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Helicon Waves in Solids with a Closed Fermi Surface*
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We present a theory of helicon wave propagation in solids with a closed Fermi surface of arbitrary shape.
In the limit of a high magnetic field, the dispersion and polarization are independent of band structure.
The electric field of the wave is elliptically polarized in a plane almost normal to the static magnetic field
H0, and the magnetic field of the wave is circularly polarized in a plane normal to the wave vector q. On
the other hand, the damping of the wave is qualitatively changed by anisotropy of the Fermi surface. We
find that the Landau damping may exhibit several minima for certain special directions of Ho with respect
to g and the crystalline axes. On the other hand, the Landau damping does not vanish, in general, even
for Hp~~ tl. This behavior is explained by the presence of cyclotron orbits which, in real space, are not per-
pendicular to Ho. Although the theory does not restrict the value of gE (where 4 is the mean free path),
we also derive the behavior in the limit g/((1. This case may be of interest for an experimental investiga-
tion of mean free paths in metals. As a particularly instructive example, we also study the special case of
an ellipsoidal Fermi surface.

INTRODUCTION AND BASIC ASSUMPTIONS then have a small but finite damping which arises from
a deviation z/co, from the right a,ngle between the
drift velocity and the electric field. The current is at
all times perpendicular to the wave vector.

If open orbits exist for a certain direction of the
magnetic field, the effective cyclotron frequency is zero
and the damping becomes extremely large. Other pro-
pagation characteristics also exhibit extreme anisotropic
behavior. The inhuence of open orbits was studied both
theoretically' and experimentally. ' In this work, we
shall assume that there are no open orbits.

An additional assumption is that the collision fre-
quency v does not depend on the phase of an electron in
its cyclotron orbit. Thereby we achieve considerable
simplification, while formally we take into account
possible eRects of anisotropy of v. A special conference4
has been recently devoted to such eRects.

Collzsion less (Lazzdazt) darrtpzng. This type of damping
was originally predicted by Landau' for longitudinal
oscillations in a collisionless (v —+ 0) plasma. A simple
physical picture of the damping was given by Bohm and
Gross. ' The existence of collisionless damping of helicon
waves was pointed out, and the magnitude of the damp-
ing was calculated by Kaner and Skobov. ~ In fact, the
mechanisms are quite different, and in our case it is the
magnetic field of the helicon which is responsible for the
"Landau" damping (of course, ultimately the power is
delivered to the electrons by means of the induced
electric field). The mechanism of this "magnetic"

' C. Kittel, Qztantztm Theory of Solids (John Wiley 8r Sons, Inc. ,
New York, 1963),p. 322; S. J. Buchsbaum and P. A. WolG, Phys.
Rev. I etters 15, 406 (1965).

'C. C. Grimes, G. Adams, and P. H. Schmidt, Phys. Rev.
Letters 15, 409 (1965); J. R. Merrill, Phys. Rev. 166, 716
(1968).

4 Proceedings of an International Conference on, Electron Acean
Free Puthsin 3fetuls, ZNrich, 1966', edited by R. G. Chambers, J.
L. Olsen, and J. M. Ziman (Springer-Verlag, Berlin, 1968).

5 L. D. Landau, J. Phys. USSR 10, 25 (1946).
' D. Bohm and E. D. Gross, Phys. Rev. 75, 1851 (1949) j 75,

1864 (1949).
~ E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 45,

610 (1963) )English transl. :Soviet Phys. —JETP 18, 419 (1964)g.
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" 'N the presence of a high magnetic field, electromag-
- - netic waves of frequency below the plasma frequency
may propagate in solids with small attenuation. For
propagation along the magnetic fteld (Hp~~q, where Hp

is the static magnetic field and zI is the wave vector) the
waves considered are circularly polarized. They are
called "helicons"' because of this property. Ignoring
damping, it is easy to show that the drift velocity is
perpendicular to the electric field of the wave, which is
the reason for the stability of this excitation. In fact,
there are three mechanisms which may lead to damping
of the wave.

Doppler slzifted cyclot-ron resonance An orbitin. g elec-
tron which moves along the magnetic field with an
average velocity vp (see I'ig. 1) experiences the wave at
a frequency cp zz= co —zI' vp. When cp, zz ——co, (where co, is
the cyclotron frequency) for any cyclotron orbit on the
Fermi surface, strong resonant interaction between
these electrons and the wave inhibits its propagation.
There will be no group of electrons satisfying this
condition provided that cp+q. (sp) (cp . We shall
assume that or is far away from the absorption "edge, "
i.e., that co/to, «1 and tl, (vp), /co, -gR«1, where R is
of the order of the largest cyclotron radius that electrons
on the Fermi surface may have. These inequalities
indicate that an electron experiences an almost constant
wave field.

Collzsional danzpizzg. Because of various scattering
mechanisms, the electrons have a finite collision fre-
quency v. An electron should be able to perform many
orbits before it is scattered, i.e., we require co,/o))1. We

*Based on a thesis to be submitted by P. Halevi to the Senate
of the Technion, Israel Institute of Technology, in partial fulfill-
ment of the requirements for the D.Sc. degree.

t Present address: Department of Physics, McGill University,
Montreal, Canada.

~ For reviews on helicon waves see (a) Proceedings of the Seventh
International Conference on the Physics of Se~nicondlctors, Paris,
1964 (Academic Press Inc. , New York, 1965); (b) D P. Morgan, .
Phys. Status Solidi 24, 9 (1967); (c) J. Mertsching, ibid. 14, 3
(1966);26, 9 (1968); (d) Ref. 13.
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FIG. 1.Dynamics of an electron in an
anisotropic medium: In addition to a
constant mean velocity vo along Ho, the
electron has an orbital velocity u; the
plane of the orbit is normal to a ~ector
A which, in general, is not parallel to

p. The diagram also shows that the
wave propagates at right angles to the
surface of incidence and has a wave-
length much larger than the cyclotron
radius (qR«1). 5vrfoce of

of the

Landau damping was explained by Buchsbaum and
Platzman' along the following lines.

