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Exact Results for the Kondo Problem: One-Body Theory and
Extension to Finite Temperature
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Nozieres and De Dominicis s one-body theory of the x-ray singularity is extended to the Kondo eGect, and
also to the finite-etmperature case. The Kondo problem is shown to be equivalent to the thermodynamics of
charged rods moving on a circle, or to that of an Ising model with inverse-square interaction.

I. INTRODUCTION

HE substance of the present paper is an extension
to the Kondo problem and to the finite tempera-

tures of methods originally developed for another
problem, known as the "x-ray problem. "This has to do
with the absorption of an x-ray photon by creating a
deep hole, or the subsequent reemission when the hole
is annihilated. The problem to be dealt with is how the
response of the Fermi gas modi6es this process; the hole
is assumed to be completely immobile.

Mahan, ' by a diagram summation, conjectures that
the usual absorption edge becomes an (E—Ee) '
singularity (see Fig. 1), where e depends on the electron-
hole interaction strength. Fourier transforming, we find
a t ' ' time decay, so that the hole lifetime is larger by
a time dependent f-actor of t' than it would be without
the electron-hole interaction. The infinite lifetime at
t= ~ is what we expect from the Anderson infrared
catastrophe' once the electron gas has adapted com-
pletely to the hole potential. The t' behavior was also
conjectured by Anderson, and can also be obtained, at
least to a crude approximation, by this approach: A
measurement taking at time t can only give energies to
within A/t, and if we assume a Fermi surface smeared
to that extent, a f' increase in lifetime (i.e., decrease in
matrix elements) is obtained.

Nozieres and Roulet and Gavoret' 4 used Abrikosov's
"drone-fermion" techniques' for this problem. This
calculation confirms Mahan's x ' singular behavior.

Fro. 1. Step-function and (E—E0)' spectra

It should be noted that Schotte and Schotte' have
derived most of the results of this paper, using the
Tomonaga model. ' The Tomonaga model provides a
useful physical feeling for the effects, but in our opinion
its logical foundation is sufficiently mysterious that
confirmation by other methods is important (see also
Ferr elP).

II. NOZIERES-DE DOMINICIS METHOD

Nozieres and De Dominicis" (XD) found an essen-
tially exact solution of the x-ray problem. They used a
time theory rather than an energy theory, calculating
the probability amplitude for a hole lifetime of exactly t,
which is the Fourier transform of that hole's energy
spectrum. Once t is given, one only has to calculate a
single numerical factor (i.e., the probability ampli-
tude). "What is more, the calculation from this point
onwards is done for an independent particle -system,
since the behavior of the hole is assumed given, and the
electrons can interact only- with this hole. The expecta-
tion value for the process of creating an electron at the
origin at time t, (when the hole appears) and annihilat-

ing one there at time tt (when it disappears) is, of course,
just the one-particle Green's function, which is what we
have ended up looking for; to be precise, we are looking
for the origin-to-origin values of this function.

Since we are looking for an expectation value

(0~ . ~0), where ~0) is the many-body ground state, we
have to multiply the one-body Green's function by
(0~ e'~'

~
0). This gives us the exponential of a closed-loop

sum e'«&; ND calculate c(f) from the one-body Green's
function (see Sec. III C of their paper).

It turns out that the causal Green's function
(Tat(f)a(t')) is the one we should use. (For the time
behavior of the hole, all the various functions give the
same result because its creation @sist precede its
annihilation. ) For this Green s function, as for any
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"This is essentially the same as a path integral approach, the
only paths considered being creation of a pair consisting of a deep
hole and a single electron at one time, and its annihilation at
another.
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+i G(0,t'; O, t,")V(t"}Go(0,t";O, t}dt,". (1)

Usually, one avoids a convolution on t" by Fourier-
transforming the equation to an energy representation,
where a convolution on 3" becomes a product. But here
V(t") is time-dependent, and, in an energy representa-
tion, multiplication by V(t") becomes a convolution
with its Fourier transform, so the cure is worse than
the disease.

