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The change in the electron density of states with dilute alloying is directly related to the shielding of the
added impurities. If there is no volume change on alloying, the change in p (E), the density of states at energy
E, is proportional to the excess charge attracted to the impurities from the electron states of energy E. The
low-temperature electronic specific heat of various dilute alloys can be interpreted in this manner to obtain
the shielding contribution of the electrons at the Fermi energy. The rigid-band model has no obvious rela-
tionship to the electronic specific heat of dilute alloys even if the specific heat depends only on the electron-
per-atom ratio. Such a dependence means only that the attracted charge is proportional to the valence
difference between the impurity and the host, a result expected from linear response theory.

I. INTRODUCTION

ISTORICALLY, one of the main motivations for

measuring the low-temperature electronic specific
heat of dilute alloys was to discover the variation of
the density of states of the pure host as a function of
energy.~® The incorrect reasoning used was based on
the rigid-band model which assumed that the density
of states curve p(E) of the pure host remained un-
changed with alloying. If alloying changed the electron-
per-atom ratio 3, the Fermi surface would expand or
contract to accommodate the varying number of
electrons. Since the electronic specific heat measures
the density of states at the Fermi energy, it would be
possible to plot out the density-of-states curve of the
pure host by appropriate alloying. When this model
is applied to real alloys one runs into contradictions.
The noble metals and their alloys give the simplest
example of the contradiction. The band structure of
the noble metals is well enough known1® to permit a
prediction of the change of p(¥) with 3. Since the
Fermi surface of the pure metals is touching the zone
boundary, increasing the 3 should decrease p(E) if the
rigid-band model were valid. Measurements indicate
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just the opposite behavior, namely, an increase of p(F)
with increased 3. The obvious cause of this behavior
is the breakdown of the rigid-band model,’* but there
has not been a quantitative theory to explain the
measured result.

In this paper we show that there is a relationship
between the change in p(E) on alloying and the shield-
ing of the impurities by states near the Fermi energy.
An increased p(Z) with the addition of dilute impuri-
ties indicates that the electronic states at the Fermi
energy are attracted by the impurities and deposit more
electronic charge in the vicinity of the impurities to
help shield them. Since this is the expected behavior
for impurities that increase &, one expects, in general,
an increase of p(X£) with increased & more or less
independently of the host. The experimental results
for the noble-metal alloys are consistent with this
picture.

The outline of the paper is the following: Section II
proves the relationship between p(E) and the shielding
of the electron states at the energy E. Section III
discusses the range of validity of this relationship. A
discussion is presented in Sec. IV, and a summary and
conclusion are given in Sec. V.

II. DENSITY OF STATES AND SHIELDING

In this section we assume that the Laue theorem?!” is
valid and use it to derive the relationship between
shielding and p(Z). This theorem states that the
particle density per unit energy range is approximately
independent of the form of the boundary, at distances
from the boundary greater than a characteristic particle
wavelength at the energy considered. Consider the
model of a solid composed of a host and a dilute
number of substitutional impurities which do not vary
the volume of the solid. By dilute we mean that the
average distance between impurities is many times the
size of the shielding cloud, so that to a good approxi-
mation there is no appreciable overlap of the shielding
clouds of different impurities. We assume that the

16 E. A. Stern, Phys. Rev. 157, 544 (1967).
17 C. Kittel, Quantum Theory of Solids (John Wiley & Sons,
Inc., New York, 1963), pp. 339-341.
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1 ELECTRON DENSITY OF STATES OF DILUTE ALLOYS

impurities are distributed throughout the solid in such
a manner so that there is no appreciable clustering.
Finally, we assume that the electron states can be
determined by a single-particle Hamiltonian. Thus we
neglect interactions between electrons except insofar as
they contribute to the selfconsistent potential via
shielding.

According to the Laue theorem, in the region away
from the impurities,

o6’ (1)p"(E)=0or(1)p(E), )

where o5 (r) is the alloy particle density at r per electron
state of energy E, p(E) is the alloy density of states at
E, and the superscript 0 denotes the corresponding
quantities in the pure host.

