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Electrical-Resistivity Model for Polycrystalline Films: the Case of
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In this paper, the total resistivity of a thin metal 61m is calculated from a model in which three types of
electron scattering mechanisms are simultaneously operative: an isotropic background scattering (due to
the combined effects of phonons and point defects), scattering due to a distribution of planar potentials
(grain boundaries), and scattering due to the external surfaces. The intrinsic or bulk resistivity is obtained
by solving a Boltzmann equation in which both grain-boundary and background scattering are accounted
for. The total resistivity is obtained by imposing boundary conditions due to the external surfaces (as in the
Fuchs theory) on this Boltzmann equation. Interpretation of published data on grain-boundary scattering
in bulk materials in terms of the calculated intrinsic resistivity, and of thin-61m data in terms of the cal-
culated total resistivity suggests that (i) the grain-boundary reflection coetlicient in Al is =0.15, while it is
somewhat higher in Cu; (ii) the observed thickness dependence of the resistivity in thin Alms is due to grain-
boundary scattering as well as to the Fuchs size effect; and (iii) the common observation that single-crystal
balms possess lower resistivities than polycrystalline Alms may be accounted for by grain-boundary effects
rather than by differences in the nature of surface scattering.

g. INTRODUCTION
'

&
LKCTRICAL conduction measurements in size-

effect samples, i.e., samples having some physical
dimension comparable to the electron mean free path,
have been of interest for many years. Data analysis for
such measurements is generally carried out by applying
the well-known Fuchs size-eQect theory. '

The theory was developed by Fuchs to explain the
fact that in thin films of alkali metals, the resistivity is
always higher than in the original bulk, and increases
rapidly as the thickness decreases. He postulated that
ordinary scattering mechanisms in the bulk material
(described by a relaxation time r) carry over to the
film; in addition, external surfaces impose a boundary
condition on the electron-distribution function, which
enhances the thickness-. independent bulk, or intrinsic
resistivity p;, to a thickness-dependent total resistivity
p. The result of the Fuchs theory for thin foils is

"1 1 1—e—"
p=p 1—(3I-lt)(1'—P) ——— dt, (1)

ts ]s 1 pe et—
where tt (=a/l;) is the ratio between film thickness a and
intrinsic electron mean free path, /;; p (a completely
phenomenological parameter) is the probability that an
electron will be specularly rejected upon scattering
from a film surface and takes on values from 0 to 1.
Since p and a are measurable quantities, Eq. (1) con-
tains three unknown parameters: p;, J;, and p. However,
only two of these are independent since

in which e is the electron charge and S~ is the free area
of the Fermi surface.

In recent years there has been much interest in metal
films grown on dielectric substrates by vacuum evapora-
tion or sputtering, and various attempts have been
made to fit resistivity data for these films to Eq. (1).'
The interest has focused m.ainly on the parameter p.
The fitting procedure generally has consisted of as-
suming that p; and l; are constant with thickness so that
Eq. (1) reduces to a family of p versus a curves with p
as an adjustible parameter. Values for p are then de-
termined by noting which of these curves the data most
resemble.

In nearly all instances, it has been observed that
single-crystal films show a lower resistivity than the
corresponding polycrystalline films and the normal
analysis has led to the conclusion that p=0 for poly-
crystalline films, while for epitaxial single crystal Alms,
p=0.5.' Recently, Mayadas et ttl. have shown that for
evaporated polycrystalline Al Alms the assumption that
p; and 1; are constant with thickness, is incorrect and
that in fact p; decreases with increasing thickness, u.3 4

For the particular case when these alms are deposited on
noncrystalline Si02 substrates held at 200'C, ' it is found
that average grain diameter D is about equal to a (at
least within the thickness range investigated, 1000 A& a
& 10 000 A). Transmission electron microscopy showed
the grains to be free of dislocations or other resolvable
defect structure; since there is no compelling reason to
believe that chemical purity is a function of thickness,

12' 3k
p;l;=

t.'~5p

' See, e.g., E. H. Sondheimer, Advan. Phys. I, 1 (1952).

2 See, e.g., D. S. Campbell, in The Use of Thin Fzvznsin I'hyszcal
(2) Investigations (Academic Press Inc. , New York, 1966), p. 315.