Instead of trying to avoid a convolution, ND
managed to use it. They could do this because of the
form of Go. We assume an infinitely wide energy-band
symmetric about Z~ (for the consequences of relaxing
this idealization see later); this makes the mathematics
less messy without omitting any physical result. "
Omitting the space coordinates (=0) and putting
8+=0, we find Gp(t'; t)= 1/i(t —t'). Dyson's equation,
thus, becomes"

G(t', t) = — +P.P.
i(t —t')

—V(t")G(t,t")dt". (2)

Now U(t") is a function that can have two values. One
of them is 0, and let the other be m='tanb. Then,
omitting the constant t,

G= $1/~(t —t') 7+tant H.T.LS(t")G(t",t)7, (3)

where H.T. is the Hilbert transform" and S(t") is 1
when V(t")AO and 0 otherwise. The solution of such
an equation is found in Muskhelishvili's work. " We
shall derive it in Sec. III.

III. MUSKHELISHVILI METHOD

Equation (3) is a singular integral equation with
a kernel of the form K'(t",t') = S(t")/ir(t' —t"). As
Muskhelishvili pointed out, jK(t",t') f(t")dt" is the

other causal 1-particle one, the Dyson equation holds:

~ = ~+~ V~
where —+ is the unperturbed Green's function, and ~
the exact one. If the electron-hole potential V is a Dirac
8 interaction (or any other separable potential), we find
that the same equation holds when all arrows represent
origin-to-origin Green's functions. In a space-time for-
mulation, the equation reads

G(O, t'; O, t) =G,(0,t', O, t)

Hilbert transform of S(t)f(t). Since the Hilbert trans-
form relates the real and imaginary part of any function
which is analytic on a half-plane, we And we have an
equation relating the real and complex parts of such a
function on the real line. Instead of developing
Muskhelishvili's general theory, we shall solve Eq. (3)
directly using his methods.

We shall omit the variable t, and Hilbert transform
the equation, giving Lsince H.T.(1/i.) =8(t)7

H.T.G(t') = i8(t')+tan8S(t')G(t') . (4)

Now let i 'G be the imaginary part of a function 4
analytic in the upper half-plane, i 'G=ImC. Then,
H.T.G is ReC, and Eq. (4) says that the phase of C on
the real line is 8S(t') Lwe ignore the ib(t') term for the
momentj. If we make —i 'G=ImC', with C' analytic
in the lower half-plane, we 6nd that, on the real line,
C' has phase bS(t')—In fac.t, C and C' join together to
form an analytic function with a branch cut on the real
axis, where the phase jumps by 28S(t').

When we multiply two functions, their phases add,
as do any jumps in these phases. Thus, all functions
with a 28S(t') phase jump across the real axis are ob-
tained by multiplying any single such function by all

analytic functions. Also, since S(t') is of the form of
Pig 2, w.e can write S(t')=8(t' tp) —8(t' ——tt), and get
this branch cut by multiplying two fractions, one with
a 88(t' tp) phase j—ump and one with a 88(t' —ti) o—ne.

A M(t' tp) phase —jurnp is immediately seen to occur
for 'the function (t' tp) 't~, d—efined so as to be negative
real for t' —30&0 and analytic in both half-planes.
(t' —tt)+"" gives a cut of —h8(t' —ti) in the same way,
and, thus, to get the right branch and structure, we
have to multiply any analytic function by L(t' —ti)/
(t' —tp)j"~. To get the ib(t') term, we use the fact that
1/(t'+is) =P.P.(1/t') Wir5(t'). Thus, 1/t' gives the right
8-function term in Eq. (4) (times L(0—ti)/(0 —tp)j't )
and does not inhuence the branch-cut behavior, except
for the pole it adds at the origin. The solution of Dyson's
equation is, thus,

G(t') =Gp(t') L(t' —ti)/(t' —
& ) (0—to)/(0 —t t)7".

For general t, time invariance gives

G(&',&)
=G,(t', t) L(&' —t,)/(t' —t,) (&

—t,)/(& —t,)7»-.

Uncritical use of this form would give us a value of 0
or ~ for G(tp, tt), which is what the calculation is all

about. This is because we have ignored band-structure
effects, which give a time cutoff at t $p= 1/bandwidth.

'2 See ND for the case of an unsymmetric band.
'3 The principal part comes from the band-structure cuto8 at

small t' —t" (see later).
'4 Defined as the convolution with (1/xx), (principal part). See

Erdely's et a/. Bateman research project, Tables of Integral Trans-
forms, Vol. 2.

