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Noziéres and De Dominicis’s one-body theory of the x-ray singularity is extended to the Kondo effect, and
also to the finite-etmperature case. The Kondo problem is shown to be equivalent to the thermodynamics of
charged rods moving on a circle, or to that of an Ising model with inverse-square interaction.

I. INTRODUCTION

HE substance of the present paper is an extension

to the Kondo problem and to the finite tempera-

tures of methods originally developed for another

problem, known as the “x-ray problem.” This has to do

with the absorption of an x-ray photon by creating a

deep hole, or the subsequent reemission when the hole

is annihilated. The problem to be dealt with is how the

response of the Fermi gas modifies this process; the hole
is assumed to be completely immobile.

Mahan,! by a diagram summation, conjectures that
the usual absorption edge becomes an (E—Ey) ™
singularity (see Fig. 1), where ¢ depends on the electron-
hole interaction strength. Fourier transforming, we find
a ¢~17¢ time decay, so that the hole lifetime is larger by
a time-dependent factor of t¢ than it would be without
the electron-hole interaction. The infinite lifetime at
t= o is what we expect from the Anderson infrared
catastrophe? once the electron gas has adapted com-
pletely to the hole potential. The ¢ behavior was also
conjectured by Anderson, and can also be obtained, at
least to a crude approximation, by this approach: A
measurement taking at time ¢ can only give energies to
within 7%/t, and if we assume a Fermi surface smeared
to that extent, a /¢ increase in lifetime (i.e., decrease in
matrix elements) is obtained.

Noziéres and Roulet and Gavoret®* used Abrikosov’s
“drone-fermion” techniques® for this problem. This
calculation confirms Mahan’s x~¢ singular behavior.

N

F1c. 1. Step-function and (E— E,)? spectra.

* Work at the Cavendish Laboratory supported in part by the
Air Force Office of Scientific Research Office of Aerospace Re-
search, U. S. Air Force, under Grant No. 1052-69.
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It should be noted that Schotte and Schotte®? have
derived most of the results of this paper, using the
Tomonaga model.® The Tomonaga model provides a
useful physical feeling for the effects, but in our opinion
its logical foundation is sufficiently mysterious that
confirmation by other methods is important (see also
Ferrell®).

II. NOZIERES-DE DOMINICIS METHOD

Nozieres and De Dominicis'® (ND) found an essen-
tially exact solution of the x-ray problem. They used a
time theory rather than an energy theory, calculating
the probability amplitude for a hole lifetime of exactly ¢,
which is the Fourier transform of that hole’s energy
spectrum. Once { is given, one only has to calculate a
single numerical factor (i.e., the probability ampli-
tude).!! What is more, the calculation from this point
onwards is done for an imdependent-particle system,
since the behavior of the hole is assumed given, and the
electrons can interact only with this hole. The expecta-
tion value for the process of creating an electron at the
origin at time ¢, (when the hole appears) and annihilat-
ing one there at time #; (when it disappears) is, of course,
just the one-particle Green’s function, which is what we
have ended up looking for; to be precise, we are looking
for the origin-to-origin values of this function.

Since we are looking for an expectation value
(0] - - - |0), where |0) is the many-body ground state, we
have to multiply the one-body Green’s function by
(0] €*#¢| 0). This gives us the exponential of a closed-loop
sum e*®; ND calculate ¢(f) from the one-body Green’s
function (see Sec. III C of their paper).

It turns out that the causal Green’s function
(Td'(H)a(’)) is the one we should use. (For the time
behavior of the hole, all the various functions give the
same result because its creation must precede its
annihilation.) For this Green’s function, as for any
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1 This is essentially the same as a path integral approach, the
only paths considered being creation of a pair consisting of a deep
holehand a single electron at one time, and its annihilation at
another.
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1 EXACT RESULTS FOR KONDO PROBLEM

other causal 1-particle one, the Dyson equation holds:
> =—+>T—,

where — is the unperturbed Green’s function, and >
the exact one. If the electron-hole potential V is a Dirac
d interaction (or any other separable potential), we find
that the same equation holds when all arrows represent
origin-to-origin Green’s functions. In a space-time for-
mulation, the equation reads

G(O)l,; 07t) =G0(07t,; O:t)
+i / G(0,/;0,6V()Go0,47;0,0d" . (1)
G

Usually, one avoids a convolution on #’ by Fourier-
transforming the equation to an energy representation,
where a convolution on #’ becomes a product. But here
V(") is time-dependent, and, in an energy representa-
tion, multiplication by V(#’) becomes a convolution
with its Fourier transform, so the cure is worse than
the disease.