If the electron states of energy E contribute any
shielding around the impurities, we have

o5 (1)#=os(r). 2

This follows from the fact that the eigenstates are
normalized to 1. Any increase or decrease of the
electronic charge around the impurities due to shield-
ing must produce the opposite change in electron
density away from the impurities.

If the average excess charge at energy FE attracted
by each impurity is (0z)/V, where V is the volume of
the solid, we have

o6’ (1)/op(t)=1/(1—néox) ©)

where 7 is the number of impurities per unit volume.
Combining (1) and (3) gives

p(E)=p"(E)/(1—nbox),
~p"(E)(1+ndog). 4)

Physically, (1+#ndog) is the ratio of the total charge
attracted around the impurities per unit volume to the
total charge per unit volume contributed by states at
energy E.

We check Eq. (4) by considering the free-electron
gas as the host. In this model’® the excess charge
attracted around a single impurity is (1/R)(dd,/dk)
for a partial-wave state of wave number £ and angular
momentum /. Here §; is the phase shift introduced by
the impurity for this partial wave and R is the radius
of the spherical sample. The impurity, assumed to
have a spherical potential, is placed in the center of
the sphere to provide spherical symmetry. The average
excess charge attracted by the impurity is obtained by
summing the contribution from each (k) state at
energy £ and dividing by the total number of such
states. By this means one obtains

(204157
Co@iee

dog 2

- ;m (5)

where §/=d8;/dk and m is the electron mass. Com-
18 See, for example, Ref. 17, pp. 341-344.
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bining (5) with (4), we obtain
2mnV
p(E)=p"(E)+ > (2415 (6)
Tk

This agrees with the standard results for this model.??

III. RANGE OF VALIDITY

In order to derive the result in (4) relating p(E) and
the shielding charge oz, it was necessary to assume the
Laue theorem which asserts (1) in the region between
impurities. We now analyze, using an argument due
to Peierls,® the range of validity of (1).

Consider the Green’s function of the alloy G(r/,r'#)
defined by

(—h2v2 - ihaG »
oy (r)"52> (4,0) = —8(e—r)3(1—1), (7)

m

where V(r) is the selfconsistent potential in the dilute
alloy. Physically, G(rt,r't’) describes the amplitude of
finding an electron at r and time ¢ when a single electron
is created at r’ at time #. We set the boundary condi-
tion that G@t,r't)=0 for ¢<#. The solution for
G(t,r't) is

Gtrt) =—i TabaO¥a* @) o2, (8)

where ¥, (r) are the eigenstates of the alloy and #w,
are their eigen energies. The fourier transform G, (r,r’)
is defined by

G, (1) = G(xt,r't")eto =t d (t—1¢")
210 2% (9]

w—w,+1is

=lim >,

§—0+

9)

We note that

p/3
— —ImG,(1,0) =% 20 ¥u(OYa* ()0 (w—w,) (10)

and

j/
- - Im/Gw(r,r)d3r=h Doad(w—wa)=p(E), (11)

where E=%w, and the eigenstates are normalized to 1.
Eq. (10) can conveniently be written as

— (/) ImG(r,1) = o5 (1)p(E) (12)

where og(r) is the charge density per state at r for the
states with energy E.

In general, G,(r,r) is affected by the presence of
each impurity. In fact, we have the well-known rela-
tion? relating G,(r,r) and G.(r,r), where G.2(1,r) is

1 A, D. Brailsford, Phys. Letters 22, 278 (1966).

2 R, E. Peierls, Proc. Natl. Inst. Sci. India 20, 121 (1954).

2t A, Messiah, Quantum Mechanics (John Wiley & Sons, Inc.,
New York, 1966), p. 715.
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the Green’s function for the pure host with no impurities,
G,(rx)=GL(x,r)+ f GLx, )V ()G, (x' x)d%". (13)

However, in practice we are not really interested in
p(E) but some average of p(E) over an energy interval
AE which is small compared to the energies of interest.
As pointed out by Peierls,? such a “fuzzed out” p(E)
can be obtained by taking the Fourier transform of
G(rt,Y't) over only the time interval 7>{—#>0,
instead of the interval o >¢{—#'>0 as previously.