3 A. F. Mayadas, J. Appl. Phys. 39, 4241 (1968).
4A. F. Mayadas, R. Feder, and R. Rosenberg, J. Vac. Sci.

Technol. , 6, 690 (1969).
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it was concluded that the decrease in p; (or increase in
I,) with thickness was due to the increasing grain size.
The total, or measured resistivity at any temperature
T, pz, must therefore depend on thickness, not only
through the ordinary Fuchs size-effect, but also because
of the dependence of p; on D.

It is commonly believed that grain boundaries have
little effect on the resistivity of metals. Usually this is
the case, for although the scattering of electrons by
grain boundaries may be substantial, the grain size is
usually much larger than the mean free path due to
other scatterers (lo), so that the grain-boundary con-
tribution to the resistivity is small. However, in the
case of a thin fihn, the distance between grain bounda-
ries, D, is generally smaller than lo, and here the grain-
boundary contribution can no longer be regarded as
negligible.

In a recent publication, we have proposed a model for
estimating electrical and galvanomagnetic effects due to
electron scattering at grain boundaries, occurring simul-
taneously with isotropic background scattering (e.g. ,
phonon plus point defect). ' It was shown that even
when scattering from external surfaces was completely
specular (or could be neglected), a strong thickness-
dependent resistivity, comparable in magnitude to the
Fuchs effect could exist if a=a.

In this paper, the effect of film surfaces is super-
imposed on the earlier grain-boundary model and the
overall film resistivity is computed (Sec. II). Numerical
results based on this model are compared with available
experimental data (Sec. III).The over-all validity of the
model, its usefulness in helping to determine new
physical information and various predicted phenomena
are also discussed (Sec. IV).

II. FILM MODEL AND MODEL
CALCULATION

Obviously, the problem of computing the electron-
velocity distribution for scattering by grain boundaries
of arbitrary shape, size, and orientation, simultaneously
occurring with isotropic background scattering, presents
enormous difhculties. However, with certain simplifi-
cations, some based on physical observation, others
assumed, the problem can be made more tractable.

The first simpli6cation comes from noting that in thin
films deposited (e.g., by evaporation or sputtering) on
substrates, the grains are not isotropic in form but tend
to grow in a "columnar" fashion with the column axis
normal to the film plane. ~ Since such grains generally
extend from the substrate to the top surface of the 61m,
the only grain boundaries which must be considered are
those whose normals lie in the film plane. To simplify

' See, e.g., J. M. Ziman, Electrons and Phonons {Oxford Uni-
versity Press, London, 1962},p. 352.

'A. F. Mayadas, M. Shatzkes, and J. F. Janak, Appl. Phys.
Letters, 14, 345, 1969.

7 See, e.g., J. M. Nieuwenhuizen and H. S. Haanstra, Phillips
Tech. Rev. 2'7, 87 (1966).
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the problem further, it is assumed that the grain
boundaries can be represented by two types of randomly
spaced planes: those parallel to the electric field E and
those perpendicular, and that the grain-boundary po-
tential is short-ranged and smooth, so that the parallel
boundaries produce only specular reQection. 89 The
problem therefore reduces to finding the resistivity, p„
caused by electron scattering from a series of partially
rejecting, randomly spaced planar grain boundaries,
occurring simultaneously with isotropic background
scattering (caused by point defects and phonons).

In this section, the Soltzmann equation for this
problem is solved to find p, . It is assumed that a grain
boundary can be represented by the simplest type of
smooth, short-ranged potential, namely a 8-function
potential, and that the electron states of the pure single
crystal can be described sufficiently,

'
well by free-

electron states. The standard perturbation-theory for-
mula is used to compute the electron-transition rate for
assembly of parallel 5-function potentials. This is then
used in the linearized Holtzmann equation, where the
additional assumption is made that the transition rate
due to all other scattering mechanisms (except for the
film surfaces) can be expressed in terms of a relaxation
time. Scattering at the external surfaces is taken into
account by imposing the standard Fuchs boundary con-
ditions on the electron-distribution function. ~

