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Nonetheless, the over-all qualitative picture suggests
that there is no particular mystery in understanding the
properties we calculate in terms of the theory we use.
We are, therefore, generally encouraged by the results
of these calculations. We hope that our form factors will

prove useful in future studies on the noble metals. With
the computed form factors it may now be possible to do
systematic quantitative calculations of the electronic

properties of these metals just as has been done for the
simple metals.
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It is shown that an approximation for the e-body ionic correlation permits the generalization of nearly
free-electron formulas for some of the electronic properties of liquid metals. The electrical resistivity is
considered in detail and it is shown that a result identical in form to that due to Ziman can be obtained,
but in terms of an effective potential involving both the electron-ion potential and the static structure
factor. Some further assumptions are necessary for this effective potential to be approximately evaluated.
The numerical work strongly indicates that the effective potential differs little from the commonly used
pseudopotentials. Finally, generalized expressions are obtained for the electrical resistivity and Knight
shift for liquid metal alloys.
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where e, is the number density of electrons, Z is the
nominal valence, k~ is the Fermi wavevector, and 0 is
the total volume of the system. In (I) it is understood
that

lkl = lkyql =kg (2)

I. INTRODUCTION

'HIS work is concerned with an extension of the
nearly free-electron model for the electronic

properties of liquid metals. The specific property we

discuss is the electrical resistivity, p. The well-known
Ziman formula for p is the lowest-order result and yields'

N

p
—Q e Cq ~Ri-

d=1
(6)

where R; gives the instantaneous position of the ith ion.
In (5) the brackets denote an ensemble average over
ionic configurations. The liquid structure factor $(q) is
readily obtained from either x-ray or neutron-diffraction
experiments or may be sufficiently well represented by
the hard-core structure factor for a suitable choice of
parameters. '

The derivation of (I) may be made clear if we rewrite
the result as

screened ion. S(q) represents the liquid structure factor
and is defined by

s(q) = &/cv«p, p,»
with

p= rn/n, e'r, (7)n,/Z= n; = density of ions =S/Q.

The potential matrix element is defined by 2' 1
l v(k —k') pR R.

l

'
(4) r t't 0 (2sr)'Q(klvlk')=v(k —k')= dre " R')'v(r),

X(l —ccc8 „)3(e —e ))), (t!)

E), = tt'k "/21,
where v is a pseudopotential describing the interaction where
between an electron and a single self-consistently
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and
Et = t't'ke'/2nt.

2 N. K. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
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Equation (1) therefore represents (within the context of
the adiabatic approximation) the ensemble average of
the resistivity calculated in Born approximation for
elastic scattering from each configuration of the ions.

Since its introduction in 1961, the Ziman formula has
been found to be in reasonable agreement with both the

magnitude and temperature dependence of the resis-
tivity of pure liquid metals. Its extension to liquid
metal alloys has also been successful. ' The formula has,
in fact, become the working model of the Geld in that
most experimental data is interpreted in terms of the
parameters of (1);viz. , e, 8, and kr.

Recently, however, some attempts have been made
to obtain higher-order corrections to (1)." These
efforts have encountered severe difficulties, principal
among which is the lack of knowledge of the n-body
ionic correlation functions. Only the two-body ionic
correlation, which is essentially the liquid structure
factor, is reasonably well known. Furthermore, even if
an approximation for the three-body and higher ionic
correlation functions is made one usually encounters
intractable multidimensional integrals in the expression
for p. Finally, even with approximate evaluation of the
integrals, one finds that the "Born series" is not con-
verging rapidly, and hence any conclusions drawn
concerning the validity of the lowest-order result,
Eq. (1), are dubious.