This Fourier transform denoted by G,(r,r’,7) has the
property that

— @/7) ImGo(r,x,7) =ou(t,r)p(Er),  (14)

where p(E,7) and o5 (r,7) are averaged over the interval
AE=~#%/r. Now if r is farther from any impurity than
the distance 20g7, then ImG,(r,r,7) is not affected by
the impurities and has the same value as in the pure
host. Here vg is the maximum velocity of electrons of
energy E. The invariance of ImG,(r,r,7) depends on
V (r) not changing on alloying. In that case, the dif-
ferential equation which determines G(x,(#+7); 1,¢') in
the vicinity of 7 is exactly the same, with or without
impurities. The disturbances introduced by the im-
purities have no opportunity to scatter back and affect
the point r in the time interval 7. Thus,

an(r)T)po (E)T)=UE(ryT)p<E)T) ) (15>

where the superscript O denotes the corresponding
quantities in the pure host.

To complete the proof of (15), we must show that
V (r) does not change on alloying. This follows from
(15) itself, which states that the alloy electronic charge
density of energy E averaged over an energy interval
#/7 has exactly the same magnitude and spatial de-
pendence as in the pure host. The potential V(r) is
composed of the ion core potential plus the field of the
conduction electron density. Since both of these are the
same in the alloy and in the pure host, ¥V (r) remains
unchanged in alloying.

We now estimate the value of 7 that enters in
practice. The determining requirement is that p(E,r)
closely approximates p(E). This will be the case when
over the energy interval /7, dp(E)/dE does not change
appreciably. Typically in metals, p(E) and dp/dE have
appreciable variations for energy changes of the order
of the bandwidth—of the order of several eV. Thus
for /7<50.2 €V we would expect that p(E,r) closely
approximates p(E), except when p(E) has a van Hove
type of singularity at E.

From Eq. (4) we note that in the dilute limit the
change in p(E) is proportional to #, the number of
impurities per unit volume. In practice, the range of
validity of the arguments presented here can be de-
termined from the experimental measurements by de-
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termining the concentration region in which the change
in p(E) remains linear with concentration. The estimate
in the above paragraph plus the definition of 7 given
below Eq. (14) leads to the conclusion that the change
in p(E) should remain linear until an impurity con-
centration of the order of several 9.

IV. DISCUSSION

We now proceed to analyze specific-heat measure-
ments on dilute alloys in the context of the presenta-
tion in the previous sections. The connection between
the shielding of the impurities and the change in density
of states gives a straightforward explanation of the
experimental data. One is not measuring the variation
of the p(E) of the host material with varying 3, nor
is one measuring directly any electron-phonon en-
hancement factor variations. One is simply measuring
the amount of charge attracted to the impurities for
the electron states at the Fermi energy. Electron-
phonon interactions or any other effect can contribute
only in how they influence this shielding charge around
the impurities. The results of Dicke and Green on
Al-based alloys which indicate a decrease of p(Ep)
with Zn impurities, and an increase with Ge impurities
indicate that the electron states at Ep are repelled
from the Zn impurities and attracted to the Ge im-
purities. This is precisely what one expects from usual
shielding considerations using perturbation theory. In-
terpreting these results in terms of Eq. (4), one finds
that the electrons at the Fermi energy deposit 0.6 as
much charge on Zn atoms and 1.4 times as much
charge on Ge atoms as deposited on the Al atoms. The
effect on p(E£r) of volume changes on alloying as esti-
mated from a free-electron model are unimportant.

In the noble-metal alloys, there are indications that
the volume changes on alloying contribute appreciably

TaBiLE I. Charge from electrons at Er attracted around dilute
impurities as determined from low-temperature electron specific
heat data. Here v is the coefficient of the linear temperature term
of the specific heat and # is the atomic fraction of the impurity.
The corrected values in the third column use the volume correc-
tions of Ref. 4 applied to the Cu- and Ag-based alloys. The
volume corrections for the Al-based alloys are estimated by the
free-electron model. The last column gives the ratio of the charge
at Er attracted around an impurity to that around the host atom.
The host atom is italicized in the first column.

