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The complete set of ten third-order elastic constants of zinc was determined from measurements of the
hydrostatic and uniaxial stress dependence of ultrasonic velocity. The experiments were carried out using
the two-specimen interferometric method on appropriately oriented single crystals of zinc. The magnitudes
of Caas and Cin are largest, followed by Csss which is less than one-third of Caas, whereas Ciaqis the smallest
of all. All the constants except Ciss are negative. The “macroscopic” values of the Griineisen v for zinc are

evaluated.

INTRODUCTION

RYSTAL anharmonicity determines or affects
various properties of solids, for example, thermal
expansion, thermal conductivity, temperature depend-
ence of elastic constants, and attenuation of high-
frequency waves. The theoretical treatment of crystal
anharmonicity usually involves an expansion of the
strain energy of a crystal in terms of finite strains. The
coefficients of terms of a given order in this expansion
are conveniently defined as the corresponding-order
elastic constants. Alternatively second-, third-, and
higher-order elastic constants can be defined as the
second, third, and higher derivatives of the free energy
(isothermal constants) or of the internal energy
(adiabatic constants) of the crystal with respect to
finite strains. From the knowledge of higher-order
elastic constants it is possible, in some cases, to estimate
the relative importance of various contributions to the
interatomic potential as well as to determine the general
form of this potential.

The present work is concerned with the determination
of the third-order elastic constants (TOEC) of zinc. As
far as the authors are aware, this is the first report of a
complete set of TOEC for a metal with the hexagonal-
close-packed crystal structure.

The TOEC were obtained from measurements of
the hydrostatic and uniaxial stress dependence of sound
velocity in single crystals. In the case of solids contain-
ing mobile dislocations, such measurements must be
carried out in a manner such as to eliminate or subtract
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the added effects of dislocations. The dependence of
the attenuation of the propagating wave on amplitude
and on static stress is a sensitive indicator of dis-
location effects.! This method was used, therefore, to
ascertain whether dislocations were affecting the
measurements. In the present study all propagation
modes having a shear component of stress in the (0001)
plane were found to be sensitive to dislocations when
zinc crystals of nominal purity 99.9999, were used. No
such sensitivity was found, however, in zinc crystals
containing 0.5%, (atomic) aluminum. For all the other
propagation modes used, dislocation effects were not
detected in either the high-purity zinc or the zinc
containing the aluminum. As is shown later, the
TOEC obtained on the two types of crystals were
the same, within the experimental uncertainty of the
measurements.

EXPERIMENTAL PROCEDURE AND RESULTS

The zinc single crystals were grown from the melt
with predetermined orientation. Two sets of single
crystals were prepared, one of 99.9999, pure zinc, the
other using the same starting material with the addition
of 0.59%, (atomic) aluminum to the melt. Precautions
were taken to insure uniformity of composition for the
second set of samples. All the specimens were in the
shape of parallelepipeds; those of higher purity had the
approximate dimensions 1.5X1.5X2.0 cm, the ones of
lower purity had the approximate dimensions 0.9
X1.1X1.4 cm. They were prepared from the respective
single crystals by cutting and planing on a spark

! R. Truell, C. Elbaum, and B. B. Chick, Ultrasonic Methods in
Solid State Physics (Academic Press Inc., New York, 1969).
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cutting machine and were given a final hand polishing
to obtain the same dimensions for equivalent crystal-
lographic directions. The orientations were checked by
Laue x-ray diffraction patterns; the faces of the
specimens were thus found to be within 1° normal to
the directions [00017], [11207, [11007]. It is estimated
that after polishing, the dimensions of each pair
of equivalent samples were the same to within 42
X10~* cm.

As a preliminary check, measurements of the adia-
batic second-order elastic constants were made by
means of the usual ‘“pulse-echo technique.”® These
results were found to be the same as the results of
Alers and Neighbours within 4-0.5%,. Since the absolute
accuracy of the measuring equipment used here was
less than that of Alers and Neighbours,? we used their
values for the second-order elastic constants on all
subsequent occasions where such constants were needed.