'5 X. I. Muskhelishvili, Singular Integra/ Equation (Noordhoff:
P. Noordhoff I.td. , Groningen, The Netherlands, 1953); cf. N. I.
Mushkelishvili and D. A. Kveselava, Trudy Tbiliss. Mat. Inst.
11, 141 (1942). Fro. 2. Plot of S(t)
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This cutoff must be pure imaginary in order to give a
real spectral density for the response function. "One
sees how such a cutoff is obtained by making the hole
appear and disappear only within a time $p, rather than
instantaneously, and constructing C(t), not out of step
functions (the phase function of X'), but out of arctan
functions Lthe phase of (X+ip)'7. '

Whichever precise way we apply the cutoff, the t'~

factor, multiplying the usual time behavior, remains.

60 satisfies the periodicity relation

G(r+P)= G(r), — (5)

which the Green's functions must satisfy for TAO
t-Eq. (1-10) of Kadanoff and Baym"7. In the complex
r plane, Gpcanbeused for dispersionrelations: Let fbe
analytic on the upper-half plane and satisfy (5). Then,

n-1mf(x) =
"Reef(x')7dx'

e Reef(x'+dP)7d*'

x—x' —kp

G,(*—*') Reef(*')7d*'.
0'

IV. EXTENSION TO FINITE TEMPERATURES

For TQO, it is more convenient to use the standard-
temperature Green's function. Gp(r) is the Laplace
transformof the smooth tanhpE Fermi factor Lwhereas
foi T=0 Gp(t) was the Fourier transform of a sharp
step-function Fermi factor7. It is easier to compute
Gp(t) first (real time) because the high-energy part can
be disregarded there. The actual integration is done
using the periodicity of the hyperbolic tangent modulo
iver Th.us, J'„"tanhPEe'e' is (1 erie—') ' times the
integral on a loop (see Fig. 3). (The end segments can
bedisregardedbecausethey fluctuatein6nitelyrapidly. )
This loop integral equals the residue of the only pole
inside the loop, which is (1/P)2-ie & tPei'. Thus,

-/p
Go(t) = .

sinh(~/P)t
and

-/p
Gp(r)=

Sln 7i T

Likewise, if f is analytic on the lower half-plane, this
convolution gives —~Im f(x). Thus, Dyson's equation
gives exactly the same branch cuts as before, except
that the functions must obey Eq. (5) and the branch
cuts must, thus, repeat periodically. We 6nd

As in the ground-state calculation, we can obtain an
imaginary-time cuto6 by pushing T0 and Tj a distance e

away from the real axis. The general Muskhelishvili
solution can be extended to finite temperatures in the
same way.

V. MUSKHELISHVILI METHODS FOR
KONDO PROBLEM

We will now show that the Kondo problem can be
viewed as an infinite succession of x-ray problems, with
the spin Aip 5+s and 5 s+ playing the part of ND's
perturbation H, =P~W~a~"be'"' t:Eq. (2) of their
paper7 while the S,s, term plays the part of the last
te™g» Uzzuztbzbbt of their Eq. (1). We use the
Kondo Hamiltonian' dividing it as follows:

H=Hp+Hi',

Hp ——Q pg, ep, +JS, Q Cp.t(5,)..Cg;,
It'k'oa'

(g)

(9)

Hi'=J g Cq, tCq, t-5~(s )oo.'+5 (s+)„7. (10)

Hp conserves S„and for a given value (+2 or —p)
of 5„ its eigenstates are independent-particle states in
the presence of a potential (due to 5,). Let Ppt be its
lowest eigenstate with S.=+—', .

Following ND, we now want to find the system's
behavior from an appropriate response function. "We
switch B~ on for a time t and ask how the ground-state-
to—ground-state amplitude F(t) =gpi~e'~'~Ppt) de-
pends on t. As F(t) =P„~gpt~f„) ~'e'"'(summing over
eigenstates of H), its time behavior is closely related to
the energy spectrum of the Kondo Hamiltonian. In
particular, the energy at which the spectrum of F
begins is the ground-state energy. This is so, despite
Anderson's infrared catastrophe, because there is a non-
zero matrix element between i/pand the ground state of
the system in an arbitrarily large box, and this latter
ground state has an energy which approaches the
inlnite-gas ground-state energy as the size of the box
tends to infinity.

