainty states just

defined. As derived in I,

p(§,p)=Cexp{— é ¢ (p ol D)}, (5.5)

where

ci=exp(hw/kT)—1, C=(2xh)~¥N ﬁ ci. (5.6)

i=1

We may rewrite the expression for p(g,) in tensor
notation as follows:

p(d,0) =C exp{ — 2%)ci;(w LspPrtwinddr)}y, (5.7)

where ¢;; and w;; are diagonal in the ¢; system with
Cii=Ciy WiH=Wy, (NS), as defined in EqS. (56) and
(5.3), respectively, wl;; are the components of the
tensor inverse to w,;, and

G=(27rh)—N det(cij).
This notation permits the transcription of p(§,p) to

® Recall that reduced-mass coordinates are employed in this
section.
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.4,

Fi16. 2. Schematic representation of potential wells containing
stable equilibrium configurations .S and S* and separated by a
saddle point at U.

the g. coordinate system simply by replacing all Latin
subscripts in Eq. (5.7) by Greek subscripts. Of course
c;; and cqp, etc., are related by the usual rules for
transformation of cartesian tensors.

As discussed in I the ensemble average f of the rate
at which transitions from .S to S’ occur may be written
a

S
i N
f= / Py f K@D)p @) 11 dgadte, (5.8)
0 Qo

a=2

where o is the subspace §1=0, —0 <G, <o, —w
<pa<o,a=2,...,N. Equation (5.8) may be inter-
preted as integrating over the rates at which a system
arrives with $;>0 at the hyperplane ¢;=0 with values
(4,p) (and therefore, under our assumption, with known
wave-packet characteristics) multiplied by K(§,p) the
transmission coefficient or the tunneling probability
that it will go on to the next valley.

In IT the tunneling probability for one-dimensional
motion was computed for a piece-wise quadratic
barrier by replacing this problem by one for the para-
bolic barrier. This replacement involved two steps:
(1) The assigned classical initial wave-packet kinetic
energy Ei* for the piece-wise quadratic barrier was
replaced by a slightly augmented value E;. This was
motivated by the fact that the total classical energy
E., conserved for the parabolic barrier, is not conserved
for the piece-wise quadratic case. (2) It was then as-
sumed that the tunneling probability would be the
same for the two problems if (a) the barrier heights,
Ep, (b) starting distance of wave packet mean from
barrier, (c) initial wave-packet characteristics, including
Ey, were the same for both problems. Further dis-
cussion of this heuristic procedure may be found in
II, together with numerical solutions of the time-
dependent Schrédinger equation which verify that it
leads to quite accurate values of the tunneling proba-
bility for the piece-wise quadratic barrier. It was also
noted in IT that although step (1) above improved the
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accuracy of the tunneling probability values, its omis-
sion produced relatively small error in the final rate
expression for large values of Ei/fiw, say Ey/fiw>2
(where Ej is the barrier height and w is the frequency
corresponding to the potential well). Guided by this
result we here omit! the energy correction of step (1)
(a correction which would appear to be quite compli-
cated in the N-dimensional case) and we compute the
tunneling probability from Eq. (4.14) with all the
quantities appearing as arguments there being inter-
preted [in accordance with step (2) of the procedure
just described] as relating to the well-barrier combina-
tion under consideration in this section. It is now
convenient to relate Ep, the energy difference between
the S and U configuration to ¢:® the well-barrier
distance. We proceed in a manner analogous to the
one-dimensional case. If, as in II (Eq. 3.3), we regard
V as piece-wise quadratic in the ¢; direction and
impose continuity of ¥ and V/dg, then

- VuU(Q1")2
= ————————————
2 (1 —_ V11U/Vus)
or (5.9)
2 (1 - VuU/Vlls)Eb 12
Q1"=[ } )
—Vu?
where
%
V11U= | > (5-10)
gty

and, in accordance with the notational convention of
this section, V1% is the a=B=1 component of Vaz5,
which are the tensor components in the g. system
corresponding to V® [Eq. (5.4)]. Substitution for
q:® from Eq. (5.9) into Eq. (4.14) then yields

—1 exfc[ (2B /hes*) 2 — (2E4/hc®)12],  (5.11)
where 2E;,=p? and
o 2(@u/m= XV ) , (5.12)

1— Vu?/ViS)

and the notational significance of X11, Q11, is analogous
to that of V135, With the introduction of the notation
of Eq. (5.12), the formula for K, Eq. (5.11), takes on
a completely analogous form to that for the one-
dimensional case [Eq. (3.15) of IT], and it may in
fact be verified that if the present problem is specialized
to one dimension, w*=w, the single-frequency corre-
sponding to the potential well. We may now express
the rate f in Eq. (5.8) as an unrestricted integral over

0 The corresponding approximation in the one-dimensional
case leads to Eq. (5.4) of II, and when present results are com-
pared with the one-dimensional theory, it is this equation which
is meant,
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all of phase space, namely,