The technique used for measuring the temperature
and pressure dependence of the wave velocities was the
two-specimen interferometric method, which has been
described elsewhere.? The only major modification of
the apparatus design used in the present investigation
was the incorporation of a signal divider for the signal
coming from the signal generator. This signal divider
allowed one to make the signal levels from the two
specimens equal. It was then observed that the inter-
ference pattern became sharper, i.e., the height of the
null echo approached zero better than without the
signal divider. This adjustment was always made
before the experimental run commenced. The tempera-
ture difference between the two specimens was moni-
tored by means of iron-constantan thermocouples. Those
thermocouples were calibrated against a platinum
resistance thermometer in the range from 10 to 25°C.
An ultrasonic frequency of 10 MHz was used throughout
this study.

When a velocity difference AW exists between two
specimens, an interference results when the two waves
are recombined, and the velocity difference is given by*

AW (25-1) 1

We  n 2l

1)

where j is the interference node number, # is the echo
number, f is the frequency, and ?# is the round-trip
echo time. Here we use the concept of a natural velocity,
Wo=2L/t,, with Ly being the ultrasonic pathlength at
the reference temperature in the absence of an applied
stress, and {, having the same meaning as above.
Changes in velocity difference AW with changing
temperature are essentially equivalent to changes in
the quantity (27 —1)/% with temperature. The tempera-

2 G. A. Alers and J. R. Neighbours, J. Phys. Chem. Solid 7, 58
(1958).

3V, Hiki and A. V. Granato, Phys. Rev. 36, 2504 (1965).

4 R.) F. Espinola and P. C. Waterman, J. Appl. Phys. 29, 718
(1958).
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TasirE I. Temperature coefficients of four second-order elastic
constants of Zn around room temperature [8C;;/dT in units of 108
dyn/(cm? °C)].

Alers and
Present Neighbours
aCu/oT —6.614+0.17 —6.65
9Cus/0T —2.894+0.10 —2.82
9Cs3/T —2.02+0.08 —1.71
aC' /9T =538 (C11—C12)/0T —3.40+0.11 —3.39

ture coefficient of the natural velocity, 8'=9 InIW/dT,
is found by plotting (27—1)/xn versus the difference in
temperature, AT, and multiplying the slope of this
graph by 1/2ft,. In order to convert these temperature
coefficients to the corresponding temperature coeffi-
cients of the elastic constants the following relationship
is used:

dInC,;/0T=— (a11+20433)+2(aij)+2.3’ y 2)

where a1 is the thermal expansion coefficient parallel
to the ¢ axis, ass is the thermal expansion coefficient
perpendicular to the ¢ axis, a;; is the thermal-expansion
coefficient appropriate to the direction along which the
ultrasonic wave is traveling, 8’ is the temperature
coefficient of the natural velocity which has been
measured, and Cy; is the appropriate combination of
second-order elastic constants which relate to the
ultrasonic wave being propagated.

In the case of zinc, the two-specimen method can
only give the temperature coefficients of four of the
five second-order elastic constants which appear in the
wave velocities with pure modes. These are Cyy, Cis,
Cl4, and Cs3. Furthermore, there is no consistency check
on the constant C33 as it may be obtained only by
propagation of a longitudinal wave along the ¢ axis.
There are enough distinct modes for consistency checks
on each of the three other constants, however. The
thermal-expansion coefficients of zinc determined by
Collins and White® were used to relate the measured
(8')’s with the temperature coefficients of the elastic
constants. The results obtained in this study along with
those of Alers and Neighbours,? are shown in Table 1.
The values labeled “Alers and Neighbours” are calcu-
lated from their tables of elastic constants versus
temperature in the region around room temperature.
The values dC;;/dT obtained here are based on measure-
ments over a small interval of temperature (10° or less),
near room temperature. They are, therefore, expected
to be more accurate, at this temperature, than values
obtained by Alers and Neighbours over an interval of
100°, spanning room temperature. It is seen, however,
that the two sets of measurements show very good
agreement for Cq, C’, Cu, and fairly good agreement
for Cgs.

5 J. G. Collins and G. K. White, in Progress in Low Temperature
Physics, edited by C. J. Gorter (North-Holland Publishing Co.,
Amsterdam, 1964), Vol. 4, p. 450.
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Fre. 1. Natural velocity change AW /W as a function of hydro-
static stress in zinc. The numbers refer to the modes specified in
Table II. Note that mode (1) (circles) and mode (2) (triangles)
superimpose, thus only one line has been drawn for both sets of
points.