Instead of trying to avoid a convolution, ND
managed to use it. They could do this because of the
form of Go. We assume an infinitely wide energy-band
symmetric about Er (for the consequences of relaxing
this idealization see later); this makes the mathematics
less messy without omitting any physical result.!?
Omitting the space coordinates (=0) and putting
Er=0, we find Go(¥';8)=1/i(t—1"). Dyson’s equation,
thus, becomes!?

Gt )=

1
+P.P. / —VENGEa . (2)
i(t—t) ot =t
Now V(#) is a function that can have two values. One
of them is 0, and let the other be #~!tand. Then,
omitting the constant ¢,

G=[1/i(t—t")J+tans HLT.LS)G({' )1, (3)

where H.T. is the Hilbert transform!* and S(#”) is 1
when V(¢")5%0 and 0 otherwise. The solution of such
an equation is found in Muskhelishvili’s work.’® We
shall derive it in Sec. III.

III. MUSKHELISHVILI METHOD

Equation (3) is a singular integral equation with
a kernel of the form K(@",/)=S{")/x({'—t"). As
Muskhelishvili pointed out, [K(!”)f(¢")dt’ is the

12 See ND for the case of an unsymmetric band.

18 The principal part comes from the band-structure cutoff at
small #/—¢" (see later).

4 Defined as the convolution with (1/z%), (principal part). See
Erdely’s et al. Bateman research project, Tables of Integral Trans-
forms, Vol. 2.

16 N. I. Muskhelishvili, Singular Integral Equation (Noordhoff:
P. Noordhoff Ltd., Groningen, The Netherlands, 1953); cf. N. L.
Mushkelishvili and D. A. Kveselava, Trudy Thbiliss. Mat. Inst.
11, 141 (1942).
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Hilbert transform of S(f) f(f). Since the Hilbert trans-
form relates the real and imaginary part of any function
which is analytic on a half-plane, we find we have an
equation relating the real and complex parts of such a
function on the real line. Instead of developing
Muskhelishvili’s general theory, we shall solve Eq. (3)
directly using his methods.

We shall omit the variable ¢, and Hilbert transform
the equation, giving [since H.T.(1/7)= ()]

HT.G{)=161")+tansS()G({'). 4)

Now let i~'G be the imaginary part of a function ®
analytic in the upper half-plane, i7'G=Im®. Then,
H.T.G is Re®, and Eq. (4) says that the phase of ® on
the real line is 85(¢') [we ignore the 8(#') term for the
moment]. If we make —¢~!G=Im®’, with & analytic
in the lower half-plane, we find that, on the real line,
@' has phase —8S(#'). In fact, ® and &’ join together to
form an analytic function with a branch cut on the real
axis, where the phase jumps by 28S(t).

When we multiply two functions, their phases add,
as do any jumps in these phases. Thus, all functions
with a 26S(#) phase jump across the real axis are ob-
tained by multiplying any single such function by all
analytic functions. Also, since S(#) is of the form of
Fig. 2, we can write S(¢)=0(' —1,) —6(t —11), and get
this branch cut by multiplying two fractions, one with
a 86(t' —1,) phase jump and one with a —§0(t'—#) one.

A 86(t' —1,) phase jump is immediately seen to occur
for the function (¢ —£,)~%/~, defined so as to be negative
real for ' —1,<0, and analytic in both half-planes.
(' —ty) eI gives a cut of —80(f' —1t;) in the same way,
and, thus, to get the right branch and structure, we
have to multiply any analytic function by [(#'—#)/
(¢’ —to) J/. To get the i6(¢) term, we use the fact that
1/({ +=ie)=P.P.(1/)Fnd('). Thus, 1/¢ gives the right
s-function term in Eq. (4) (times [(0—t)/(0—t)1%/7)
and does not influence the branch-cut behavior, except
for the pole it adds at the origin. The solution of Dyson’s
equation is, thus,

G(#)=Go(t)L(t' —t2)/ (' —10) (0—10)/ (O—12) I/
For general ¢, time invariance gives
G ) =Go(t' YL 1)/ (¢ —to) (t—1o)/ (t—12) J°I.