A. Grain-Boundary Resistivity

The proposed model of a polycrystalline film is shown
in Fig. 1. In', this model, the grain boundaries are
represented by N parallel planes, oriented perpendicular
to the direction of the constant electric held E, with an
average separation d (Fig. 1).' There is a potential
SB(x—x„)at the position x„of the mth plane, S being the
"strength" of the potential. (Physically, 5 is approxi-

8 See, e.g., Ref. 5, p. 353.
9In our model of a polycrystal, the grains are bounded by

perpendicular planes, the 5-function potentials, which are con-
tinuous throughout the polycrystal. These planes are distributed
in the same way for any orientation in the Glm plane, and are
uncorrelated. It is easy to verify for a spherical Fermi surface, that
the conductivity derived on this model is a scalar. {As indicated in
the text, there are no planes parallel to the film surface. ) The
choice of the direction of the electric Geld is irrelevant and our
choice was made to simplify the presentation.

-AVE. RANDOM
DISTANCE d

Fro. 1. Model for computing p„ the resistivity due to both grain-
boundary scattering and isotropic background scattering.
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Averaging Eq. (5) over the distribution g(xt, . . ., x ),
we obtain in the limit of continuous k,

P(k, k )=P((k, ()~(k,—k, )a(k,+k, ),
cx kg 1—e

—4' '"
p(lk*l) = —— „-.. . (6b)

2r (k, ( 1+e '~*'" 2e ~*—'" cos2k, d

ns 5' lp
cx= —2T =

A'dkg d 1—R
(6c)

I I I ) I I I I (

Ra~ ——
4 I-R

Fto. 2. Plot of Eq. (10).

g(xt, ,x)v) =
I (2vrs')(~ ')n

where I., is the length of the film and s is the standard
deviation.
I('. With the assumption that the scattering from other
sources (point defects and phonons) can be described by
a relaxation time T, the Boltzmann equation for the
geometry of Fig. 1 is

c (k)
p(k, k') Lc (k) —C (k') jdk+ . (4)

Here p(k, k') is the transition probability for an elec-
tron in state k to be scattered to k' by the planes,
C (k) =f(k) —f,(k) is the deviation of the distribution
function f(k) from its equilibrium value fo(k), e is the
electron charge, and ~ and v are the electron energy and
x component of velocity, respectively.

To find P(k,k'), let

V(*)=SP a(x —*.),

ately equal to the height of the potential multiplied by
its width). The positions x„are distributed according to
the Gaussian

N—1

expL —2 (x' 1—x —d)'/2S2j

In the second equality of Eq. (6c), S has been ex-
pressed in terms of a reQection coeS.cient R, the relation
being that for the reQection from a single plane. The
magnitude of the Fermi wavevector has been denoted
by k&, while lp is the background mean free path.

The solution of the Boltzmann equation is then

where
@(k)= r*eEt), (afo/ae),

1/r*= 1/r+2F((k. () .

(ja)

(jb)

The conductivity in the presence of both grain-
boundary and background scattering, e„ is found from

3 O.
p

d5p ————
(g«d~~(

r*(q)q'dq. (g)

n kp
p(lk. l) =—

The resultant conductivity is then readily evaluated
to be

Here, the first integral is over the Fermi sphere;
q=cost) (with a measured from the x axis so that
k =k); q in the integral) and o., is the conductivity in the
absence of grain boundaries.

In the limit s ~ 0, ~, ~ o-&, and thus a periodic array
of planes provides no resistance. An important simplifi-
cation occurs if the interplanar spacing d is identified
with the measured average grain diameter D, for we
have found experimentally that kp's'»1. In this case,
F((k, () can be written simply as

and consider V (x) as a perturbation on the free-electron
Hamiltonian. The unperturbed states are

(rg/(ro—=po/p, =3Le —&n+n' —n' In(1+ 1/n)]. (10)

p g/p „1+$n, n((1,
=3e, n»1.((k( V(k')('.= (5/1.,)h(k( —k(')

g P e'((,—&*')(»—» ) (5)

In this equation, the appropriate resistivities have been
~' =0 'e'"'

written. as p s. A plot of pg/po is shown in Fig. 2. In the
limits of very small and very large n, Eq. (10) goes to the

square of the matrix element, (k( V(k'), is found to be

n n'

where k& is the component of k in the y, s plane and
g(k, —k,') is a Kronecker k.