Our effort has been directed towards making a con-
sistent approximation for the n-body ionic correlation,
summing the relevant perturbation series to infinite
order, and casting the result in an expression identical
in form to the Ziman formula. It is clear from what
follows that our approximation still neglects a large
number of terms whose contribution to the transport
coeKcients is dificult to assess. The analysis does,
however, include a substantial set of terms previously
unaccounted for in low-order calculations, and thus may
be simply regarded as a step in the direction of obtaining
a complete theory of transport in liquid metals. Alter-
natively, the formalism presented below may be viewed
as a theory of transport of a "model" liquid metal
whose physical structure is given to all orders of the
correlation functions by the approximation introduced
in Sec. II.

In Sec. II we outline the ionic correlation approxi-
rnation and its consequences on the form of the resis-
tivity p. In Sec. III we present the details of the
calculation of the effective-scattering function appearing
in the generalized Ziman formula for p. The numerical
considerations are presented in Sec. IV, and the
extensions of our method to alloys are given in Sec. V.
We conclude with a brief application of our method to

'N. W. Ashcroft and D. C. I,angreth, Phys. Rev. 159, 500
(1967).

4 B. Springer, Phys. Rev. 154, 621 (1967).' T. Neal, thesis, Carnegie institute of Technology, 1967
(unpublished).

the Knight shift (Sec. VI) which leads to a formula

reminiscent of the expression due to Faber.

II. DERIVATION OF RESISTIVITY

In a recent paper Rubio has obtained a nonperturba-
tive evaluation of the resistivity from a derivation based
on the Greenwood formula. ~ We consider his expression
evaluated at zero temperature and to lowest order in

the small parameter of the nearly free-electron theory,

(kit) ', where / is the mean free path of an electron at
the Fermi surface. The meaning of the (kit) ' expansion
is this: We view the electrons as independent particles
weakly perturbed by the linear superposition of poten

~isis of the self-consistently screened ions. Note that
this does not regard the individual single-site potentials
themselves as being weak in the usual sense that an

expansion in "n" is appropriate. Rather, it is only

necessary to assume that the total scattering effect

(i.e., including correlation) is slight. To lowest order in

(kit) ', Rubio's formula then reduces to

W(E,k,k') =0 P (([(k ) V(G+V)" I
k'&

~=o,m=o

X(k'I(VG )-Vlk&3'. .», (12)
where

(k)G+)k'&= (k( Ik'), e=0+ (13)
p, —H&ie

= 5y g~G+(k) ~

G+(k) =[p—E —A(k)Nil'(k) j '.
The chemical potential p is defined by

u =Er+ A(k p), (15)

and the self-energy evaluated at. the Fermi surface,

6 J. Rubio, J. Phys. C 2, 288 (1969).
r D. Greenwood, Proc. Phys. Soc. (London) 73, 745 (1959).
8 A. W. B.Taylor, Physica 32, 2030 (1966).' L. Van Hove, Physica 21, 905 (1955);23, 441 (1957).

m 2x dk'
p = — W(Ep,k,k')

n.e' k (2m)'

&((I—cosgg, g )5(Ep —E„), (10)
where

k s~go

[JV'ote added in proof. Dr. L. Ballentine has informed us

that Rubio's result for p is, in fact, only correct to this
order. ) Thus we are led to seek an evaluation of the
quantity W(Er, k,k'), which in simple Born approxima-
tion reduces to II' Sn(k —k') )(k~e~k') )'. By applying
the theorems developed by Taylor, it follows that the
analysis of Van Hove' may be used directly. This
analysis yields the result that'
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Z+(k), is given by the relation

Z+(k) = A(k) Wit'(k) (6,I' real).

In Eq. (13)
H(r) = —(A'/2m) V'+ V(r)

(16)

V(r) =Q v(r —R,).

The potential v describes the same interaction as before
but in order that the eigenfunctions of II carry the true
current it is not assumed to be a pseudopotential. It is,
however, assumed to be local, Hermitian, spherically
symmetric, and normalized so that

n; dr v(r) = ,'Ev. ——

{Lv(k—ki)G+(ki) v(ki —kg)
Q kI, k2, k3

XG+(kg)v(k2 —k')v(k' —k3)(G (k3)v(ka —k)]
X((Pk—kiPkz —kyPky, —iL'Pk' —k3Pka —k&) j i.d. q (21)

and the "i.d."demands that we are to retain only those
contributions that arise when all the momenta, k, k~, k2,
k', k3, are distinct.