The stress measurements procede in the following
fashion. A null in the interference pattern is established
by maintaining a temperature difference between the
samples. When the stress, either hydrostatic or uni-

TazrE II. Directions of static stress, M, of wave propagation,
N, and of wave polarization U, along with the appropriate elastic
constants.®

Correlation to

Brugger’s
formula for
M N U (pot®) p—o (o)’
1. Hydrostatic [001] [001] Cas ML
2. Hydrostatic [001] [100] or Cu MoaT or
[010 (27 )
3. Hydrostatic [100] [100] Cu MyyL
4. Hydrostatic [100] [010] 3(Cu—Cr) MyyT:
5. Hydrostatic [100] [001] Cu ovTs
6. [001] [100] [100] Cu MyyL
7. [001] [100] [010] 3(Cuu—Cr2) MsyT,
8. [010] [OOI] _0104 C44 Mzosz
9. [010] [100] [100] Cu MyyL
10. [010] [100] [010] 3(Cu—Ci2) MuxT,
12. [010] [001] [001] Css Mol

a Mo, a, L, v, T1, T2, T3, are explained in Ref. 6.
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axial, is applied the null shifts by a small amount. The
original null condition is then reestablished by changing
the temperature of the sample which is not being
stressed. The hydrostatic stress is obtained by means of
compressed nitrogen gas (from a tank). The pressure
is read on a U. S. Gauge Co. pressure gauge which is
accurate to about 1.5%,. The uniaxial stress is supplied
by a hydraulic press which was calibrated against dead
loads. The specimen was compressed between two steel
plates, one of which was connected to the press by a
ball-and-socket arrangement in an effort to minimize
misalignments. Indium shims were inserted between
the specimen and the pressure plates.

Brugger’s® formulation is used to relate the change
in natural velocity with stress to TOEC. This is done
by relating the change in temperature difference for
the null condition with stress to the change in natural
velocity in the manner shown below:

AW AT
6__
WAT AP|pey

3)

(Powz) "p—g=2 (pow2) P=0

where (pow?)’ is the pressure derivative of the modified
elastic constant as defined by Thurston and Brugger,’
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F16. 2. Natural velocity change AW /W as a function of uni-
axial stress in zinc for modes 6, 7, 9, 10, and 12 specified in Table

6 K. Brugger, J. Appl. Phys. 36, 767 (1965).
7R. N. Thurston and K. Brugger, Phys. Rev. 133, A1604
(1964).
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SAT=AT| p_p—AT| pmy, AW/WAT is the measured
temperature coefficient of natural velocity, and (pow?)
is the elastic constant appropriate to the mode of
ultrasonic propagation. In Table IT we give the direc-
tions of static stress, M, of wave propagation, NV, and
of wave polarization, U, along with the appropriate
elastic constants. The coordinate axes used are those
specified by the IRE standards® and the elastic con-
stants used are based on the definitions of Brugger.$
The plots of AW/W versus AP for the hydrostatic
stress measurements are shown in Fig. 1. The plots of
AW /W versus AP for the uniaxial stress measurements
are shown in Figs. 2 and 3. The arrows denote the
uncertainty in each measurement. Note that the modes
involving C,4 are plotted in Fig. 3. These modes were
measured on the “impure” samples, because dislocation
effects present in the pure samples made it difficult to
obtain reliable values for the stress dependence of the

Ap kg /em?

natural velocity. The consistency of results obtained
on the two sets of samples for the mode involving Cs3
was checked and is shown by the curves labeled (1)
and (1') in Fig. 1.

In Table III we give the equations necessary to
evaluate the TOEC of zinc from the measured slopes.
The numbers in line 1, correspond to the numbers in
Table II. The coefficients of the TOEC were calculated
from the adiabatic second-order elastic compliances of
Alers and Neighbours.? This should not cause a signifi-
cant discrepancy in the final results, even though
Brugger’s formulas call for isothermal compliances,
since the correction from adiabatic to isothermal com-
pliances is characteristically of the order of 19%,.