Alloy d ll‘l’y / dx (d ln'y/ dx) corrected i mp/ OThost
AlGe 0.372 0.4 1.4
AlZn —0.372 —0.4 0.6
CuSn 0.72b 0.9 1.9
CuZn 0.3¢ 0.5 1.5
AgCd 0.274 0.45 1.45
AgZn 0.65¢ 0.45 1.45
AgSn 0.66¢ 11 2.1
AgAu —0.065 —0.06 0.94
AulAg —0.22¢ —0.22 0.78

f Reference 3.
& Reference 23.

d Reference 8.
© Reference 4.

a Reference 10.
b Reference 1.
° References 1 and 2.
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to the changes in the low-temperature electronic spe-
cific heat. Since the theory presented in this paper
assumed no volume variation on alloying, the changes
in p(E) produced by volume changes must be corrected
for. In doing this we follow the analysis of Green? on
Ag-rich alloys and assume that the same volume cor-
rections can be used, not only on Ag-rich alloys, but
also on Cu-rich alloys. The data are summarized in
Table I, which also includes the Al data. We note the
offhand surprising result that Pd impurities attract
more charge at Er than do the host Ag atoms. Per-
turbation theory of shielding applied to the free-
electron model predicts the opposite behavior. How-
ever, a model which can explain this is one which treats
the Pd impurity as a virtual bound state? located in
the vicinity of the Fermi energy, so that the electrons
can resonate with it at that energy.

Also included in Table I is an analysis of the Ag-Au
alloy system. In this system there are appreciable
decreases in p(Er) at both the Ag-rich and Au-rich
ends,”?® and the volume changes are negligible.?* The
variation of p(E) with alloying agrees with that pre-
dicted by perturbation theory.?® Although both Ag
and Au have the same valence, there is a net charge
transfer between them at Ep. Of course, the net charge
transfer between them integrated over all energies
must be zero by charge neutrality. Thus, the fact that
in the gold-rich alloys the Au atoms attract more
charge at Ep than the dilute Ag impurities implies
that at some lower energy the reverse is true.

We do not extend our analysis to the extensive data
on the transition-metal alloys.!*~'3 In such alloys long-
range magnetic effects can occur which invalidate the
present analysis. In addition, it would take careful
analysis to subtract out volume effects.

2 E. Daniel and J. Friedel, in Low Temperature Physics LT9,
edited by Daunt, Edwards, Milford, and Yaqub (Plenum Press,
Inc., New York, 1965), p. 933.
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V. SUMMARY AND CONCLUSIONS

The changes in the low-temperature electronic spe-
cific heat of dilute alloys give information on the
properties of the alloy and not directly on those of the
host. In. particular, these specific heat changes are
directly related to the electronic charge at Er attracted
around the impurity. This explains why attempts to
understand specific-heat data of dilute alloys in terms
of the rigid-band model have so often been unsuccessful.
On the other hand, the shielding of impurities must
depend in some manner on the electronic structure of
the host, so that there should be some indirect con-
nection between the specific heat of dilute alloys and
the host properties.

The experimental proof of the validity of the rigid-
band model that is usually given is that the electron
specific heat depends on only & and not the type of
impurity. Thus, for example, if alloys of CuSn and
CuZn produce the same specific-heat changes as a
function of 3, one would assume that the rigid-band
model is valid. The analysis of this paper indicates
that such a conclusion does not follow. The dependence
of specific-heat changes on only & means that the
amount of charge attracted to impurities is propor-
tional to Z, the difference in valence between the host
and the impurity. This is the case in linear response
theory. Thus the correct conclusion to draw from the
experimental dependence of the changes in p(£r) on
only & is that the shielding can be treated by linear
response theory, and not that the rigid-band model is
correct.

It is estimated that up to several 9, of impurity
concentration the changes in p(E) vary linearly with
concentration. It is in this range that the relationship
between p(E) and shielding applies.
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