In the notation we have now defined we may give an
alternative statement of the specific approximation
made to obtain Kq. (10). It is the replacement

h' 2 I'(k)k

2m v Lp, —Ei—D(k) j'+I'(k)
where

pr~ 8(k —k p)+O~
kE~

I'/Ep= 1/0 p/,

and/ is the mean free path which (as mentioned above)
incorporates the eQect of scattering from the linear
superposition of potentials.

At this point we introduce our approximation for the
ionic correlation. For the particular term appearing
in (21) we write, for example,

To explain the meaning of "i.d." in Eq. (12) which
stands for "irreducible diagonal, " we introduce the
identity

n(k
~

V~~ k'&= v(k —k') p, , (20)

Then a typical term in the expression for W(E&,k,k') is

As a consequence the resistivity is now given by

m2 2k Ii'

As discussed by Ballentine and Heine" such a "geo-
metric approximation"" is based on the neglect of
Quctuations from the mean. It permits us to correctly
describe scattering by pairs of ions while approximating
the effects of larger clusters by treating them in an
averaged sense, as outlined in detail in Ref. 10. The
approximation has destroyed the symmetry of the
expression on the left-hand side of Eq. (22): It is clearly
unchanged under the transformation

k~kg —+k2 —+k'~ks —+k,

while the right-hand side does not possess this property.
The approximation, however, has been made in such a
manner as to direct the asymmetry onto the particular
vector k, which is the dominant vector in the expression.

Finally, we note that a straightforward application of
this correlation approximation when applied to the
calculation o& the self-energy yields a result consistent
with the generalized optical theorem discussed by
Rubio. This analysis is presented in Appendix A.

Substitution of the ionic correlation approximation
in the term considered above gives

1
@2', P —Lv(k —k,)5(k —ki)G+(&i)v(ki —k2)

kI, k2, k3 Q~

&&$(k—k,)G+ (k2) v(k2 —k') $5(k —k')

x t (kv' k—g)$(k k—3)G (k—a)v(k3 k—)J, (23)

where we note that since $(0) is finite the restriction
imposed by i.d. may now be discarded.

If an entirely similar approximation is made in each

of the other terms contributing to 8'(Ep, k,k'), we find

that the result may be readily summed to give

W(Ev, k,k') =n;Q2(k (r (
k')$(k —k') (k'( vt

~
k), (24)

with

(kivlk'&

S(k—ki)
=(k) v+v g )k,&

— (k, ) v+ . [k'&
p —Ei,—Z+(k, )

5(k —ki)
=(k( v+~ g [ki& (kil ~ Ik'& (25)

P —Ei„—Z+(ki)

1
{((Pk—klpkl —~2pkm —t'Pk' —hapks —t))) i.d.

Ã
I

((P&—imp&i —~&&
—((p&—i 2pk2 —k&&

iV g
1

&&
—(( -' '-.))—((.—..—.»
pT

=S(k—ki)S(k—k2)S(k—k') $(k —k,) . (22)

P=
12Ze2e, A'g'02

q'dq 5(q) [ (k [ i
k+ q& i'. (26)

' L. E. Ballentine and V. Heine, Phil. Mag. 9, 61j (1964).
"The terminology is based on the work of J. L. Beeby and

S. I'. Edwards, Proc. Roy. Soc. (London) A274, 395 (1963);
J. L. Beeby, Proc. Roy. Soc. (London) A279, 82 (1964). Their
approximation was made without the "i.d." restriction. The
approximation is also related to the "chain approximation" of
F. Cyrot-Lackmann, Advan. Phys. 16, 393 (1967); see also J. L.
Beeby and J. Hubbard, J. Phys. C 2, 556 {1969), for some
discussion of the physical significance and further applications of
this approximation.
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This equation is identical in form to that obtained by
Ziman in Born approximation, with the replacement
e~v. As indicated above, within the proviso that
Eq. (26) is based on an approximation for the ionic
structure, one can begin to understand the considerable
qualitative success of the Ziman formula.