Uncritical use of this form would give us a value of 0
or o for G(tyt1), which is what the calculation is all
about. This is because we have ignored band-structure
effects, which give a time cutoff at {~ &= 1/bandwidth.

L 0

to t

Fic. 2. Plot of S(9).
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This cutoff must be pure imaginary in order to give a
real spectral density for the response function.!® One
sees how such a cutoff is obtained by making the hole
appear and disappear only within a time &, rather than
instantaneously, and constructing C(£), not out of step
functions (the phase function of X?), but out of arctan
functions [the phase of (X-i¢)?].

Whichever precise way we apply the cutoff, the /7
factor, multiplying the usual time behavior, remains.

IV. EXTENSION TO FINITE TEMPERATURES

For T'5£0, it is more convenient to use the standard-
temperature Green’s function. Go(r) is the Laplace
transform of the smooth tanhBE Fermi factor [whereas
for T=0, Go(t) was the Fourier transform of a sharp
step-function Fermi factor]. It is easier to compute
Go(?) first (real time) because the high-energy part can
be disregarded there. The actual integration is done
using the periodicity of the hyperbolic tangent modulo
iw. Thus, S °tanhBFEet is (1—e /8%~ times the
integral on a loop (see Fig. 3). (The end segments can
be disregarded because they fluctuate infinitely rapidly.)
This loop integral equals the residue of the only pole
inside the loop, which is (1/8)2mie=*/28¢, Thus,

/B
Go(t) = -
sinh (r/B)¢
and /8
7r
Go(r)=— .
sin(r/B)7
G, satisfies the periodicity relation
G(r+B)=—G(r), ®)

which the Green’s functions must satisfy for 70
[Eq. (1-10) of Kadanoff and Baym!®]. In the complex
7 plane, Gy can be used for dispersion relations: Let f be
analytic on the upper-half plane and satisfy (5). Then,

* Re[ f(+') Jds’

w Imf(x)= -
— X—X
f Re[ f(«'+dB) Jds’
k=—0 /g x—x —kB
8
= / Go(x—x") Re[ f(x") 1dx'. (6)
N
yd
<
3
REAL AXIS > REAL AXIS

F1G. 3. Integration path for Go.

16 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics
(W. A. Benjamin, Inc., New York, 1962).
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Likewise, if f is analytic on the lower half-plane, this
convolution gives — Imf(x). Thus, Dyson’s equation
gives exactly the same branch cuts as before, except
that the functions must obey Eq. (5) and the branch
cuts must, thus, repeat periodically. We find

G(Tﬂ',)
i

sm@VﬁXH—wﬂsmGwﬁXr—TO)ﬁ )
sin(w/B) (' — 7o) sin(x/B)(r—71)/

As in the ground-state calculation, we can obtain an
imaginary-time cutoff by pushing 7o and 7; a distance e
away from the real axis. The general Muskhelishvili
solution can be extended to finite temperatures in the
same way. :

V. MUSKHELISHVILI METHODS FOR
KONDC PROBLEM

We will now show that the Kondo problem can be
viewed as an infinite succession of x-ray problems, with
the spin flip S;s_ and S_s; playing the part of ND’s
perturbation H,=>; Wiai'be *t [Eq. (2) of their
paper] while the S.s, term plays the part of the last
term X i Viwar'bebb' of their Eq. (1). We use the
Kondo Hamiltonian'? dividing it as follows:

H=H+H/, ®)
H0=Z ek”kd“{'JSz Z CkUT(Sz)xﬂr’Ck’d’ ) (9)
ko

kk’oa’

HY =T Y CrslCrrw[Si(s 00" +S_(s)ewr]. (10)
ko

H, conserves S,, and for a given value (4% or —3%)
of .S,, its eigenstates are independent-particle states in
the presence of a potential (due to S.). Let ot be its
lowest eigenstate with S,=-1%.