In the interaction representation

G(r, r')
sine T —rq sine T—T0

=Gp(r, r') . (7)
sin x' T Tp sin x' T T].

REAL AXIS REAL AXIS

Frc. 3. Integration path for Gp. p(t)=Qpi~e'~"T exp i H'(t')dt' ~Ppt), (11)
0

'6 L. P. KadanoG and G. Baym, Quantum S/atistical Mechanics
(W. A. Benjamin, Inc., New York, 1962). » J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
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(tstx I tsar) l is a Cauchy determinant" with value

rr (t ——~'-) rr (t —t )/rr (t..——~ )
k&k' k&k' k, k

=expL Z (-) — »lt,-4I 3.
g&k

Because of H', the various Green's functions must now
be found from the Dyson equation. This has the form
discussed in Sec. II, except that C(t) now changes its
value 2n times rather than twice. The branch cut is
still a sum of step functions, and we find that multiply-
ing the unperturbed Green's function by the various
fractional powers that give each step in C(t) gives the
solution of Dyson's equation. '0 Thus, in complete
analogy with the x-ray case, we find

~n«' —t*)rr(t —t) "
G(t t) =Go(t)l

&rr (t'-t. ) rr (t-t')
where i runs over the odd-numbered Aips and k over
the even.

We, thus, find that each product in the Cauchy
determinant for G0 is multiplied by G0 ~~, and the
determinant —their sum —is multiplied by the same
factor. The closed-loop sum C(8,t) is trickier. ND have
shown —(6/~)2

, )—
&cutof f

If we extend their method to the case of arbitrarily
many-time pairs, we find that the contribution of a
time t to the integral which gives C (or, to be more
precise, XctC/c}), where X multiplies the vertices of a

diagram of ND) is of the form D(t)E(8), where E(B) has
exactly the same form as in ND's paper. The tricky
integrations over 8, thus, give us nothing new, and a
comparison of the different integrals over D(t) gives us
l "'&=00" )'. Thus,

F,„(&„.. . ,t,„)= LG,(t„.. . ,&,„)j'-
G (t t )i—sat~+(tt )s

Transforming to imaginary times ts iP&„w——e find

F(tP) = Q j'" dPi, ,dPs„
n=0

&&expL(2 —2e) P —1"—"' ln(P„—P„'/r) j,
n&n'

rt even, 0(PI—r & . (P—2N'(P —(2rt+1) '. (16)

For a finite-temperature calculation, we replace our
ground-state-to —ground-state amplitudes (Ol. . . l0) by
a thermodynamic average. The partition function Z
satisfies

ip

Z= Tre s'~+ 'I =Tr} e s~T expi
~ 0

This is completely analogous to the expression (11) for
F(t) when t= iP, and th-e integrand in it is again the
amplitude of a generalized x-ray problem.

Dyson's equation is solved as in Sec. IV. (The
analyticity and branch-cut conditions are the same as
for the ground-state calculation, except for periodicity
modulu iP.)

The same arguments as before shows (Ge) s„ to be the
determinant lP/sinL(rst, I—rsi)/Pj l. This equals

2/i exp(i/Pa. ) rs~ i exp(i/Pa. )rsi,

expL(i/Pa) (r»—i —r2I, )j—expl (i/Pa. ) (rsl. —rsi —i)j exp(2i/pa. ) rst, I —exp(2i/pa )rsI.

and is, thus, equivalent to a Cauchy determinant, with the value

(
2 qiv i

Pi
l rr exp—r —rr exp—r

a.P I a.P

( 2i 2i f 2i 2i 2' 2'
x II I

7 p—,7 7
—e p—,7 L 11 ~

exp ,7—exp—,7, —11, exp—7 7 7
—exp 7L), —

ap a-p I&I: k ap 7' p, I ap ap
which in turn equals

P L "'—) ll ( L L P( 7—7 7 L)'—sin —sin —sin
k&k' ~ 7rP ) «L'a. & prP . I,I, 7r k aP