III. EVALVATION OF v

I'(k) = e, Ep))e&0. (2/)

We now seek to evaluate s. As is shown below, the
assumption that the electron-ion potentials do not
overlap for any configuration of the ions renders
separable the integral Eq. (25) for p. This "muKn-tin"
approximation, though reasonably well satisfied in a
solid metal, is conceptually rather ambiguous for liquid
metals. Although the approximation has been used
widely in connection with liquids, it is clear that by
choosing a fixed "muAin-tin zero" one tends to end up
with the spherically symmetric parts of the potentials
being con6ned to spherical regions whose radii fluctuate
from site to site. Arguments in support of the approxi-
mation for disordered systems have been given by
Beeby. "We view its use here as a necessary evil in order
to effect an estimate of v, and as we see in Sec. IV, it is
important in checking the optical theorem to verify that
the single-site potentials are strictly of the muon-tin
type at all stages.

To simplify the calculation we assume that I"(k) is
arbitrarily small and independent of k:

In real space

(xltlx)=Z t ( y)I' (x)I' *5') (32)

where the j&'s are spherical Bessel functions, "we may
determine the matrix elements of f in momentum space:

Q(k l
t l

k') = (4)r)' g ti(k, k') Fr, (k) YI.*(k'), ( )

with

ti(k, k') = x'dx y'dy ji(kx) j&(k'y)t&(~, y) . (34)

If
l
k

l
=

l
k'l = k p, comparison with the standard

expression yields"

t&(k p, k p) = (k'/2m—k p) e*"sinai, (35)

where the phase shifts, b~, are evaluated at the Fermi
energy E~.

Applying an analysis similar to that of Beeby" we
find (see Appendix II)

where the F's are spherical harmonics and I is a com-
bined index for both the orbital quantum number l and
the magnetic quantum number m. Using the Rayleigh
expansion

e )k'=4 )Pr(i)'ji(kr) Yr, (k) I'i,*(r"),

We also assume that tI)(k) is independent of k:

a(k) = tI. (28) mkp Q &), &)

(With these approximations we are limiting ourselves
to a self-consistent check of the nearly free-electron
model. )

The equation defining s now becomes &(Er)E~) = T "(Er)E2)

&& g (Ei,E,), k=2, (36)

+ Q Q 2'"(E,E)G"(E,E')T"(E'E )+, (37)
i,j 1 l, l'

which Inay be rearranged to give

=&kl ~+' E lki) (k l,+ lk, )
T (E„E,)= —~„,&, exp(i~i, ) sin~i„5(k —ki) (38)

29 2'"(Er,E2) = T2)(Ei,E2)

= —8i, , t,(2mk p'/k') (cj/rlk) ti, (k p,k) l k=kp, (39)

(kl pl k') T"(E,,E,) = —B),, i,(2mk p'/k')
5(k—ki) —1

=( l t+t g lk, ) (k, l t+ "
tJ, Ek) 6+ie— —

&((cj/Bk)(cj/Bk')ti, (k)k') l „„p,k =kp) (40)

(41)

where we have introduced the t Inatrix at the
Ep =IJ,—A.

lk'),

(30)
G"(Ei,E2) =0,
G"(Er,E)) =G"(Ei,E2)

energy
= —(2i/3m ') (2Ei+ 1)'t '(2E2+ 1)'t '

t=.+. P lk, )
kl p —Ek)—A+i e

)) J. L. Beeby, Proc. Roy. Soc. (London) A279, 82 (1964).