Following ND, we now want to find the system’s
behavior from an appropriate response function.’® We
switch H; on for a time ¢ and ask how the ground-state-
to-ground-state amplitude F(#)= ot |e®|Yor) de-
pends on £. As F()=2", | ot |¥w)| %™ (summing over
eigenstates of H), its time behavior is closely related to
the energy spectrum of the Kondo Hamiltonian. In
particular, the energy at which the spectrum of F
begins is the ground-state energy. This is so, despite
Anderson’s infrared catastrophe, because there is a non-
zero matrix element between ¥, and the ground state of
the system in an arbitrarily large box, and this latter
ground state has an energy which approaches the
infinite-gas ground-state energy as the size of the box
tends to infinity.

In the interaction representation

MW@MWW@{%waﬂmm<m

17 J. Kondo, Progr. Theoret. Phys. (Kyoto) 32, 37 (1964).
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where H'(') is defined as e~*Hot[]’¢iHot in the usual way.
Expanding the exponential,

dty- - - dlgnetHolt—t2n)
0<t1<enn <t

XiH' et Ho(n—tan—0iH' . . i H gtHot1| s ).

F)= 3 Wor|

n=0

(12)

(H' must appear an even number of times, because it
flips .S, each time.)

If we normalize our energies to make (¥t | Ho|¢0t)=0,
we can drop the first and last factors, eHo(t—t2n) and
e'Hot1 hecause they have no effect.

The effect of H' is to flip S, each time it occurs,
downwards at f5,—; and upwards at fpz. At odd times
tar—1, H' creates an electron of spin up and destroys one
of spin down; at even times fy, it creates one of spin
down and destroys one of spin up. Because of the
changes in S, with time, these electrons and holes are
perturbed in a way similar to that of ND. [For n=2,
F(¢) is a double time integral over the squared amplitude
of an ND x-ray problem. For #>2, the problem gets
more complicated.] To get an amplitude

<1//01 | 1H' eiHo(tan—t2n—1) . . 'eiHO(tz—tl)iHIh[/ot> ,

we multiply the two amplitudes this term gives us for
the spin-up and spin-down electrons separately. Each
of these two amplitudes is the sum of 7! terms, found
by matching the # creation operators (at odd times, for
spin-up electrons) with the # annihilation operators (at
even times, for spin-up electrons) into # pairs (see
Fig. 4).

To calculate a particular term, we multiply the #»
Green’s functions'® of the creation-annihilation pair
in it. Since the time ordering has already been done,

] ta ts tq ts te
Golty—te)= /TN N N
+ //_4_\
~ N
+ //_——)_\
AN ~—

F16. 4. Example of diagram contributing to Go.
The contribution of one set of times.

18 All Green’s functions here are origin-to-origin.

1525

6o 0 0O

{

)

G

Fi1c. 5. The equivalent permutations.

the —1 factor one usually puts in Go(f1; l2<Z1) is absent.
Thus, we add a phase factor of (—1)No- of hole lines  A]go,
for each pair of lines that cross, whatever direction the
arrows on them, we add a factor of —1, because we have
to interchange two fermion operators before they
separate into pairs.

Now the 7! ways to match the 2z creation and
annihilation operators are equivalent to the #! permuta-
tions P of the # pairs of operators. We get this equiva-
lence (Fig. 5) by identifying t»;—1 and #; and drawing
the diagram as before. The phase factor turns out to be
the parity (—1)% of the permutation P. This can be
seen by following its behavior when any permutation
is multiplied by a pair interchange. Since any permuta-
tion can be built up of such interchanges, and since the
phase factor for the unit permutation is +1, we have

(ot | iH' eiHolzn—tzn—1) . . . gillo(a—t) [ | Y1)

=[ 2 (—=D)PGnter0))GUstar@)GUsiarmy) - - - 12
P

(13)

Another way to check the phase factor is to sum up
over the #!? ways to match pair of operators for both
spins. The product of the two parity factors is then —17
times the usual loop factor —1%, where L is the number
of loops.