B. Total Resistivity for Film (Fuchs Theory)

To find the total conductivity in the presence of film
surfaces, we follow the lines of the Puchs calculation.
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The Boltzmann equation (see Fig. 1) is now

v, (BC/Bs)+eEv, (Bfp/Be) =C/r*, (12)
=I p=O

with the external 61m surfaces being the planes s=0 and
s=a; r* has been defined in Eq. (7b). If C+(v„s) is
defined to be the deviation of the distribution function
for v,)0(+) and v, (0(—), then the requisite boundary
conditions at the film surfaces are

—IO

o 8

a=I, p=.5

C+(v„O)=pC-(—.„0),
C (v„(2)=pC+( —v„(2),

(13)

where p, as defined earlier, is the fraction of electrons
specularly scattered at the external surfaces. Then the
C+(v„s) are given by

B
C+(v,s) =er'Ev.

B6

8 0
C-(v,s) =er*Ev,

BE

(1 p) e( z/r*vz)—

pe(—a/ r*v,)
v,)0, (14a,)

(1 p)e[(v z)/rvvz]—
pe(a/r*vz)

v, (0. (14b)

The total film conductivity O.
y is computed as usual;

with
e 2/2~2

J(s)= — —
i

v,C (v)dv,
42rs Al

we obtain

600
(1—p)

7j Kp

v/2 COS2$

dItI dt
p i II2(t,y)

g".—ttp tH(t, y)]

X ———,(15a)
ts ts 1 P e[—zPIII(p, y)]

'

1 6
p/'= —— (1—p)

pg 7i Kppo

v /2 ~
COS2Vt,

dp dt
&'(t,v)

Here,
(

~[—t[0 tII( t, Q)] —1

X ——— — . (15b)
tp tp 1 p e[—zp III(IQ)],

&(t,@)= 1+n/cosIt (1—1//t')'/'

scp=a lp,

and lo is the mean free path within a grain.
For a, single-crystal film pI defined by (15b) must be

identical to p Lderived from the Fuchs theory and defined

by Eq. (1)j. The resistivity which a single-crystal film
would possess if it were infinitely thick (i.e., the in-
trinsic resistivity) is pp. Thus by making the following

0
.Ql

I I I I I iJJL ~ I I I I I I

xQR xo

FIG. 3. Comparison between proposed model (for n = 1) and
Fuchs theory.

substitutions into (15b): n=0, p, =pp, pp
——p;, Kp

——K, it
is easy to verify that the right hand sides of Eqs. (15b)
and (1) are identical. As in Eq. (2), pp and. tp are related
by

pp4=12 rp2II/e S2p. (16)

For a polycrystalline 61m, the parameters o, and ~0

play roles of equal importance; the intrinsic resistivity is
now p, but there is no parameter which can correctly be
identified as the intrinsic mean free path. Equation (16)
of course is always valid. Hereafter, to avoid confusion,
the symbols p, , l;, and ~ are only used in connection with
the Fuchs theory.

Unfortunately Eqs. (15) cannot be evaluated ana-
lytically and for comparison with experiment, numerical
solutions are necessary. A program written for the
APL/360 time-sharing terminal system' has been used
to obtain several solutions of Eq. (15b). In Fig. 3, plots
of pI/p, versus Kp are shown for p=0 and p=0.5; for
both these curves (8 and D), (2 was held constant and
equal to 1. Curves 8 and D of Fig. 3 can be interpreted
as showing enhancement of the intrinsic resistivity p, of
a polycrystalline sample for which grain size is constant
and independent of thickness. For comparison, the
corresponding Fuchs curves (p/p; versus K) are also
shown. The form of the grain-boundary curves is similar
to the Fuchs curves. They lie below the corresponding
Fuchs curves since pr is determined only partially by p
and tp, while p depends exclusively on p and t;.