*° 2E\ 12 D1
f=%@f 8(q1)prU (P1) el‘fCI:<—> - :I
- hot) (e

N
Xexp[ — A apals—BasPabs] 6H dgsdps, (5.13)
=1

where, in addition to the symbols already defined,!
(5.14)
(5.15)

Aap=(2h)Yoaswsg
Bag=(2%1)0asw g,

and 6(x) is the Dirac § function. This integral may be
transformed to the following one-dimensional integral
by the Schlémilch-Rice method?:

1 B_lll 1/2
-—=)
47 A_lll

ad 2Eb 1/2 B—lll 1/2:
X / xe— 22 erfc[(——) —x( ) :Idx, (5.16)
0 ho* 2hw*

an integral which is of the same form as that en-
countered in the one-dimensional analysis of II. The
result may be put in the same form, namely,

1

w
f= —[% erch+ me—Uzc/ @2+e)
2 2(14-¢/2)2

Xerfc((l—_gg%zﬂ , (5.17)

providing the following identifications are made for
the present V-dimensional situation:

w= (B—III/A—III)IIZ ,
c=2ﬁw*/B_‘11,
U= (2Ep/hw*)!2,

(5.18)

Although the final result has thus been expressed in
equivalent one-dimensional form, it is clear that the
multidimensional aspect of the problem enters im-
plicitly through the tensor transformations. To ex-
plore the quantitative effects of this aspect of the pro-
cess, we have considered an artificial two-dimensional
problem for which the evaluation of Eq. (5.14) is
shown in Fig. 3. In Fig. 3(a) the effect of the relative
orientation of the principal directions in the well and
on the saddle-point surface is shown. For #=0, the
result is the same as the one-dimensional case [Eq.
(5.4) of II], with all quantities which relate to the
g2 direction playing no role. At higher-temperature

1t Note that the components 4.3 were denoted by Ceug’ in I
[Eq. (4.4) of that paper]. The change in notation was made to
avoid confusion with the tensor components cqg.
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0.02

s
9=O.8rcdiQnS;E—b=g;\./'_‘=|o 1
hw,;

U

0.1

| 8=0.8radians; w, -4 hw, =2
0.02 1 1 1 1 1
0o 1 2 3 4 5
Ep
kT kT

(L] (©)

Fic. 3. Parameter study of the rate equation, Eq. (5.17), for hypothetical two-dimensional problem. (a) Effect of relative orientation
between principal directions in potential well and on saddle point. (b) Effect of frequency ratio in potential well. (c) Effect of well-to-

barrier curvature ratio.

levels, where the rate curve is nearly straight as in the
classical calculation, the effect of nonzero 6 is slight;
however, it becomes pronounced at the lower-tempera-
ture levels where tunneling plays a significant role. Of
course there can be no orientation effect when the
potential well has cylindrical symmetry, that is, when
wi=wy. The effect of variable ws/w; is shown in Fig.
3(b). Again, the principal divergence occurs in the
temperature range where tunneling is important. The
ratio of curvatures, Vyu18/(—VuY), does not enter
explicitly (see Ref. 24 of II) in the one-dimensional
theory as given by Eq. (5.4) of II. It does appear
explicitly in the N-dimensional theory [Eq. (5.12)]. It
is seen in Fig. 3(c), however, that at least for the
parameters here considered its effect is small.

6. CONCLUSIONS

A theory for rate processes in solids has been
developed which includes (a) the use of quantum
statistics to describe the thermal-equilibrium charac-
teristics in the potential well, (b) tunneling through
the saddle-point surface between wells, and (c) the
N-dimensional character of the problem.

Basic to the development is the use of an appropriate
minimum-uncertainty wave-packet ensemble in the
well. This then allows a description of the process in
the spirit of classical-rate theory in which members of
the ensemble make an attempt upon the barrier with
a frequency corresponding to the well characteristics,
and with an energy distribution determined by the
temperature level. The success of such an attempt is
given by a tunneling or transmission probability which

is determined by the barrier characteristics. It was
found possible in this paper to derive a simple compact
expression for the tunneling probability for Gaussian
wave packets on a second-degree N-dimensional saddle-
point surface. This transmission probability depends
only upon the characteristics of the wave packet in
the saddle-point direction even when the initial prin-
cipal directions of the wave packet are not aligned
with the saddle-point principal directions. The sim-
plicity of this result contrasts with the difficulty of
treating multidimensional tunneling when energy states
rather than Gaussian wave packets are employed.2 ...

Since the initial characteristics of the wave packets
of the ensemble are determined by the potential well
character and their subsequent tunneling probability
is determined by the saddle-point character, the theory
includes the effect of a difference in orientation be-
tween the two sets of principal directions. This is
explored quantitatively for a hypothetical two-dimen-
sional problem. It is found that while this relative
orientation has little effect at high-temperature levels,
it has a large effect at lower temperatures where
tunneling is important. This result should have some
bearing on the isotope effect in diffusion, and it is
hoped to explore this in subsequent work.
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