For independent particles, without the H’ term,
G(ty,ts)=1/(}1—1t:), and the determinant 2 Det|1/

=[DetG(t2x—1,t21) ]?-
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(tar—1—"t21)| is a Cauchy determinant®® with value

I (ter—1—tarr—1) TI (tor—towr)/TI (tar—1—t21)

E>k E>E k.k

=exp[ ¥ (=) *In[t;—t] ].

>k

(14)

Because of H’, the various Green’s functions must now
be found from the Dyson equation. This has the form
discussed in Sec. IT, except that C(f) now changes its
value 27 times rather than twice. The branch cut is
still a sum of step functions, and we find that multiply-
ing the unperturbed Green’s function by the various
fractional powers that give each step in C(f) gives the
solution of Dyson’s equation.?? Thus, in complete
analogy with the x-ray case, we find

o (=) IT =8N
ap=aio( = ) 0

where 7 runs over the odd-numbered flips and % over
the even.

We, thus, find that each product in the Cauchy
determinant for G, is multiplied by Gy%/m, and the
determinant—their sum-—is multiplied by the same
factor. The closed-loop sum C(§,f) is trickier. ND have

shown
ti—to —(8/m)2
£C6,0) :( ) .
Teutoff

If we extend their method to the case of arbitrarily
many-time pairs, we find that the contribution of a
time ¢ to the integral which gives C (or, to be more
precise, AdC/d\, where X multiplies the vertices of a

2Bi/m
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diagram of ND) is of the form D(f) E(5), where E(3) has
exactly the same form as in ND’s paper. The tricky
integrations over 6, thus, give us nothing new, and a
comparison of the different integrals over D(f) gives us
166, = Gy/m? Thus,

an(lfl, v ,tzn)z [Gg(h,. . .’t%):]l—e
= Go(tl, ce ,tzn) 1=28/m+(3/m)%

Transforming to imaginary times f,= 18, we find

F(i8) = i JZ”/dBn' **dBan

n=0

XeXp[(Z—ZG) > — 1= ln(ﬁn_ﬁn,/T):ly

n>n'
0<B1—7< - <B—2m"<B—2n+1)7. (16)
For a finite-temperature calculation, we replace our
ground-state-to-ground-state amplitudes (0|...|0) by

a thermodynamic average. The partition function Z
satisfies

8
Z=Treﬂ3(H+H')=Tr(e—5HT eXpi/ H’(T’)dT’> .
0

7 even,

This is completely analogous to the expression (11) for
F(t) when t=18, and the integrand in it is again the
amplitude of a generalized x-ray problem.

Dyson’s equation is solved as in Sec. IV. (The
analyticity and branch-cut conditions are the same as
for the ground-state calculation, except for periodicity
modulu 78.)

The same arguments as before shows (Gy)2» to be the
determinant |B/sin[ (rax—1—721)/68]|. This equals

2Bi exp(i/Bm) Tar—1 exp(i/Bm) 7oL

exp[ (i/Bm) (r2r—1—721) ] —exp[ (i/Br) (rar, — Tox-1) ]

exp(2i/Br) rar1—exp(2i/Br)rar|

and is, thus, equivalent to a Cauchy determinant, with the value

2 \¥ 1 7
(*&) IT exp—ror—1 ] exp—rar
T k w3 L

3

X II

B<k’
which in turn equals

B w3

k<k’ T ] T

in complete analogy with the result we had before.?!
We, thus, get

F(if)= i J“/dﬁl,- < 5B

n=0

Sin(ﬂn_ﬁn’/ﬁ)
Xexp{(Z——Ze) > —1nn lnl: :H» ,
n>n’ sint/B
n even, 0<Bi,...,<B2.<B. (17)

18 G. Polya and Szegd, Aufgabe und Lehrsatze aus per Analysis
(Dover Publications, Inc., New York, 1945), Vol. 2. p. 97.
2 The full complexity of Muskhelishvili’s inhomogeneous equa-