(31)
"We use the notation of A. Messiah, QNuntnm Mechanics

(John Wiley R Sons, Inc. , New York, 1966), p. 489.
'4 A. Messiah, Ref. 13, p. 817.
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i, z ———z (2l3+ 1)c"(li0l20)G"(li, lg) =-
l3

X

I~(l) = (2l+1)/3~Z,

and

Is l = — kdkLS(k) —1j

e experimeentalth phase shifts yieevaluated wit p
result:

2kp
I8(l3)+I~(l3)), (43)

q dq'=3 Z.' k,

na(P( 1—q'/2kp') ~', 50XS(g) ~ Q (2l+1)e'" sina(P(( —' ' ', 50

RdR sin(kR)k, +(k p j(Rd sin + R '&(k pR) . (45

e o ynom' . '
ll toe olynomials. Fina y,re Legendr p ywhere the i s a e o ynom

obtain ethe derivatives o
of Beeby":

a/ak) Imt((k, k p) ~
g„-=opn" and"herica 1 Bessel functionAgaill h+ is another sp

t 4~
c'(limilgmg— (51)

a/ak) (a/ak') Imti(k, k

= (pasg(k)/ak] ( i,=pp) ' cos g,

=ip a/ak) R——et'(k p, k)
~
g=l,p(a/ak) «t((k, k p) ~

g=ip ——a

= as, (k)/ak]i, =„cos i,

X I'r. ,(,
derived using hthe'dde

d~;.,h. 6.,1„..1,.
assumption, no exp ici

p and to
tion remains in

s to evaluate p andth t
1.Th dcompute p or s

h tho t 1'edbyte e
d Lekner.

the Born approxima ion" was u
a pseuudopotential

and

k'=k(a/ak) (a/ak') «t((k, k'

'dy j&(kx)j&(k'y)= (a/ak)(a/ak') x'dx

(54)X«h(x, y)~~=~p, ~ =~p
Here

= a/ak) Imt((kp, k)~i=I,p

=Lag~(k)/ak]
~ I,=~p costi sinai,

I
'=j'cg

sined0d y

46)a.)1.,*(a,.)1.(0,~)

where

''
k r)v(r)r'dr,J l I'~

r = dqe'&'i(q),~(r) =

(47)

(48)

sg(k) =

where

si(x) =

00

s&(k p) = tana)(Ep), (55)x'dx j)(kx)s((x), s(

j((kpx)i (x)
$2

1 k 2cosqR,
v(q) = ', Fp—- (49)

and
aGD

~ go = k /5M

from t e i
'

Id the correct p
F

with +c c
formu

ni
11 f }1 1e essentia y

di thns in real spac
'

soscillations
'

ld be neglecte .imation shou
i er the restnc io

approxiIIla

h h h t
licitly consi er ic iopoint o

muffin-tin appro
use of the ridetermined by ud /=I werean
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e
' nsof E.U. Condonthe tabulations o

S (C bd G. . Sho tey,
ess Cambridge,versity Press,

"A. Messiah, e .
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+ P—

7l p

j&(kx)j((ks)
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as a function of the momentum transfer at the Fermi
surface, q, the absolute value of the scattering factor:

2
f(q) =

~ Q (21+1)e'" sinhgP((I —q'/2k v') ~,
Zm'

~(q) = ! 2 (2tt+I)"'(2ts+&)"'
Zw

X q (tl&4)2 4(I —q'/»v')
I (»)

L-
O
o I.O8
C:

~ 05
O

CA

The angular-momentum expansion was cut off at 3=6.
For the alkalis convergence was obtained with Ave
iterations of the expression (37) for q, while seven to
ten iterations were required for the polyvalent elements.
We show in Fig. 4 how the resistivity varies through the
calculation. The large change in the low-order correc-
tions is familiar. 4 We estimate that after 10 iterations
the numerical results are accurate to 20%.