The equations involving the TOEC are segregated
in the following manner. Cii1, C112, Ca2s, C1e3, and Ciy3
occur only when the ultrasonic wave is propagated in
the basal plane and is polarized in that plane. C133 and

TasLE III. Equations for evaluation for the TOEC of zinc. (In this table, one reads the equation horizontally, e.g., for line 1,
the equation would read 1.329Cj333+0.2974C133= —10.382.)

Cu Cuz Caas Cras Cus Ciss Casz Cia Ciss Caaa M
1. 0 0 0 0 0 0.2974 1.329 0 0 0 —10.382
1'a 0 0 0 0 0 0.2974 1.329 0 0 0 —10.93
2.8 0 0 0 0 0 0 0 0.1487 0.1487 1.329 — 5.53
3. 0.1487 0.1487 0 0 1.329 0 0 0 0 0 — 06.648
4. 0 —0.07435 0.07435 —0.6645 0.6645 0 0 0 0 0 — 2.123
5.8 0 0 0 0 0 0 0 0.1487 0.1487 1.329 — 4.856°
6. —0.747 —0.747 0 0 2.283 0 0 0 0 0 8.141
7. 0 0.3735 —0.3735 —1.412 1.412 0 0 0 0 0 6.952
8.8 0 0 0 0 0 0 0 0.0547 0.841 —0.747 5.43
9. 0.0547 0.841 0 0 —0.747 0 0 0 0 0 — 4.058
10. 0.3432 —0.2239 —0.1692 0.3735 —0.3735 0 0 0 0 0 — 3.035
112 0 0 0 0 0 0 0 0.841 0.0547 —0.747 3.36
12. 0 0 0 0 0 0.8957 —0.747 0 0 0 2.243

a Values obtained from measurements carried out on the alloyed crystals.

8 Proc. IRE 37, 1378 (1949).

b Questionable value.
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TasLe IV. TOEC of zinc obtained from ultrasonic waves in the basal plane. (Cijx in units of 102 dyn/cm?.)
Ciu1 Cu2 Casz Cias Cus Weight
—17.3143.63 —5.0841.07 —22.004-3.01 —3.15+0.90 —2.8740.48 Unweighted
—17.5641.49 —4.4041.09 —24.1442.59 —2.14+0.62 —2.68+0.31 Weighted 4(3):1(6):1(9):

5(4):2(7):1(10)

C333 occur only when a longitudinal wave is propagated
along the ¢ axis. Cy, C155, and Czys occur only when the
ultrasonic mode involves the stress dependence of the
elastic constant Cy. We further note from Table III
that there are six independent relations among the five
constants, C111, C112, C222, C123, and C113. ThlS aHOWS
for a check of the consistency of results. The constants
C133 and Cj33; are checked by three measurements on two
different sets of samples. The three constants Cias,
C1s5, C344 have no consistency check; they are all based
on measurements involving the Cs mode using the
impure samples.

In order to evaluate the TOEC we grouped the
resultant equations in the manner indicated above.
The six equations governing the first five constants in
Table III were put into a least-squares program in
order to determine the “best” values for the TOEC.
Two different weighting schemes were used. The first
scheme was an unweighted substitution while the second
scheme was to weight inversely the different lines
according to the experimental scatter of the points
from the best straight line in each individual run. The
results along with the weighting scheme are shown in
Table IV. The numbers in the parentheses in the
weighting column refer to the lines in Table II. The
“errors” refer to the self-consistency of the measure-
ments. We see that this consistency is improved some-
what by weighting as in the second line in Table IV. A
similar weighting scheme was used for the constants
C133 and C333 giving the values (in units of 102 dyn/cm?)
C133= ——353:|:0.11, C333= —723:!:020 The constants
C144, C1s5, C3aa are obtained from the solution of three
simultaneous equations in these three unknowns. The
results are (in units of 102 dyn/cm?) C14s= —0.10240.10;
Ciss=+2.53+£0.50; C344= —4.43+0.40.

Our final values of the TOEC of zinc are given in
Table V, along with the hydrostatic-pressure deriva-
tives of the second-order elastic constants which are
calculated, via the formulation of Thurston and
Brugger,” from the TOEC. The errors represent an
indication of our confidence in the final values.

TaBie V. TOEC of Zn and hydrostatic pressure derivatives
of the second-order elastic constants. [Cij in units of 102 dyn/cm2,
with 8C1/dP=17.52; 3Cs3/dP=7.32; 93[Cu—Ci2]/0P=1.48;
9Cu/3P=4.02.]