When the magnetic field is tipped with respect to the
wave vector, the magnetic field of the helicon (being
polarized in a plane perpendicular to q) has an oscillat-

ing component along it. Thus, the lines of force will

alternatively diverge and converge. The radial com-
ponent of the Q.eld will exert a Lorentz force on the
orbiting electron; it will be speeded up where the lines of
6eld diverge and slowed down where they converge. If
the mean path /( s~/v) of the electron is much larger
than a wavelength (ql»1), the energy interchange will

average out to zero for almost all electrons. The except-
tions are those which have a component of velocity
along the wave vector (averaged over a cyclotron orbit)
very nearly equal to the wave velocity (vp' tl—pp). These
will be caught in the potential troughs of the wave and
carried along with it, giving rise to resonant interaction.
Those which have vo. q infinitesimally smaller than ~ will

be accelerated on the average, while those which have
vo. q in6nitesimally bigger than ~ will be decelerated on

the average. Since in thermal equilibrium there are more
slow than fast particles (8fp/Bsp(0), there will be a net
extraction of energy from the wave by the electrons.

In this discussion, collisions were implicitly assumed

only through the requirement that the system be very
close to a state of thermal equilibrium. In fact, although
Landau damping exists even in the limit s —&0, it is
modi6ed by a finite collision frequency. Collisions tend
to diminish the number of electrons which move
coherently with the wave. ' On the other hand, electrons
for which vo q differs significantly from co will now also

be able to contribute to the Landau damping, for those
which traverse in a collision time 1/v, a distance smaller

than a wavelength will, on the average, gain energy.

8 S. J. Buchsbaum and P. M. Platzman, Phys. Rev. 154, 395
(1967).

9 M. A. I ampert, J. J. Quinn, and S. Tossima, Phys. Rev. 152,
661 (1966).

The collision-modi6ed Landau damping was calcu-

lated by Buchsbaum and Platzman' for an isotropic

Fermi surface and measured by Houck and Bowers. "
In the alkali metals, the damping is a continuously

increasing function of the "tipping" angle (Hp, q).
In the present work, we wish to investigate how the

anisotropy of the Fermi surface affects helicon propaga-

tion. In Sec. III, we shall see that in the high-field limit

it does not affect the dispersion and polarization of the

wave. (If our requirement qR«1 does not hold, this will

no longer be true. "")
In Sec. IV, we analyze the damping of the wave.

Although the value of q, l is not restricted, we pay
special attention to the cases q,l 1 and q,l«1 (local

limit), which have not yet been investigated. The case

q,/»1 (extreme nonlocal limit) has been investigated

by Kaner and Skobov"" and by McWhorter and

walpole. " In this connection, it may be noted that
McWhorter and Walpole's" assertion that only oi,/p»1
is required in their theory is based on an approxima-
tion" which is valid only in the case q,/))1. Thus, their

derivation does not hold for an arbitrary value of g,l. In

» J. R. Houck and R. Bowers, Phys. Rev. 166, 397 (1968).
n J. L. Stanford and E. A. Stern, Phys. Rev. 144, 534 (1966);

P. R. Antoniewicz, Phys. Letters 24A, 83 (1967);N. B.Brovtsyna
and V. G. Skobov, Zh. Eksperim. i Teor. Fiz. 56, 694 (1969)
)English transl. : Soviet Phys. —JETP 29, 379 (1969)j.

"J.N. Walpole and A. L. McWhorter, Phys. Rev. 158, 708
(1967);A. L. McWhorter and J.N. Walpole, ibid 163, 618 (19.67)."E. A. Kaner and V. G. Skobov, Advan. Phys. 17, 605 (1968).
Note that some of the earlier results of Kaner and Skobov (Ref. 14)
have been corrected in the present reference.

'4 E. A. Kaner and V. G. Skobov, Zh. Eksperim. i Teor. I"iz.
46, 1106 (1964) LEnglish transl. : Soviet Phys. —JETP 19, 749
(1964)]; Usp. Fiz. Nauk 89, 367 (1966) /English transl. : Soviet
Phys. —Usp. 9, 480 (1967)g. See note in Ref. 13.

"A. L. McWhorter and J. N. Walpole, Phys. Rev. 158, 719
(1967)."In Ref. 15, Kq. (2.18), the authors neglect a factor of the
order of exp( —iq vp/co, ) in the integrand. However, if the con-
dition q,l)&1 does not hold, noncentral orbits also take part in the
damping and n0 eg. Thus, for noncentral orbits vo/co, R. The
neglected factor is then of the same order as another factor in the
integrand, exp( —iq. R), which plays an important role.
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the special case q,l)&1 their result agrees with that of
Ref. 13 (except for a numerical factor).

Quinn' and McWhorter and Walpole" pointed out
that even for propagation along the field (Ho~~q), in
general, the Landau damping does not vanish. This was
explained" by tilted cyclotron orbits in real space,
caused by anisotropy of the Fermi surface. The effect
was observed by Walpole and McWhorter" in PbTe.

Another particularly interesting feature of the damp-
ing, and a direct manifestation of anisotropy, are
minima, obtained for special directions of the magnetic
field with respect to the wave vector and the crystalline
axes. Such minima were found in indium" by Krylov"
and by Halevi, Lipson, and Rabinovitch. " This
behavior is in sharp contrast with that of the alkali
metals. "Thus, it may be said that the damping in a
solid with an anisotropic Fermi surface differs qlalita-
tively from that in a solid with an isotropic Fermi
surface. This effect was briefly discussed by Halevi" in
a preliminary note. We shall endeavor to give a thorough
microscopic interpretation in Sec. IV.

An additional assumption is that the temperature is
low enough for the Fermi distribution to be considered
degenerate, while high enough for excluding any quan-
tum effects (Aa&.«kT«e~). Nevertheless, in Sec. IV, we
shall comment briefly on the connection between
quantum oscillations in the attenuation of helicon
waves and anisotropy of the Fermi surface.