21 21
(eXp~T2k—1 - eXp‘—Tzk/*1) H

L<r

B Tok—1— T2k/—1 B8
II —sin ) II —sin
<L

TeL—TaL B Tok—1"T2L
)/ (™)
=3 kLT ]

2 2 2 2
exp~12L—exp—nL:> / II <exp—72k_1——exp—rn> ,
B kL B

Ly Ky Ly Ky

Both the formulas for F(;8) have the form of a
classical grand partition-function integral, with J?%»
serving for the chemical-potential term e2¢7, and
eexpression heing a Boltzmann factor e /%7, For kT'=1,

tion solution is not needed, because we can write

G(t't)=1/(—#")+tans [H.T.LS )G (1) 1]
=tans {H.T.[S (") +as(t—)IG (" D)},

where « is an unknown factor. In this form, the equation becomes
homogeneous, and the solution must then be normalized.

2Tt is clear that the phases cancel each other out, because the
determinant of a real matrix is real.
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+1 +|

F1c. 6. Plot of f(z).

we find
,Bn_'Bn,
E=—(2—2¢) Y, —1""In —,

a>n’ T

with an equivalent expression for the finite-temperature
case. The statistical mechanics of a similar gas (without
the —17=" factor and without the cutoff) has been
done before.??

Instead of summing over pairs of spin flips, we can
transform to a double integral over the spin S.(f) at
different times, using

/(f/)n(fl)xz ln(x1~—x2)dx1dx2

1
=/ Farfeor———duidnz. (18)
(x1—x2)?

[f’ changes sign each time, so the —17= factor is
accounted for; f as, in Fig. 6, gives an f” integral equal
to the sum we need .

If we discretize this integral over f and turn it into a
sum over discrete times (by forbidding the flip to occur
except at these times), we find ourselves with an Ising
model with 1/(m—n)? interaction, or rather, with the
2n-flip term of such a model. The sum > J2"F,, gives
us the partition function (zof the grand partition func-
tion) of a one-dimensional Ising model with an inter-
action term Jn,=(2—2¢)/(m—n)? plus a nearest-
neighbor term uS,S.11 (u= —InJ 4 as before).

APPENDIX: BAND-STRUCTURE EFFECTS
AND CUTOFFS

The 1/it Green’s function discussed above is un-
realistic: It corresponds to an infinitely wide structure-
less band. A more realistic band structure would give a
different Green’s function, without the 1/ singularity at
the origin. For instance, for a flat band, symmetric
about the Fermi level, we find Go(f) = (1/2t) (1 —e?lt/7ol),
where the bandwidth is 2/7,.

The effect of such a Green’s function on the deter-
minant [Eq. (13)] of the free Green’s functions is clearly
that of a cutoff, forbidding the time denominator to be
less than about 7. As long as only one pair of times £;, #
is close enough to make band-structure effects im-
portant, we can write

Go(li,te) = [1/i(te—1:) JH-{Go(ti,tx ) —[1/i(tx—1:) 1},
2 F. J. Dyson, J. Math. Phys. 3, 140 (1962); 3, 156 (1962);

3, 166 (1962); 3, 1191 (1962); K. G. Wilson, ¢bid. 3, 1040 (1962);
J. Gunson, sbzd. 3, 752 (1962).
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and the determinant in [Eq. (13)] becomes the sum of
two Cauchy determinants as follows. If, for convenience,
we set 1=1, k=2, we have

e 11
G(1—2) —— ——
’ 1—4 1—6
Gfree —
11
3—2 3—4
11
1 \|3-4 3-6
=(Cauchy) —l—(Go — ~——)
—2 1
5—4

and, introducing the product representation of the
Cauchy determinant, we get

e K (v yre vy 8

Again, using our assumption that only #;—#, is small,
the bracket is

1 1 1
{}Q{Go—t—+~——+---}.

4 ts

This is essentially the same result and we would obtain
if we were to insert a cutoff function in place of 1/t;—1f»
in the Cauchy product from (14).

The effect of the band-structure on the Dyson
equation is much harder to handle. If the potential V(?)
is a single step function, we find that, whatever the form
of G(t), the Dyson equation is of the Muskhelishvili
form in frequency space. With this potential, the solution
is the same as before, except for a cutoff at times of
order 79. For small 8, the cutoff region becomes the
same as that of G(?).