In fact, deviations between the Fuchs theory and the
proposed model are not large, in the sense that if
measurements were made on films having constant
values of grain size (d), lp, pp, and E, but variable
thickness, then the data could be fitted to the Fuchs
theory. It has already been stressed that an intrinsic
mean free path cannot be correctly defined for a
polycrystalline film. A corollary to this is that poly-

I A. D. Falko6, K. E. Iverson, and E. H. Sussenguth, IBM
Systems Tech. J.3, 198 (1964).
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III. COMPARISON WITH DATA
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values of p, po, lo aild R. The data of Arajs et at. are not
discussed because the magnetoresistance effect in Fe
complicates interpretation. Other thin-film data are not
discussed further because of the various reasons cited
above. -

A. Data of Andrews ef al.

These measurements were made on high-purity Cu
and Al. The bulk material was drawn into wires and
then recrystallized by annealing. After recrystallization
was complete, annealing was continued to induce grain
growth, and resistivity measurements were performed
on samples of various grain sizes.

The authors provide results in terms of an excess
resistivity due to grain boundaries, p, &. For the range
of o.'s relevant to this work. and neglecting the small
deviation from Matthiessen's rule, the approximate
expression )from Eq. (11)]

p, o=spo &of&/(1 &)—]
may be used. Taking the values provided" for p, b, i.e.,

pap=3. 12X10 ' Qcm for Cu,

pgs=2. 45X10 "Ocm' for Al,

and the values

po)o=6.6&&10 "Qcm' for Cu (Ref. 13),
p„-&o——8.2&(10 "Qcm' for Al (Ref. 15),

we obtain
R=0.24 for Cu,
R=0.17 for Al.

It is shown in the next section that the value of R
for Al so obtained is in good agreement with the value
deduced from our experimental observations on thin
films. The value of R for Cu so obtained is in good
agreement with a few preliminary observations (un-
published) made by us on Cu films.

B. Polyt:rystalline Al Films

As discussed above, substantially more experimental
results are required for both single-crystal and poly-
crystalline films before the various parameters of the
model can be accurately estimated.

Here we make a tentative fit of data obtained for
polycrystalline Al films deposited onto heated (200'C)
noncrystalline Si02 substrates. "Under these deposition
conditions it is found that the average grain size is
approximately equal to film thickness in the range
1000 A& a& 10 000 A.

Attempts to fit the data of p4. &ir (measured resistivity
at liquid-helium temperature) versus a to a Fuchs curve
characterized by single values of p; and p were not

"I. Holwech and J. Jeppesen, Phil. Mag. 15, 217 (1967).
6 For details of deposition procedure, see Ref. 4.
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Fxc. 5. Fit of experimental data on AI films to proposed model
for a =—d (curve A: p =0.2, R =0.15, lo = 'I5 000) and Fuchs theory
for constant l, (curve 8: p=0, l;=20000K; curve C: p=0,
l; =500 000 x).

successful. In Fig. 5 we show two such Fuchs curves.
Curve 8 is a plot of Eq. (1) for the value p=0,
p; =0.041 pO cm, /;= 20 000 A. The values were selected
to make the curve pass approximately through the
midpoint of the thickness-data spread. It can be seen
that curve 8 provides a poor fit to the data because its
slope is too small. Curve C (p =0, p, =0.00164,
l;=500 000 A) has the correct slope but does not pass
through any data points because the theoretical re-
sistivities are much smaller than the measured re-
sistivities. The fact that the slope of the Fuchs curves
increases as smaller values of p; are selected is solely a
consequence of Eq. (2). Curve C, for example, can be
translated upward to fit the data but such a fit is devoid
of physical meaning since the product p;/; in this case
will be much larger than those measured in bulk. ma-
terial. It is also easy to verify that selecting constant
values of p) 0 provides a worse fit than simply using