As presented these results are encouraging. We have,
however, unearthed an interesting inconsistency in an
attempt to numerically check the generalized optical
theorem. As shown in Appendix A it should be true
that fusing Eqs. (27) and (28)j
—Im(k [ v ) k) =vr g (k ) v )

k')S(k —k')

FIG. 3. Numerical results for Al. The single-site scattering
factor f(q) is denoted by ———and the converged effective scatter-
ing factor F(q) is denoted by

2.5

2.0

0
l.5

I.O

L
O

I.O

I 1 I 1

I 2 5 4 5 6 7 8 9
Number of Iterations

FIG. 4. Computed resistivity as function of number
of iterations for Na, Zn, and Al.

O

O I.O

Ql

o 05
V)

Zn

I

q/kF ~
FIG. 1. Numerical results for Na. The single-site scattering

factor f(q) is denoted by ———and the converged effective scatter-
ing factor F(q) is denoted by

Table I gives the relevant computed numbers and it is
apparent that the disagreement is significant. It is quite
crucial to keep in mind, however, that the real part of
(k~v~k) (which is approxima, tely equal to 0.8Ev) is
larger than the imaginary part. An immediate con-
sequence of this is that a correction of only 5'%%uo in the
absolute magnitude of (k l

v
~
k) would restore agreement

with the optical theorem. The disagreement in Table I
is therefore not so poor as it appears although its source
is a very interesting question. It can be traced to
neglect of the muon-tin assumption in the construction
of the single-site potential LEqs. (48) and (49)]. To

TABLE I. Numerical check of generalized optical theorem. The
first column gives the element, the second and third columns and
the fourth and fifth columns refer to the potentials introduced in
Eqs. (49) and (60), respectively. In both cases a comparison of
the right-hand side (RHS) and left-hand side (LHS) of Eq. (59)
is made in units of 8g for each element.

I I

I 2 Element LHS4g RHS4g I.HSeo RHSeo
q/kF

FIG. 2. Numerical results for Zn. The single-site scattering
factor f(q) is denoted by ———and the converged eBective scatter-
ing factor F(q) is denoted by

Na
Zn
Al

0.142
0.172
0.094

0.016
0.049
0.058

0.0063
0.0152
0.0507

0.0059
0.0146
0.0571
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substantiate this hypothesis we performed the calcula-
tion using a potential that was explicitly consistent
with the muon-tin approximation; that is, a potential
that rigorously vanished outside the muffin-tin radius,
and therefore suffered no further. deletions by making
the muffin-tin approximation. In the notation of
Eq (4.8), we took

s(r) =0 for r&E„r&20.

= (e'/r)e s'" for R,(r(so. . (60)

V. EXTENSION TO ALLOYS

We may extend the analysis for p to the case of alloys
with an arbitrary number of components. The theorems
of Taylor' still apply and hence so does the formalism
of Van Hove. '

The typical term considered in Sec. II for the
expansion of W(Er, k,k') is now

j.
{I

s~i(k —k,)G+(k,)s~s(k, —k,)G+ (k,)
kl, k2, k3 Q4 el)0'2~&3

P1,PS

Xtis(ks —k') s»(k' —ks) G—
(k s)s»(ks —k)]

Here —,'0- is the hard-sphere radius used to describe the
effective physical size of the ions. ' Making no attempt
to 6t this potential in lowest order, we determined all
the phase shifts in Born approximation (f, , = 6).
Iteration of the expression for s again led to convergence,
but this time the generalized optical theorem was
satisfied as shown in Table I. This agreement is the
basis of our explanation of the earlier inconsistency.
The difFiculty is clearly an artifact of the mufFin-tin

approximation and we have no way of relating how this
inconsistency affects the validity of the data presented
ln Figs. I—4.