F('P) = 2 I'"
n=O

dPI, . . . ,dP

&&exp (2 —2e) P —1" "' ln
n)n'

sin(P„—}3 '/P)

sinr/P

rt even, 0& Pi, . . . , &'Ps~&'P (17).
'1' G. Polya and Szego, Anfgabe Nnd Lehrsatse als per Analysis

(Dover Publications, Inc., New York, 1945), Vol. 2. p. 97.
~ The full complexity of Muskhelishvili's inhomogeneous equa-

in complete analogy with the result we had before. "
We, thus, get

Both the formulas for F(it3) have the form of a
classical grand partition-function integral, with J'"
serving for the chemical-potential term e '&", and
e' I'""""being a Boltzmann factor e ~~k . For kT= 1,

tion solution is not needed, because we can write

G(t', t) = 1/(t —t') +tanh LH.T.LS(t")G(t, t")77
=tanb {HTLS(t")+ub(t—t')7G(t", t) },

where n is an unknown factor. In this form, the equation becomes
homogeneous, and the solution must then be normalized."It is clear that the phases cancel each other out, because the
determinant of a real matrix is real.
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and the determinant in LEq. (13)j becomes the sum of

two Cauchy determinants as follows. If, for convenience,
we seti=1, k=2, we have

we find

Fio. 6. Plot of f(t)

&= —(2 —2e) g —1"—"'ln
n&nl

I
n n

Gfree

1 1
Gp(1 —2)

1—4 1—6

1 1

3—2 3—4

with an equivalent expression for the finite-temperature
case. The statistical mechanics of a similar gas (without
the —1" "' factor and without the cutoff) has been
done before "

Instead of summing over pairs of spin Qips, we can
transform to a double integral over the spin S,(t) at
different times, using

1 i 3—4 3—6
= (Catchy)+(G ——

~

1—2i 1

and, introducing the product representation of the
Cauchy determinant, we get

(f').,(f')., ln(xi —xg)dx, dx2

f.,f., dxidx~. (18) G" =
(xi—x2)'

1 1

3—4 3—6

(f' changes sign each time, so the —1" "' factor is
accounted for; f as, in Fig. 6, gives an f' integral equal
to the sum we needj.

If we discretize this integral over f and turn it into a
sum over discrete times (by forbidding the flip to occur
except at these times), we find ourselves with an Ising
model with 1/(m —n)' interaction, or rather, with the
2n-fhp term of such a model. The sum P J'"F2„gives
us the partition function (not the grand partition func-
tion) of a one-dimensional Ising model with an inter-
action term J „=(2 —2e)/(m —m)' plus a nearest-
neighbor term pS„S„+i (p=- —lnJ~ as before).

APPENDIX: BAND-STRUCTURE EFFECTS
AND CUTOFFS

The 1/it Green's function discussed above is un-
realistic: It corresponds to an infinitely wide structure-
less band. A more realistic band structure would give a
different Green's function, without the 1/t singularity at
the origin. For instance, for a Qat band, symmetric
about the Fermi level, we find Go(t) = (1/it)(1 —e'~'~' ),o
where the bandwidth is 2/ro.

The effect of such a Green's function on the deter-
minant LEq. (13)j of the free Green's functions is clearly
that of a cutoff, forbidding the time denominator to be
less than about Y.o. As long as only one pair of times t;, t&

is close enough to make band-structure effects im-

portant, we can write

X Go—
1

1—2

(ti —t3) (ti t5) (t2 i4)
7r ~ ~ ~

(t2 —t3) (t2 —i5) (ti —i4)

This is essentially the same result and we would obtain
if we were to insert a cutoff function in place of 1/ii —i2

in the Cauchy product from (14).
The effect of the band-structure on the Dyson

equation is much harder to handle. If the potential V(t)
is a single step function, we And that, whatever the form
of G(t), the Dyson equation is of the Muskhelishvili
formin frequency space. With this potential, the solution
is the same as before, except for a cutoff at times of
order 7-o. For small b, the cutoff region becomes the
same as that of G(t)

We expect the same sort of behavior in the solution
for a more general V(t). Ilowever, since the equation is
no longer singular, it becomes much harder to make
rigorous statements on its solution.