We shall conclude this paper (Sec. V) with an analysis
of the siInplest Inodel which exhibits anisotropy, an
ellipsoidal Fermi surface. In fact, it was this model
which led us to an interpretation of the minima in
indium. ""In addition, since the Fermi surfaces of
semimetals and semiconductors are composed, to a good
approximation, of variously oriented ellipsoids, there is
a practical value as well. Although the ellipsoidal Fermi
surface has been treated by several authors" '~ 22 in
connection with helicons, some interesting points remain
to be discussed.

i.e., a general energy-quasimomentum relationship e(p),
they are given by the expression"

2ec
z
1—expL —2n. (p —its+ iq vs)/ar, ]

X dr s'(r)
T—27r

dr' s;(r')

v i(e+i—q v(r"))r"
I (1)

The variable p, labels a cyclotron orbit in phase
space; it is the s component of the quasimomentum.
(The s axis is chosen along Hp. ) Its maximal value p,
is determined by the distance from the origin of the
tangent plane to the Fermi surface which is perpen-
dicular to Ho. The cyclotron mass m, is given by

(2)

is the cyclotron frequency. The phase variable ~=co,t
measures the time of flight of an electron along a cyclo-
tron orbit. The instantaneous group velocity com-
ponents of an electron

Z7~ =
i

(4)

are to be found explicitly from its equation of motion in
a constant magnetic field (the wave fields are completely
negligible). This is conveniently expressed in the
following form'

where 5(e,P,) is the area of a cross section of the Fermi
surface, and

co,(P,) = eEIs/m, C

II. CONDUCTIVITY TENSOR Wc8yC gy (5a)

The properties of the medium are described by the
conductivity tensor of the charge carriers. It depends on
frequency and wave number, as well as on the static
magnetic field. The elements of the conductivity tensor
may be found either by a formal solution of the trans-
port equation, ""or by a kinetic approach due to
Chambers. "'4 For a Fermi surface of arbitrary shape,

'~ J. J. Quinn, Phys. Rev. 135, A181 (1964).
'8 It is known that indium has a closed Fermi surface."J.P. Krylov, Zh. Eksperim. i Tear. Fiz. 54, 1738 (1968)

LEnglish transl. :Soviet Phys. —JETP 27, 934 (1968))."P. Halevi, S. G. Lipson, and K. Rabinovitch, Low Temp.
Phys. I, 189 (1969)."P.Halevi, Phys. Letters 27A, 647 (1968)."G. Simon, Solid State Commun. 2, 255 (1964);P. R. Wallace,
Can. J. Phys. 43, 2162 (1965)."M. Ya. Azbel and E.A. Kaner, Zh. Eksperim. i Teor. Fiz. 32,
896 (1957) /English transl. : Soviet Phys. —JETP 5, 730 (1957)g."R.G. Chambers, Proc. Phys. Soc. (London) A65, 458 (1952).

=~c&x ~ (Sb)

Averaging these equations over a cyclotron period we
see that (s,)=(n„)=0.Therefore, the electron moves in
the average along Bo. The magnitude of its average
velocity is

(6)

In Eq. (1), the collision frequency u is assumed to be
independent of r, but not necessarily of p,. Finally,
integration is performed over all "slices" of the Fermi

"Reference 13, Eq. (89), with the substitutions (171} and
de/d = —b(e—eg).
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Pzm

dp, rn, (v —iso)(P, '),
set of homogeneous equations:

(15b)
I a..+ (ic'q'/4~~) jE,+~.„E„+~„E,=0, (23a)

4mec
0.„=

h'Hp

nr, (y,Py)
dP, (v ico—)

v —%CO+ zq'v o

(15e)
o„,E,.+$o „„+(ic'q, '/4rrlo) jE„

+Lay, —(ic'qyq, /47rlo) $E,=0, (23b)

O.,y
——0. (15f)

rr, ~E~+pa, y (.ic—'qy q./4rroo) )Ey
+Lo.„+(ic'qy'/47rla) 5E,=0. (23c)

Although for the special case of a spherical Fermi
surface (y,Py) vanishes, this expression does not
necessarily vanish for a complex Fermi surface. The
reason for this is that, in general, v, is not constant along
the orbit. In other words, the velocity has, in general,
an oscillating component along the magnetic Geld. Only
in the ca,se of an ordinary Inetal (but not a semimetal),
with Ho and II parallel to a rotation axis of the second
order of higher does the expression (O,Py) vanish, even
without v, being constant along the orbit.

III. DISPERSION AND POLAMZATION

where

n= a„cos'g+0»si.n'g+ (a„,+.0,„)s-ing cosg, (24b)

P= o.„(a-„cos'g+ayy) —(a,„sing +o „cosg)
)( (0y~ Slnlg+ag~ COslP) —Irygo ~y+0'g~oyy SIII IP

+o„(o„,+0.,„) sing cosg, (24c)

lrzgagyayg+ Irzyayzasx+ lryzasylrzs

0 yzozyaxz azsazso yy+azzlr2'zayy ~ (24d)

The determinant of this equation xnust vanish and this
condition yields the dispersion relation

'q'/2 =(p/ )(+L(4 7/p')-1j'"+ }, (24 )

The physical properties of the helicon waves may be
derived from Maxwell's equations

1 ()H
~XK= ———

7

C ()3 (25a)n—0-„cos'g,

Since we are interested in the high-Geld limit, we retain
only terms of lowest order in 1/Hs. The elements 0;; are-

(16)
then given by Eqs. (10), (11).Thus,

(17)

We have neglected the displacement current (BD/Bt)/4s-
in Eq. (17). This is legitimate for frequencies such that

2P=~Tzz~ry x ~ (25c)

P 0'gg(0—~2; COS if+0'yy)

+(o„,sing+o„cosg)'+O. ,y', (25b)

where
ro« lov'/IO, E,

Iov ——(47rne'/m) '"
(18)

From the evaluation of orders of magnitudes (most
conveniently for the case of an ellipsoidal Fermi surface,
Sec. V) is may be seen that

is the plasma frequency, m is the free-electron mass, and
E is the static dielectric constant (see below). Inequality
(18) is always satisfied in ordinary metals; however, in
general, it does not hold for helicon propagation in
semiconductors.

Assuming plane waves

E, Hlc exp[i(q r—alt)), (20)

Eqs. (16) and (17) yield

zc
J=—IIX(IIXE).

4' M

(21)

Obviously, the current rotates with a frequency ~ in a
plane perpendicular to q. It may be also expressed in
another way, namely, that

4cry/P'&)1,

provided that n, &nq. (If n, =nI, Alfven waves' may
propagate. ) This enables us to replace Eq. (24) by

We shall now simplify the discussion by limiting the
frequency of the wave to values much smaller then the
collision frequency (Io«v). This, in fact, is the standard
situation encountered in most helicon-wave experiments
in metals. The elements of the conductivity tensor then
become independent of the frequency and real.

The imaginary term in Eq. (27) is much smaller than
the real term, and we may write

q'—(Req) '+2i(Req) (Imq) . (28)

Since only the upper sign in Eq. (27) gives rise to a
propagating wave, " substitution of Eqs. (25a), (25c),

(22) "In semiconductors, the displacement current has to be taken
in account; a real positive term has to be added then to the right-
hand side of Eq. (27). Thus, when condition (18) does not hold,

where e is the conductivity tensor. Equating the right- waves corresponding to the lower sign in Eq. (27) can a]so
hand sides of Eqs. (21) and (22), we obtain the following propagate.