(x.xp) 'i's.p(g) =S.p(g) . (65)

Then the result for the resistivity may be rewritten

m2

P O'P
12Z*e2e,k'x'

2kF

vsdv(k I"Ik+ q&(x ap)'"

xs„,k)( +ql.»lk&,

where Z* is the average valence and

(kl*..-lk') =(kl e-+g ~p.P

sp (k —kt)
X E Ikt& (ktI t™Ik'& (6'f)

y —Zs, —2+(kt)

This is the generalization of the result of Ashcroft and
Langreth. ' We note that an analysis similar to that in

Appendix A may be carried out to demonstrate the
self-consistency (in the sense of the generalized optical
theorem') of this approximation for alloys.

VI. KNIGHT SHIFT

As noted by Edwards, the Knight shift is propor-
tional to'~

Im 1 Na

K =C — Rg — —R;, 68
A '=t p, H+se—

is the generalization of S(q). This "geometric approxi-
mation" again allows the expansion for W(Er, k,k') to
be resummed. I,et

(64)

and

where we consider an alloy with an arbitrary number of
X((Px—~r 'P~i —xs Pss—x' 'PI' —~s Px—sI &&}ip" (6 ) components and seek the Knight shift of the type-rr

nuclei. This expression is to be evaluated in the absence
Here the Greek indices designate the type of component, of a magnetic field. As in the previous section,
and

Na

p
a Pe iqRi»—

t',=1
(62)

p2 Na
a=—V'+g g '(r —R,.).

2m a i=1
(69)

with x =&V /X the concentration of component n,
and R; the instantaneous position of the ith ion of the
component o,. For each term in the sum over Greek
indices, the fluctuation argument used in Eq. (22) may
be applied to approximate the ionic correlation

L&(P "P, ,"P, '"P'—.,'P —'))j-. . -—
= (E,1Vp,)"'S, ,(k kr) S, ,(—k ks)—

XS.,p, (k —k') Sp,p, (k —ks),
where

Equation (68) is equivalent to

Im 1 1
gu

1
x r O'I — —,Ii"ii'- )) (TOI

p H+ie—
Using arguments similar to those of Van Hove, ' we may

"S. F. Edwards, Proc. Roy. Soc. (I.ondon) A267', 518 {1962).
S p(V) =Sp (0) = ((Pq P—q )) (ll all p) &q, o The constant of proportionality equals-', ir(eh/4iriar)' if we ignore

(-ViicVp) i the electron-exchange enhancement of the Pauli susceptibility.
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deine an expression X (k,k') such that

Im 1
E = —C —Q G+()'s)

0

+ — Q G+(k) X (k,k')G+(k') (71)

X (k»') = P «{& I
I'(G+l')" Ik')Pk' —k )' d)) (72)

n=o

A typical term in the expansion of X~(k,k') is

{)IIPI(k —kI)G+(k&)
&I,&S Q PS, PR, P3

XIIp'(ki —ks) G+(ks)II p'(ks —k') $

X (&Pk—kz Pki —ks Pki —k' Pk -k )))i.d. (73)

If we consider the vector k dominant (as in Sec. II),
then the geometric approximation discussed above for
alloys yields

{((Pk—ki Pki—k2 pks —k' Pk' —k ))}i.d.
= (cVp,N.)'~'Sp, p, (k k)Sp, p, (k—k)—

XSp,.(k—k') (74)

Alternatively the vector k' could be considered domi-

nant, in which case the geometric approximation
would be

{«P'- P — "P -""P — "))) . .
= (1V X,)"'S,(k' —k)S, ,(k' —k )

XSp,p, (k' —ks) . P5)

Proceeding with Eq. (74) we substitute back and resum
to obtain (see Sec. V for notation)

X.(k,k') =F.g (k~gp. P)k')sp. (k —k'). (76)

Im 1
Z = —C —{P G+(k)+ P G+(k)

The coefficient of proportionality has changed because
Faber used a pseudopotential, N&, and therefore needed
to correct for core-orthogonalization terms.