=0
A good fit to these experimental data can be made by

applying the proposed model LEq. (15b)] for the
parametric values R =0.15, lo ——75 000 A (po =0.01093JiQ

cm), p=0.2, and the additional assumption that d=a.
%e have estimated the values for po and lo from the
purity of the bulk-source material and some prelimi, nary
single-crystal data. An independent estimate of R was
obtained in the following fashion: A thick Al film was
deposited onto an unheated substrate. The average
grain diameter was =1500A and the thickness was
great enough so that scattering from external surfaces
could be neglected. For this film, p~.~~ was measured and
then Eq. (10) was used to evaluate R, with d = 1500 A,
lp= 75 000 A, p4. &z =pa. The resulting R, 0.15, was used
to fit the data of Fig. 5. This value of R is certainly
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compatible with theoretical estimates, and is in re-
markably good agreement with the value estimated
above from the bulk data of Andrews eI, al. The param-
eter p was varied arbitrarily to get a best fit. As a point
of interest, it might be added that we always find a very
significant diGerence between the p4. ~~ values for films
deposited on unheated substrates and those deposited
on heated substrates. As is well known, average grain
diameter increases with increasing substrate tempera-
ture and thus measurements of resistivity versus sub-
strate temperature (with thickness and other variables
being held constant) may be of greater usefulness in
studying grain-boundary scattering than the usual

p4. 2~ versus a measurements, since in the former case
observed variations in resistivity can only be due to
structural changes. "

While this fit to the data is quite good, there appears
to be a systematic trend for data points at small thick-
nesses to fall above the calculated curve while those at
large thicknesses fall below. This is attributed not so
much to deficiencies in the model but rather to the
difficulty in describing films which vary in thickness by
a single set of constant parameters. There are a number
of systematic changes in structure, purity, and gross
topography which are likely to occur as the film in-
creases in thickness. The significant point is that these
other variations seem relatively small and that the main
features of the data can be described by the constant set
of aforementioned parameters coupled with the as-
sumption that d—=a.

DISCUSSIOK

Although many simplifying assumptions have been
introduced in order to make the mathematical problem
tractable, the model presented here satisfies essential
qualitative physical requirements expected from a
system in which grain-boundary scattering is significant,
e g.~

(1) Current flow must occur through the grain
boundaries since no alternate paths are available.

(2) A consequence of (1) above is that the total
resistivity py must become infinite when the grain-
boundary reQection coeScient E approaches 1. This
requirement is satisfied )see, e.g. , Eqs. (6c), (10),
and (15b)7.is

(3) A deviation from Matthiessen's rule, over and
above that due to the Fuchs size eGect is expected when
isotropic background scattering is occurring simultane-
ously with grain-boundary scattering, even though the

"In a recent independent study, A. von Bassewitz and K. X.
Mitchell LPhys Rev. 182, 7. 12 (1969)j have found that the
measured resistivity of single crystal Al alms is lower than that in
polycrystalline alms. In contrast to the interpretation presented
here, however, they attribute this result to differences in the
surface scattering arameter p between the two types of @ms."R.Landauer IBM J. Res. Develop. 1, 223 (1957)g obtained
the same result earlier by a detailed analysis of the local electric
Geld associated with the scatterers.

two processes are independent. "That this is so, can be
verified from the equation defining p, LEq. (10)7; i.e.,
pg cannot be written solely as the sum of a resistivity
arising solely from grain boundaries and the background
resistivity po. This is to be expected since the scattering
from grain boundaries is not a function only of the angle
between the incident and scattered electron wave
vectors, but depends in addition on the orientation of
the boundary. On the other hand, it is easy to verify
that this deviation from Matthiessen's rule is small,
generally being less than 5%. As a consequence, the
Fuchs theory is approximately valid even for fine-
grained films if the intrinsic mean free path is identified
with l„defined by Eq. (17). In this sense, curve A of
Fig. 5 can be regarded as a fit of the Fuchs theory to the
data for an l, that varies with thickness.

It should be noted that none of these conclusions or
other significant results due to the model are quali-
tatively affected when boundaries other than those
strictly parallel and perpendicular to E are considered
(see Ref. 9). Due to the columnar nature of the grains
in films, this model does predict that while the resistivity
is isotropic in the film plane, the intrinsic resistivity
measured perpendicular to the film plane must be
diGerent from that measured in the film plane.

We have not examined in detail the effect of grain
boundaries on the galvanomagnetic coefficients; it can
be expected, however, that internal size eGects aGect
galvanomagnetic phenomena and cause characteristic
deviations from the bulk behavior.