HEL I CON WA VES I N SOLI DS WI TH A CLOSE D F ERM I SURFACE 1395

and (10d) yields

(«9)'=
I ~v*l =

c cos

4z. Iti, —risIe
(29)

cHe I cos)PI

This is the well-known dispersion relation for helicon
waves in the high-field limit. Its most important feature
is that, reflecting a similar property of the Hall co-
efficient, it does not depend on band structure. We may
also calculate the refractive index E, and for a single
group of charge carriers, using Eqs. (29), (19), and (3)
(with the free-electron mass), we get

H„/H, = E,/E—„&i.— (33)

It is clear that, to the extent that the small longi-
tudinal component E, may be neglected, the polariza-
tion of the wave does not depend on the shape of the
Fermi surface.

The components of E in the plane normal to ti are E,
and E„E„—cos)p; therefore, according to Eq. (32) the
projection of E on a plane of constant phase is circularly
polarized for arbitrary )P.

By Maxwell's equations, the magnetic field H of the
wave is always polarized in the plane normal to q. The
polarization is close to circular, since from Eq. (16)

N=e «)7/e)=e)i/(e)e), Icos)PI)')s. (3o)
IV. DAMPING

E„/E,= &i/cosg. (32)

In Eqs. (31) and (32), the upper sign should be used
when (m, —ns) cos)P)0, and the lower sign in the
opposite case. This means that the sense of rotation of
the electric Geld corresponds to the sense of rotation of
the majority carrier group.

It is not difficult to show that E,/E, is of the order
of gR when q/))1, and of the order of ) /e), when q/«1.
Thus, we conclude that the electric field is polarized in
a plane almost normal to He. According to Eq. (32) the
polarization is elliptical for $40 and circular only
for /=0.

Even for the highest magnetic Gelds available, S for
ordinary metals is much larger than the static refractive
index gE. This justifies condition (18) for neglecting
the displacement current. It is also clear that, for any
angle of incidence of the wave, inside the metal it
will propagate in a direction practically normal to the
surface of incidence.

The imaginary terin in Eq. (27), i.e., the damping,
will be treated in Sec. IV, and we now turn to a dis-
cussion of the polarization of the wave, Solving Eqs.
(23b) and (23c) for E,/E, and E„/E, and keeping only
terms of lowest order in 1/He, we obtain with the help
of Eq. (29) the result that

E./E, = (o„,—sin)P. +O.„cos)P&io,„)/cr„cosl(. , (31)

We represent the damping by the ratio of the imagi-
nary and real parts of the wave vector. ' Using Eqs.
(28), (27), (25a), (25b), and (29), we find that"

Req

o., cos')p+0»+L(a. ,„. sin)p+o. „cos)p)'+o„,'7/o.„
(4Icr„, I Icos)p )

(34)

Substitution. of the elements o „from Eqs. (10) yields
a very general, but at the same time very complicated
expression. This expression gives the damping for a
closed Fermi surface of arbitrary shape, arbitrary value
of q, /, and arbitrary inclination of Ho and q with respect
to the crystalline axes. It is convenient to break it up
into the collisional-damping component lim„~„oI' and
the Landau-damping component 1"—lim„~ oI". We shall
understand it better by considering several special cases.

A. q,/«1 (Local Limit)

In this limit, with ~ neglected, the resonant denomi-
nators in the conductivity reduce to v. The damping
becomes independent of q and there is no Landau
damping. We remain with the collisional damping,
which is given by the expression

I'=
e)s'In' e&IHo cos)P

yzm

a),m.()r. )+&r„') cosy)+ (p
27zm 2

dP, m, ((t)„P,) sin)P+(t), P„) cos)P)

uzm 2-

dp. m. (v.p.) (r
Pzm Sl 'D

dp, . (35)

Since the current J is at all times perpendicular to the wave vector g, when HpIIq(/=0) the electrons drift in a

7 The damping is frequently represented by the ratio of the imaginary and real parts of the frequency, the wave vector being
considered a real quantity. For a quadratic dispersion law and small damping, it is easy to show that the "damping" in this repre-
sentation is simply twice the "damping" in our representation.

"The damping may be also expressed in terms of only four elements (pgp, p», pp„,p„~) of the resistivity tensor, with the g axis
along q. This was done by F. G. Bass, A. Ya. Blank, and M. I. Kaganov, Zh. Eksperin). i Teer. Fiz. 45, 1081 (1963) LEnglish
transl. : Soviet Phys. —JETP 18, 747 (1964)g and by P. A. Penz, J. Appl. Phys. 3g, 4047 (1967). Of course, such a representation is
relatively simple only as long as the elements p p are not expressed in terms of details of the Fermi surface.
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plane normal to Hp, at almost a right angle to the electric field. Collisional damping arises owing to a deviation
v/p), from the right angle. When g«0, there is a drift of electrons along the magnetic field as well. Kaner and
Skobov" '4 consider only this component of the current, although the component normal to Hp is of the same order
of magnitude and present even when /=0.

The dependence of the collisional damping on P may be complicated, although it remains of the order of v/ip,
for any directions of il and Hp. In the special case when the magnetic field is taken parallel to the wave vector,
Eq. (35) simplifies to

jlzm

dp. m.(I'.'+v, ')+ (x

+I E
Pzm 2- uzm

dp, m, (v.P.)
~ —Pzm

We have assumed here that v does not depend on p„
and that it has the same value for all sheets of the Fermi
surface. If the shape of the Fermi surface is known, the
expression in the curly brackets may be computed for
a given direction of q with respect to the crystalline
axes. A measurement of the damping I' then determines
the collision frequency v. The condition q,l(&1 would
make such an experiment particularly simple. It would
also have the advantage of the absence of electric
contacts or high currents which may damage the
crystal. The anisotropy or v may be tested by perform-
ing the calculation and the experiment for various
directions of q.