As for the closed-loop sum c, its leading (second-
order) term, for any form of G, equals

Again, using our assumption that only t& —t2 is small,
the bracket is

1 1{}—Go + +
t3 t4 t;

d4GO'(4 —4) .sin'8
(s2) gov(&y) go

~2 F. J. Dyson, J. Math. Phys. 3, 140 (1962); 3, 156 (1962);
3, 166 (1962); 3, 1191 (1962); K. G. Wilson, ibid. 3, 1040 (1962) .
J. Gunson, ibid 3, 752 (1962).. This leading term is all we need within the approxima-
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tion sin'B=b'. Thus, very directly for this term, we
obtain the form (18), in which the interaction between
different times is given not by the singular function
1/(x& —xs)' but by Gs'(xr —xs), which has the singular
behavior cutoff at x1—x2= r. To within this approxima-
tion, we can, thus, show that a cutoff at time 70 appears
again. Higher-order terms are about as straightforward
as any Feynman diagram of the same order, and are
unlikely to give us drastically different results.

Thus, in at least three distinct cases, we can work out
the mathematics of the cutoff precisely. None of the
results are identical in detail, but all behave in very
similar fashion. Further effort in elucidating the
numerical nature of the cutoff is physically unwarranted,
since in fact we are seldom or never confronted with
known form factors and band structures; it is only the
Fermi-surface-dependent features of the problem which

are of any real physical interest.
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A study of the band structure for the holes in Bi has been by the magnetoacoustic e6'ect in a Sn-doped
Bi sample. The existence of a singular point of the saddle type is confirmed and a new pocket of holes is
found. The analysis of the experimental results supports the Golin band calculation in Bi.

l. INTRODUCTION
' 'N a previous paper, ' the existence of a singular point
~- of the saddle type for the holes in bismuth was
postulated to explain some experimental results. The
main feature of the experiments was the disappearance
of the oscillations of the ultrasound absorption coeffi-
cient as a function of the magnetic field strength when
the hole Fermi surface was investigated.

To confirm and clarify the hole-band structure of
bismuth a new set of measurements has been carried
out in a sample of Sn-doped Bi, with a concentration
of impurity of 4.5)(10" cm ', in order to have only
hole carriers. ' The interpretation of the experimental
results, in particular the location of the double-conic
point along the binary direction, is consistent with the
Golin band-structure calculation' of bismuth.

The present work is concerned with measurements,
by means of the magnetoacoustic effect, of the cross-
sectional area S of the Fermi surface and of the phase
factor y of the semiclassical quantization rule, S(es,krr)
= (rs+y) (2s.eH/ch), for various magnetic-field and
sound-wave vector directions.

In Sec. 2 the theoretical background is outlined; in
Sec. 3 the experimental results are presented; in Sec. 4
a dispersion law and a model of the hole Fermi surface
are deduced from the experimental measurements.

'M. Giura, R. Marcon, T. Papa, and F. Wanderlingh, Phys.
R.ev. i', 645 (1969).' J. M. Noothoven Van Goor, Phys. Letters 21, 603 (1966).' S. Golin, Phys. Rev. 166, 643 (1968).

2. THEORY

In this section some particular aspects of the existence
of a singular point of saddle type in the k space are
analyzed.

Around a saddle point the dispersion law of the
carriers can be approximated as follows:

e = es+Cllk1 +&2k2 +rrsks

with the coefficients o.1, o,3 having sign opposite to n2

and choosing k1, k2, k3 as the bisector, binary, and
trigonal axis, respectively.

In this case one of the authors4 has shown, with
semiclassical arguments, that the relation

S(e,k) = 2s (eP/ch) (I+y)

is still valid and y assumes the value of 4. This result
has been obtained when the magnetic field is along the
k3 axis and in relation with all the values of the mo-
mentum k3 that do not lead in the k space to self-
intersecting orbits for carriers. In the case of self-

intersecting orbits, the semiclassical arguments, in
fact, are not valid. 5

The value y=43 follows from the structure of the
differential equation derived from Eq. (1) by means of
the Luttinger and Kohn' procedure in the presence of

4 M. Giura, Phil. Mag. (to be published).
5 M. Giura and F. Wanderlingh, Phys. Rev. Letters 20, 445

(1968).
J. M. Luttinger and W. Kohn, Phys. Rev. 9'7, 869 (1955).