The assumptions of representing grain boundaries by
short-ranged 8-function potentials and of representing
the background scattering by an isotropic relaxation
time are reasonable on physical grounds. It is interesting
to note that recently Kaner and Fel'dman have inde-
pendently worked out a model for electrical resistivity
due to dislocation scattering and point-defect scattering
occurring simultaneously, "which is similar in spirit to
some of this work and that reported earlier': These
authors assume that dislocations can be represented by
6-function potentials and that the remaining scattering
processes can be lumped into a relaxation time; their
Boltzmann equation is similar in form to Eq. (4) and
they use perturbation theory to obtain the relevant
transition rate for their problem, as we have done.

We have employed a constant phenomenological
parameter p as used in the original Fuchs theory' to
describe surface scattering of electrons. Recently, sur-
face scattering has been the subject of various studies
and several theories have evolved which go beyond the
simple Fuchs description. ""As yet, in our point of

"See Ref. 5, p. 285.
~0 K. A. Kaner and E. P. Fel'dman, Fiz. Tverd. Tela 10, 304$

(1968) LEnglish transl. : Soviet Phys. —Solid State 1P, 2401
(1969)].

"See discussion and references, R. G. Chambers, in Solid State
Physics, edited by J. F. Cochran and R. R. Haering (Gordon and
Breach Science Publishers, Inc., New York, 1968), Vol. I, p. 321.

ss S. B. SoiIer, J. Appl. Phys. 38, 1710 (1967).
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view, the experimental evidence does not unambigu-
ously dictate a choice from among the theories. Our
choice was based for the most part on the greater sim-

plicity of the Fuchs theory and also because experi-
mental results are generally quoted in that framework.
The recent theories have in common one qualitative
prediction: that the ~ dependence of the resistivity is
weaker than that predicted by the Fuchs theory or that
thinner films will appear to scatter more specularly than
thicker ones (l, being constant). If such an effect is
sought experimentally, investigations should be limited
to use of single crystals for which variations of intrinsic
resistivity with thickness can probably be ruled out. By
doping with a suitable impurity, ~ in single crystals
could be varied by varying dopant concentration. Use
of polycrystals is not likely to yield fruitful conclusions
since variations of grain size with thickness and at-
tendant changes in p, will swamp out other more subtle
thickness-dependent effects. For example, it is easy to
verify that in the data on Al Alms presented here and
earlier, 4 the fit to the Fuchs curves (for constant p; and

l,) is actually made worse if an increase in p with
decreasing thickness is postulated. This does not rule
out the existence of a thickness dependence in p, but
merely suggests that the main features of the data can
be explained by postulating a constant p and a vari-
able pg.

The two conditions necessary to observing large
grain-boundary scattering effects, i.e., availability of a
wide range of grain sizes and lo))d can be easily obtained
in 6lms. Thus fundamental scattering parameters such
as E, which are difficult to measure in bulk material can
be extracted from data on clean thin films by using the
present model and regarding p as a constant averaged
parameter.

CONCLUSIONS

A model describing a polycrystalline metal film has
been presented, which is then used to calculate the total
electrical resistivity of the 61m in terms of unknown
parameters characterizing the three mechanisms as-
sumed to contribute to electron scattering: an isotropic
contribution described by a scalar relaxation time; a
contribution due to grain boundaries; and a contribution
due to external surfaces.

It is our conclusion that a major portion of the total
resistivity in polycrystalline films comes from electron
scattering at grain boundaries. In Al Alms the grain-
boundary-reAection coefficient for electrons is =0.15, in
good agreement with the recently published bulk data
of Andrews et al.

It follows that the dependence of thin-film resistivity
on thickness (substrate temperature and other variables
being held constant) includes variations of grain size
with thickness, as well as the Fuchs (thickness) size
effect. Dependence of thin-film resistivity on substrate
temperature (thickness and other variables being held
constant) comes about mainly due to variations of grain
size with substrate temperature.

We suggest that the surface scattering-parameter p
used in the Fuchs theory has about the same value for
both single-crystal and polycrystalline films of a given
material. The grain-boundary-reAection coefficient R
can therefore be determined from measurements on
polycrystalline films if the parameters p and l, are inde-
pendently obtained from single-crystal films of the same
class.
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