For an anisotropic Fermi surface I' differs from v/2pp,

as was explicitly pointed out by one of the authors" in

reply to a suggestion by Kao. ' Obviously, the anisot-

ropy of the Fermi surface aRects the collisional damp-
ing not only via v and co,. The anisotropy of the
collisional damping of helicons was investigated in lead
telluride by Schilz. "

B. q, /»1 (Extreme Nonlocal Limit)

In this limit, the denominators (v+iq, vp) in the

dissipative part of the conductivity may be replaced by
~8(q,vp). We obtain the "pure" Landau damping, i.e. ,

unmodified by collisions. The 8 function restricts the
integration to those electrons whose average velocity

ep is zero (more accurately p)/q„which, in view of our

approximation p)«v was neglected). Thus, no other
electrons participate in the damping process. Due to
the centrosymmetry of the Fermi surface, central orbits
have up= 0, though for a complex Fermi surface up may
happen to vanish for noncentral orbits as well. Ob-

viously, such orbits are closed (there is no steady motion

along Hp), and the collisionless damping has practically
only a "magnetic" part. '

It is not difficult to show. that the third term in the
square brackets in Eq (34.) is q, / times smaller than
the first two terms. The expression for the damping has
been derived already by Kaner and Skobov" in their
Eq. (198).The damping in our notation'7 is

In general, this expression is of the order of qK
McWhorter and Walpole" "have calculated the power
absorbed from the wave in the same limit and their
result is equivalent to Eq. (37). However their inter-
pretation of the result seems to us to be oversimplified.
They claim that the damping is determined. by the
average over the cyclotron orbit of the power delivered

by the wave to the resonant electrons. Although their
result involves the expression eR v (where R is a
complex vector), its imaginary part has no simple
physical meaning. This part must be kept, since it
appears in a quadratic form.

In the intermediate case, q,l 1, the third term in the

curly brackets in Eq. (34) is of the same order (v/p), ) as
the 6rst two terms. The integration in Eqs. (10) has

to be performed. over all values of p, and therefore,

electrons with a finite average velocity ep also take part
in the damping of the wave. Their orbital motion, as

before, gives rise to magnetic Landau damping, while

their steady motion along the magnetic 6eld gives rise

to ordinary Landau damping. Obviously, the damping

depends on v and therefore we speak of "collision-
modified" Landau damping. Its mechanism has been

discussed in the Introduction (Sec. I).

P. Halevi, Phys. Letters 29A, 426 (1969).
'0 V. H. Kao, Phys. Letters, 28A, 168 (1968).
"W. Schilz, Phys. Status Solidi 29, 559 (1968).

In addition, we assume that Hp and q lie in a mirror

plane. We may then use Eqs. (15). Substituting these
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and Eqs. (10c) and (10d) in Eq. (34), we obtain

ugm

dp. rn, t (P,'+P„')
ygm

(10e), and (10f)] since by Eq. (39)

q (vP, ,„)= q r)p(P, ,„)=0. (40)

+ + p
)v+iqt) p

Pgm v7n, (t),P„)

p+ rqtpt

Pgm

dPz
)t+rqttp

For a complicated Fermi surface the velocity v of an
electron has, in general, an oscillating component along
the magnetic field. Then, (t),P„)40, and we arrive at
the conclusion that: For a complex Fermi surface, the
Landau damping does not vanish when Hp~~q. This has
been already stated by Quinn'7 and by McWhorter and
Walpole. ""The damping was ascribed to the presence
of electron orbits tilted with respect to the mag-
netic field.

McWhorter and Walpole" point out that the Landau
damping does not vanish even when Hp and q are
parallel to a symmetry axis of the crystal. This con-
clusion holds for semimetals, where the symmetry of
the Fermi surface is achieved by several ellipsoids tilted
at different angles with respect to the symmetry axis.
Then there is a positive contribution to the damping
from each ellipsoid. The situation is different, however,
in the case of ordinary metals. Here, the symmetry is
achieved by every sheet of the Fermi surface separately.
The expression (r),P„) vanishes for all the cyclotron
orbits (even though rt, is not necessarily constant along
the orbit). Then by Eq. (38), there will be no collision-
less damping, however complicated the Fermi surface
of the metal may be.

Whenever there is a finite damping, quantum oscilla-
tions of the de Haas —van Alphen type may be expected
at temperatures such that kT&Itp), . From Eq. (38) it
follows that for Hp~~q Landau damping may exist due
only to tilted cyclotron orbits. Indeed, Miller and
Kwok32 have shown that, in the presence of tilted orbits,
oscillations may be expected even when qE« I. Such
oscillations have been observed by several authors. """

(v —vp) q=0. (39)

Such an orbit does not contribute to the Landau-damp-
ing terms of o,, Lthe second terms of Eqs. (10a), (10b),

'2 P. B. Miller and P. C. Kwok, Phys. Rev. 161, 629 (1967)."C.C. Grimes, Ref. 1(a), p. 87; J. P. Krylov, Zh. Eksperim. i
Teor. Fiz. Pis'ma v Redaktsiyu 8, 1 (1968) LEnglish transl. :
Soviet Phys. —JETP Letters 8, 3 (1968)g.

D. Minima in Damping

Let us consider a special cyclotron orbit, along which,
at every point, the "orbital" velocity v —vo of the
electron is perpendicular to the wave vector q, i.e.,

For an arbitrary direction of the magnetic 6eld with
respect to the wave vector, in general, there will be no
orbit for which Eq. (39) holds. If, however, for a special
orientation of the magnetic field, Eq. (39) holds ap-
proximately for a substantial fraction of electron states
on the Fermi surface, there will be a minimum in the
Landau damping. Such minima were observed in indium
by Krylov" and by Halevi, Lipson, and Rabinovitch. "
They are most conveniently detected experimentally
when q,l))I, since when this is the case Landau damp-
ing dominates over collisional damping, and usually
only central orbits (with vp=0) palticipate in the
damping process. For such orbits, Eq. (39) reduces to
the simple requirement that the Fermi velocity be
perpendicular to the wave vector. With some luck, the
angles lt for which there are minima in the damping may
then be deduced from a geometrical construction. "

In the case q,l))1, the dynamics of an electron is
not modi6ed by collisions and the effect has a simple
interpretation. The motion of each electron in real space
may be compounded from two parts (Fig. 1).Firstly, it
has a constant mean velocity vo along the static field
Hp. In addition, the electron performs some orbit at
frequency ~„and has an "orbital" velocity u. Thus,

v= ll+vp. (41)

Because of the anisotropy of the Fermi surface, the
orbit is not necessarily perpendicular to Ho, and, in
general, not even plane. If the electron has passed the
origin at a time t= 0, its subsequent position is given by

1'= vpt+R, (42)

where R is the instantaneous "radius vector" respective
to the "guiding center. "Thus at a point r the electron
experiences an electric field'4

E E et(q r cot)—
0

—E et(q vp —tz) t+zq R (43)

E=E,e'q R (44)

The average power absorbed by tiie electron from the
wave during a cyclotron period is, to a very good

34 R0 is a complex vector, independent of r and t. The real
electric iield is given by the real part of Eq. (43).

Now for q,l))I, the on1y electrons which can participate
in the damping are those who have an average velocity
component vp q/q along the wave vector equal to the
phase velocity pp/q. These electrons experience, on the

average, a constant electric field. In other words, after
completion of each cyclotron period the electron
"catches up" with the wave. By Eq. (43) there is still
a variation along the orbit,
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Hp

in a real metal differs qualitatively from that in a free-
electron plasma.