Ciu=—17.6%1.5 Cizs=—2.1£0.6 Cra3=—3.5+0.1
Cie=— 4.4=+1.1 Crz=—2.74£0.3 Crsz=—7.240.2
Case=—24.1£2.6 Craa=—0.1£0.1 Ciss=+2.54+0.5

Cyu=—4.4+04

DISCUSSION AND CONCLUSIONS

(1) The complete set of ten third-order elastic
constants of zinc was determined from measurements
of the hydrostatic and uniaxial stress dependence of
ultrasonic velocity. In the course of these measurements
the temperature and pressure derivatives of the second-
order elastic constants have been obtained and are
reported.

(2) From the values of the second-order elastic
constants and the third-order elastic constants deter-
mined in the present study the Griineisen parameter
v for zinc wase valuated. The room-temperature value
of the volume thermal-expansion coefficient, o, was
then calculated using this Griineisen parameter. The
results were found to agree well with the experimental
value of the volume thermal-expansion coefficient, but
not with the tensor components of the linear-expansion
coefficient.

Values of v were calculated from the expression for
the generalized-mode Griineisen parameter?

y:?9=—(1/2W)[2W,;U U,
-+ (Cpqmn+cpqmunv Uu Uv)NmNn] ) (4)

)

where
Wi=CmunvaNnUqu )

and summation over repeated indices is implied.

For the purpose of relating the thermal expansion
coefficient with the Griineisen parameter the following
expression was used:

(6)

[the derivation of Eq. (6) is given in the Appendix],
where, for zinc,

Cpaijorig=pilCyy??

an 0 O
Q= O ai11 0
0 0 ass

ayn and a3 are the thermal-expansion coefficients
normal and parallel to the axis of sixfold symmetry,
respectively. It follows that

avol=2a11+tass.

The average values of v were calculated (on a computer)
over 238 equally spaced points on 7% of the Debye
sphere, following the general method outlined by

9'Y. Hiki, J. F. Thomas, and A. V. Granato, Phys. Rev. 153,
764 (1967).
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Quimby and Sutton.?
yl=42=1.192; 4%=2.812.
The volume-expansion coefficient is then calculated
from
[2(C33—Ci3)7'+ (C11+C12—2C13)7%]

Qyol = PoL ’

(C1itC12)Cy3—2C

where C, is the specific heat and po is the density. We

obtain
Qvyol= 8-8}( 1045 .

This number is to be compared with the experimental
value® of 9.59X10-5.

APPENDIX

We use the following procedure to derive Eq. (6).
The free energy F per unit volume of a system of har-
monic oscillators can be written in the form

F=Fyn)+pokT Y In(1—e wl?T)

where F, is independent of temperature, 7 is the strain,
po is the density in the undeformed state, w; is the
circular frequency of the ith mode, &, 7', and % have the
usual meaning. The stress tensor ¢, is given by

tpq=p0(aF/a7]pq)T
=podF o/ I pgtpkT Y (1—e il kT)—1

X (—e?il¥) (—7/kT) (0wi/ Inpq) , (A1)
10§, L. Quimby and P. M. Sutton, Phys. Rev. 91, 1122 (1953).
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which can be rewritten as

tpa=poOF o/ Mpg—po 2 Trewi(ehei/ ¥ —1)~1

2

X (@i 10w/ Ipg) =to—po 2 (Eiyy#?, (A2)

%

where we define

yPI= (——wi_lawi/aﬂp(I) . (A3)

Differentiation of ¢,, with respect to temperature yields

(atpq/aT)ﬂ= —po Z (a<Ei>/6T)'Yipq

L]

=—Copo 2o v*YL 1=—piCy?2,  (A4)

1 £

where C, is the specific heat (at constant strain) and
472 is the Griineisen parameter averaged over the
Debye sphere.

Further manipulation yields

(6tpq/aT)q= - (atpq/anii) (anij/aT) tpg

= —CpqijT(anii/aT)tpq’ (AS)

and with the relation
aij= i/ 0T (A6)
we obtain, by using Eqgs. (9)-(11),

T oo s
CraijTaij=pCyy?e,

which is Eq. (6) used in the text, with C,=C, at zero
strain.