We expect the same sort of behavior in the solution
for a more general V(f). However, since the equation is
no longer singular, it becomes much harder to make
rigorous statements on its solution.

As for the closed-loop sum ¢, its leading (second-
order) term, for any form of G, equals

sin26/ dh/ dlf2G02(l1—i2) .
V (t1) %0 V (t2) =0

This leading term is all we need within the approxima-
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tion sin?=6% Thus, very directly for this term, we
obtain the form (18), in which the interaction between
different times is given not by the singular function
1/(x1—2x2)% but by Go*(x1—x2), which has the singular
behavior cutoff at x;—x»= 7. To within this approxima-
tion, we can, thus, show that a cutoff at time 7, appears
again. Higher-order terms are about as straightforward
as any Feynman diagram of the same order, and are
unlikely to give us drastically different results.
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Thus, in at least three distinct cases, we can work out
the mathematics of the cutoff precisely. None of the
results are identical in detail, but all behave in very
similar fashion. Further effort in elucidating the
numerical nature of the cutoff is physically unwarranted,
since in fact we are seldom or never confronted with
known form factors and band structures; it is only the
Fermi-surface-dependent features of the problem which
are of any real physical interest.
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A study of the band structure for the holes in Bi has been by the magnetoacoustic effect in a Sn-doped
Bi sample. The existence of a singular point of the saddle type is confirmed and a new pocket of holes is
found. The analysis of the experimental results supports the Golin band calculation in Bi.

1. INTRODUCTION

N a previous paper,! the existence of a singular point
of the saddle type for the holes in bismuth was
postulated to explain some experimental results. The
main feature of the experiments was the disappearance
of the oscillations of the ultrasound absorption coeffi-
cient as a function of the magnetic field strength when
the hole Fermi surface was investigated.

To confirm and clarify the hole-band structure of
bismuth a new set of measurements has been carried
out in a sample of Sn-doped Bi, with a concentration
of impurity of 4.5X10® cm™, in order to have only
hole carriers.2 The interpretation of the experimental
results, in particular the location of the double-conic
point along the binary direction, is consistent with the
Golin band-structure calculation® of bismuth.

The present work is concerned with measurements,
by means of the magnetoacoustic effect, of the cross-
sectional area S of the Fermi surface and of the phase
factor v of the semiclassical quantization rule, S (er,%m)
= (n+v) (2weH /ch), for various magnetic-field and
sound-wave vector directions.

In Sec. 2 the theoretical background is outlined; in
Sec. 3 the experimental results are presented; in Sec. 4
a dispersion law and a model of the hole Fermi surface
are deduced from the experimental measurements.

1 M. Giura, R. Marcon, T. Papa, and F. Wanderlingh, Phys.
Rev. 179, 645 (1969).

2 J. M. Noothoven Van Goor, Phys. Letters 21, 603 (1966).

3 S. Golin, Phys. Rev. 166, 643 (1968).

2. THEORY

In this section some particular aspects of the existence
of a singular point of saddle type in the k space are
analyzed.

Around a saddle point the dispersion law of the
carriers can be approximated as follows:

€= €o+a1k12+012k22+013k32 ) (1)

with the coefficients a1, a3 having sign opposite to as
and choosing ki, ks, k3 as the bisector, binary, and
trigonal axis, respectively.

In this case one of the authors* has shown, with
semiclassical arguments, that the relation

S(e,k)=2m (eH /ch) (n+) (2)

is still valid and v assumes the value of 2. This result
has been obtained when the magnetic field is along the
ks axis and in relation with all the values of the mo-
mentum k; that do not lead in the k space to self-
intersecting orbits for carriers. In the case of self-
intersecting orbits, the semiclassical arguments, in
fact, are not valid.?

The value y=2 follows from the structure of the
differential equation derived from Eq. (1) by means of
the Luttinger and Kohn® procedure in the presence of

4 M. Giura, Phil. Mag. (to be published).

5 M. Giura and F. Wanderlingh, Phys. Rev. Letters 20, 445
(1968).

6 J. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).