In simple cases measurement of the angle iP for
minimum damping may provide information about the
Fermi surface.

V. ELLIPSOIDAL FERMI SURFACE

V

(O) {b)

The equation of an ellipsoidal Fermi surface in a
coordinate system coinciding with the principal axes is

approximation"

P=e(E u)=eEp (u exp(iq R)). (45)

Although we assumed qE((1, the electric field may not
be taken as constant. By Eq. (41), (u) = 0, and such an
approximation would lead to a vanishing power. Thus,
Landau damping arises precisely because of the small
variation of the field along the cyclotron orbit, given by
Eq. (44).

Now consider a special orbit, along which, at every
point, RJ q. In other words, the magnetic field Hp is
tipped at such an angle ip with respect to q that the
normal to the orbit (the vector A in Fig. 1) is parallel to
q. This, of course, can be realized only for a plane orbit,
and is equivalent to Eq. (39). In this case we get
from Eq. (45)

E=eEp (u)=0. (46)

In summary, for such orientations of the magnetic
Geld that the plane of the orbit is normal to the wave
vector, the electron experiences a constant electric field.
It is speeded up by this field during one-half of the
cyclotron period and slowed down during the other half
in such a way that the energy interchange with the wave
comes to zero. Figures 2 and 3 illustrate the effect in a
simple manner by comparison to the isotropic case.

Of course, realistic electron orbits are not plane, and
even in the case q,l))1, Eq. (39) will not hold exactly.
Therefore, only minima and not actual zeros in the
damping are to be expected. For a given orientation of

q with respect to the crystalline axes there may be
several minima in the damping, and none of them at
iP= 0. (This, indeed, is the situation in the experiments
on indium. ")On the other hand, in an isotropic electron
plasma there is only a single zero in the Landau damping
at /=0. In this respect, the damping of helicon waves

' In. Eq. (45) we neglect a term e(E.-)v0, which represents the
ordinary "electric" Landau damping (Ref. 8). This is legitimate
since v0 ——co/q, «N v~ and also E,/E, qR&&I. Moreover, it is not
dificult to see from Eqs. (31) and (10d)—(10f) that when Eq. (39)
holds for all electron orbits, E,=o.

Fro. 2. Illustration of minima in the Landau damping: (a)
Isotropic Fermi surface with Hp~~q; (b) Anisotropic Fermi surface
with H0 tipped with respect to q at an angle determined by the
condition vt q. In both cases the cyclotron orbit in real space
(solid line) lies in a plane of constant phase (dashed line). The
electron experiences a constant electric field from which, in the
average, it cannot draw energy. (Time variation of R is neglected. )

px pv pz+ +
2m~ 2m~ 2m 3

(47)

We restrict q snd Hp so as to have no x component, i.e.,
to a mirror plane of the ellipsoid. Their orientations
with respect to the p„axis are p and 8, respectively
(Fig. 4). Since q is perpendicular to the surface of
incidence of the wave, the tipping angle is ll = 8—p. We
now transform to a new coordinate system by rotating
around the P, axis through an angle 8. In this systein Hp
points in the s direction and the components of q are
given by Eqs. (9), as required by our conventions in
Sec. II. The equation of the surface in the new system

e=AP'+Bpv'+Cp'+Dpwp. (4»)
where A= 1/2m, , (4gb)

VI

Ho

FIG. 3. Landau damping arises when the cyclotron orbit in real
space {solid line) moves our of a plane of constant phase {dashed
line). For an isotropic Fermi surface this happens when H0 is
tipped at an angle with respect to q, while for an anisotropic
Fermi surface it may happen, in general, even when Hp~~q.

B= (sin'8/2ms)+ (cos'8/2ms), (48c)

C= (cos'8/2ms)+ (sin'8/2ms), (48d)

D= ((1/ms) —(1/ms) j sin8 cos8. (48e)

The cyclotron orbits in momentum space are ellipses
of area

S=7r(AB) '"ltd —(C D'/4B) p 'j — (49)

as may be easily derived from Eqs. (48). According to
the definition given in Eq. (2), the cyclotron mass is

m, =(4AB) "'
—$mrm$ms/(ms cos 8+ms slil 8)j . (50)

Thus, m, is independent of p„and changes mono-
tonically from (mrms)'t' to (mtm&)'t' as 8 is increased
from 0' to 90'.
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We shall now solve the equation of motion of an
electron. Using Eqs. (Sa), (4), (48a), and (50), we obtain

dp*/~r= (B—IA) "'p —LD/2(AB) "'7p (51)

If we assume a solution of the form E cosr for p„Eq.
(51) may be solved for p„. The coefficient E is found by
substituting p, and p„ in Eq. (48a). Using Eq. (49), the
results may be written in the form p, H()

p = $2r '(8/A) '&'5'7'&' COSr, (52a)

p = [~ '(A/8)-i~ 57'~ sinr —(D/28) p, . (52b)
Fro. 4. Cross section p, =0 of an ellipsoidal Fermi surface

illustrating the orientations of H0 and q with respect to the
principal axes.

For the velocity components, we get from Eqs. (4)
and (52)

ii, = 2A p, = 2A [~ '(8/A) '~'57" ' cosr,

~ = 28p„+Dp, =28k~ '(A/8) -i~2~7i~2»nr,

The last expression represents the cyclotron frequency
for 0=0. We shall now examine Eq. (56a) for several

(53b) special cases.

tano—

3 (q,l)' tan '(q./) 9
x(q, /) =—

8 q. / —tan '(q,.l) 8

Mp =eHp/(mimp) "2c.

) 2

)
tang

i , (56a)

(56b)

(56c)
"In Ref. 21, a certain term in the damping was erroneously

classified as belonging to the collisional damping, whereas, in fact,
it belongs to the collision-modified Landau damping. Because of
this error, the collisional damping was not given correctly there.

ii, = 2Cp, +Dp„=D'or '(A/8)'~'S7'I' sinr

+ (2C D'/28) p, .—(53c)

The x and y components of the velocity have only an
oscillating part, hence the average velocity is along Ho
(as it should be in general). Its magnitude is

&p= (2C—D'/28) p, = (m, '/mimpmp) p, . (54)

If D/0, the orbital velocity v —vo has a component in
the s direction )the first term of Eq. (53c)7, rejecting
the fact that the orbit in real space is not normal to Hp.
If m2~m3, D may vanish only when IIO is along one of
the directions of high symmetry (0=0', 90', or 180').

The "mean free path" / will be deGned as the average
distance traversed between collisions along the magnetic
Geld by an electron with maximal average velocity vo.

/= ip(p. )/v=m, 'p, /mimpmpv. (55)

The calculation of the conductivity tensor is given in
the Appendix. It is assumed that co«v and that v does
not depend on p, . Substituting Eqs. (A9a)—(A9f) into
Eq. (34), with some algebraic manipulations, we obtain
the damping":

(mp/mi)"' v -1 mi m2———+—sin'ili+cos'it
~

2icosl/i cop 2 mp mp

cos2p
+x(q, /)

tan2//+m2/mp

B. q, /((I (Local Limit)

The function X $Eq. (56b)7 may be expanded in a
power series of q, l as follows:

27
x(q l) =—'p(q*l)' — (q.l)'+ . . .

350
(58)

Thus, X —& 0 in the limit q, / —+ 0, and the second term
in Eq. (56a) vanishes. The damping is given by

(mp/mi) "2 v t'mi m2r= —
l

—+ —sir 'P+coc'6) (59)
4~cosy( ~p&m, m,

This expression represents the collisional damping, since
there is no Landau damping in the limit q, / —+ 0. The
second term in Eq. (56a) then represents the Landau
damping, modiGed by collisions. "

Ke note that, even in this relatively simple case, the
damping does not reduce to Kao's expression v/2', .2P "
The dependence on the tipping angle is simply 1/cosf.

C. q, /))1 (Extreme Nonlocal Limit)

In this case, we expand X in power series of (q,l) '.

X(q,/) = —,', z. q, l —,', (48—32r 2)+
+—;p(32rp—242r)(q, l) '+ . (60)

A. mi =m2 ——mp ——m (Isotropic Fermi Surface)

In this case, Eq. (56a) reduces to

r= (1/2
~
cos& I) (v/~p) 51+x(q,/) sin2P7. (57)

This equation checks with the result of Buchsbaum and
Platzman, ' the function X being given now in a compact
form. The Landau damping is given by the second term
in Eq. (57). It vanishes for /=0, and is an increasing
function of (I/ (.
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l8—
lowest-order correc ion ot' n to the collisionless damping due
to collisions.

I6-
it

Io-

v=

l

10
I

E 8- I
l

l

Q
4—

1 m3 '~'P 1 ns1 m~
I' = —— ———+—sin'Q+ cos'P

2 851 Mp 2 Ssp SS3

sin'Qmp)'
xql) 1——

I

mIJ tan'y+m, /mo
(62)

lt =0 (Hollow)

YVe substitute /=0 and 8=/ in q.in E . (56a) and get

I~i II I I I

-80' -60' -40' -20 0' 20
TIPPING ANGLE

80

Th f m ~m3 the Landau damping vanishes only
when Il and Hp are along one of the PrinciP
e]ljpsojd 12,15,17,21

20-

I8
CO

z l6-
Q I4-
I-
Cl

~ IO-
E 8-

C9
2-'

Q

D

(a)

~ I I I I I I l I I. I II I I I I . I I

-80 -60 -40 -20 0 20 40
TIPPING ANGLE

E. Mimina in Damping

A glance at Eq. (56a) reveals that, when

tan8= (m, /m, ) tang, (63)

in vanishes and we remain with the

must hold for a// cyclotron orbits. e ru o
assertion is evident rom q.E . A3).

e to a s ecia geome rict'The clear-cut situation is ue p
ro ll' 'dal Fermi surface. Because o

l

sor. '5 It is easy to s ow a i
is inclined with respect to the P„axis ln e
axes coordinate system) at an angle given by

56aSubstituting t e rs eh 6 t term in the expansion in. q. ( )
and neglecting collisional damping, we obtain

3~trmo "'
32(mt t 'an+8/mpmo

cos'P

'q.t p(p )
(&&I tan8 ——tang . 6

m3 COp

This is the genuine collisionless ~amp' g,
~ ~

d in ' we see that,

magnitude as the collisional damping. It represen s

(b)

CD) Landau (LD), and total (TD) damp-
d y =60'. According to Eq. (63),1ngs for the case mI =m2=-,'m3 and p

the Landau damping vanishes for
/=10 coo/v=100; (b) ql=50, coo/v=500.

tann= (mo/mp) tan8. (64)

YVhen the plane o t e or i i
'

hef h bit is perpendicular to the
n= the inclincation of Hp wltllwavevector, i.e., w en o.=

E. 63.res ect to g is indeed given by Eq.
in the somewhat unrealistic case o a

dau dam lilg
may vanis, ev heven when pisno pa

with a statement inaxis of high order (in disagreement wi a s

construction, relating Hp and
g a zt zero Landau damping, is given in e .

d 5 b) we plot the collisional, Landau,In Fi s. 5(a an, we
1 dam in s for two representative cases. A

5 a wltll Fl 5(b) sllows tllat. 'tile

of / the sharper t e minimum
'

'g
m in willbe. Athighvaluesof q/, t e o a-da p g

curve practica yll fol ows e
in is then only toThe effect of the collisional damping is en
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(50), (52), (53):

T.O. (P,s) = (1/2pr) (mt/m, )S,

(Pv') = (1/2pr) (m,/mt) S,

(A1)

(A2)

~ 20K

IK

IKI-
I I5

6

io
CL
X
CI

q (vPv) = (1/2s.)q cosg cos8

XLtan8 —(ms/ms) tang)(m, /mtms)S. (A3)

2c2um, 2

&sx =
h'Hp2mg

inc'qm, ' cos'!t cos'8
S dp, —

h'Hp'mr'ms'ms cosf

ms ps
vzzz (P 2 g)2

XL tan8 ——tang
L

—dp„(A4a)
m, i „,„p, b—

With these substitutions, and neglecting co, we obtain

2c @my

Ouu =
h'Hp'

ygm

S dp„ (A4b)

I
-80 "60' -40 - 20'' 0 20' . 40 60 80'

TIPPING ANGLE

i4~e2m, ' vzzz p
s dp

0' gz

h'qmtmsms cosset „,„p, b—(A4c)

Fro. 6. Collisional (CD), Landau (LD), and total (TD) damp-
ings for the case m! ——ms=mp/30, !f!=0',qua=10, p&p/v=100. The
additional structure is associated @faith a variation of the cyclo-
tron mass.

wee

Hp
tang+

i2precvm, s cosQ cos8

/ssHpqmtms cos'll

"lift" the Landau damping by an amount equal to the
collisional damping for 8 given by Eq. (63).

For su%.ciently high values of the anisotropy ratio
ms/ms, the Landau damping may have other minima
(and maxima) as well, but not zeros. These are as-
sociated with the variation of the cyclotron mass, Eq.
(50), with the direction of Hp. Such minima are shown
in Fig. 6, for q along one of the principal axes of the
ellipsoid.
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r m2 vzzz p g
XL tan8 ——tang dp„(A4e)

m, „,„p. b—
a =2mtmsmsev/m. ',

b =ivmtmsms/qm, s cosp.

(A5)

(A6)

p, = (2evmtmsms)' '/m, . (A7)

The integral in Eq. (A4b) is simply the volume of the
Fermi surface, which is related to the electron density
by Eq. (13):

S dp, = 4'(2mts&) ' "(2msev)' "(2msev)

The limits of the integrals are obtained from the con-
dition that the plane p, =p, is tangent to the ellipsoid.
Obviously, we must substitute in the equation of the
ellipsoid, Eq. (48), p =0 and p, =p, , and equate to
zero the determinant of the resulting quadratic equa-
tion. We get

APPENDIX: CONDUCTIVITY TENSOR FOR AN
ELLIPSOIDAL FERMI SURFACE

=-'h n2 (A8)

Since q and Hp are chosen to lie in a mirror plane of
the ellipsoid, we may use Eq. (14). The averages of
other quantities that appear in the conductivity tensor,
Eqs. (10), are calculated with the help of Eqs. (48),

The other integrands are rational functions and may be
decomposed to the sum of a polynomial and a term of
the form const/(p, —b). The integrations are straight-
forward, and after some algebraic manipulations, we
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obtain the following result:

nec (m, s/mt) cv

IIp eHp

o„=. nec/H p, (A9cl)

3 ms cos'g cos'8( ms
X 1+-—

l
tan8- —tang

l

4 m, cosy & ms i
-1 1~ 5-

X —(1+r') ' tan —' —
l

r' ——— (A9a)
r r) 3

3 m, ' cosgcos8( ms
tanP+—

~

tarS ——tang)
2 mqms cosf k m,

(1)-
X r' —r(1+rs) tan 'l —l, (A9e)

o» ——(nec/H p)mtcv/eH p, (A9b) asv =o, (A9f)

eHpsec
0'zz =3

Hp (mqmsms/m, ')cv Er)
(A9c)

1/ =p-/l~l =~.l.

where i is given by Eqs. (55) and (A7).

(A10)
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Low-Temperature Specific-Heat Study of Cu-Pd Alloys
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Variations with composition of the electronic specific-heat coefficient p and Debye temperature OD have
been determined for Cu-Pd alloys from low-temperature specific-heat measurements between 1.5 and
4.2'K..The dependence of y on composition is similar to that found by Hoare et al. for Ag-Pd alloys. For Cu
alloys with small concentrations of Pd, deviations from a rigid-band model have been observed. Thermo-
dynamic properties of these alloys are discussed in terms of the band structure deduced from y values.
Changes in long-range order and short-range order have pronounced effects on y and OD values.

I. INTRODUCTION

'HE phase diagram for Cu-Pd shows that there
exists a continuous solid solution (fcc) above

600'C, and that below 600'C there are three super-
lattice structures: n' (ordered fcc), n" (ordered fct), and

P (ordered bcc).' In Pd-rich alloys, x-ray diffuse scatter-
ing results by Chen' indicate local clustering. In this
paper we have studied the effects of long-range order in
the P phase and local clustering in Pd-rich alloys on the
low-temperature specific heats in relation to the energy
band structure and the thermodynamic properties. We
have also investigated the effect of dilute concentrations
of Pd on the electronic specific heat in the Cu-rich
alloys.

The effect of superlattice formation (long-range
order) on the electronic structure has been considered
by several authors. ' ' Nicholas' has suggested that when

'P. M. Hansen, Constitution of Binary Alloys (McGraw-Hill
Book Co., New York, 1958).

'T. Chen, Ph.D. Thesis, University of Minnesota (unpub-
lished).' T. Muto, Sci. Paper. Inst. Phys. Chem. Research (Tokyo) 34,
377 (1938).

4 J. C. Slater, Phys. Rev. 84, 179 (1951).
P J. F. Nicholas, Proc. Phys. Soc. (London) A66, 201 (1953).

an alloy develops a superlattice the interaction between
the Fermi surface and new Srillouin zone boundaries,
corresponding to the extra Bragg rejections, splits the
energy band. The density of states at the Fermi surface
may change depending upon the position of the Fermi
level in the energy band. Furthermore, changes may
occur in the lattice contribution to the specific heat. '

Chen' has observed that the local order coeS.cients
n& of Pd-rich alloys are positive indicating clustering
and that the degree of clustering increases with tem-
perature. These results were partially substantiated by
Myles and Darby7 using vapor-pressure measurements.
These results are somewhat puzzling in view of the
phase relationships found in this system. Since the p
phase has a superlattice structure (CsC1-type structure)
we expect short-range order rather than clustering to
prevail at compositions close to the P phase. Further-
more, large negative values of the heat of mixing' also
suggest that pairs of unlike atoms are formed if a simple

6 J. Bradley and D. Kahn, Phys. Rev. 143, 495 (1966).
7 K. M. Myles and J. B. Darby, Jr., Acta Met. 16, 485

(1966).
8 R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelly.

Selected Values of Thermodynamics I'roperties of 3IIetals and A/loys
(John Wiley 8z Sons, Inc., New York, 1963).