VII. CONCLUSIONS

We have shown that a geometric approximation for
the ionic correlation leads to a generalization of certain
nearly free-electron formulas for properties of liquid
metals. These generalized formulas are identical in form
to the low-order results but include, in an approximate
manner, corrections to all orders. Numerical work for
the electrical resistivity indicates that the higher-order
corrections are not small in magnitude. However, these
terms tend to cancel among themselves yielding a
small net correction to the low-order result.

The success of the geometric approximation used here
suggests that its application to other liquid metal
properties might prove fruitful. Further work with
model liquid calculations may help to determine the
validity of the approximation.

ACKNOWLEDGMENT

We wish to thank Professor J. W. Wilkins for a
helpful remark leading to the proof of the generalized
optical theorem.

APPENDIX A: GENERALIZED
OPTICAL THEOREM

The generalized optical theorem is a self-consistency
relation between Z and O'. ' The speciic form of this
relation that we shall consider is, in our notation

1
I'(k) = —Q W(Z p,k,k')

Q A:

I'(k')
X — . (A1)

(~—Z, .—A(k')) syr'(k')

To obtain expressions for I' and 6, note that Z arises
from a calculation of the

configuration

averaged
resolvent t'Eqs. (13) and (14)g. As in the calculation
of W(E&,k,k'), the theorems of Taylor' allow us to use
Van Hove's' formalism from which we find:

By working with Eq. (75) instead of Eq. (74) we would

obtain a different expression for X (k,k') but the same

result for E . Equation (77) is a generalization of the
result of Faber. "His result may be written (within the
context of the nearly free-electron approximation) A typical term in this expansion is

(A2)

Xg &k~xpNP)k')sp (k—k')G+P')}. (7g)

Is T. E. Fzbsr, Advan. Phys. 15, 547 (1966); 16, 637 (1967).

g —{LII(k —ki) G+(ki) II (ki —ks) G+(ks) II (ks —k)$
&1,&2 0

X«Pk —k&Pki —k2Pk2 —k))}i.d. ~

The vector k is dominant (Sec. II); so, in the same
manner as in the text, we approximate the ionic,
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correlation by, for example,

—(((t&„»p»»px, i,))};.e.——S(k—ki)S(k —ks) & (A3)
Ã

and substituting back we find

V Q —v(k —ki)S(k —ki)G+(ki)v(ki —ks)
j1,&: 03

XS(k—ks)G+(ks)v(ks —k) .

Applying this approach to the other contributions to
the sum and then summing, we obtain

Z+(k) = 1V(k
~
v

~
k) . (A4)

It also follows that

2—
(k) =1V(kivtik). (AS)

Now to establish Eq. (Al), " define an operator G+

which has the property

G+ =+ I k')S(k —k')G+(k')(k'
~
. (A6)

[kj = fk'(=kp)

S(k—ki) —1
fl( It E lki) . (kil tlk')

—&&& &ti E»& 6+ze

= (4&r) ' g Vr, ,(k) J'1.,*(k')
L1,L2

1
X (4n.) 'is; Q—

j10 0

xs'dxsti, (k p&xi)

Xji,(kixi) Fi,,~(k,)
-ti —Ei» —6+ze

r
XI

0

dRg(R)e'o —»i'R —(2w)sg(k —ki)
~

S(q) —1=0; dR g(R)e'&'R —it (2v)'fI(q) (B3)

X I'r, s(kl) ji,(kixs)ti, (xs,k p), (B2)

where we have introduced the identity

involving the pair-correlation function g(R), normalized
so thatThen working independently of a specific representation

v = v+vG+v or v = v vG+v- (A7) g(R) ~1 as R~~. (B4)
Further reduction leads eventually to a consideration

(AS) of the integral
and

vt=v+vG vt or v=i —vG v .

Substituting (A7) in (AS) and vice versa

vt=v+vG vt —&G+vG vt,
ki'dki ji,(kixi) ji,(kixs)I=

(A9) p

(A10)v= v+vG-+vt vG+vG—vt, Xji,(kiR) (»)
ti E»i —6+ze

and subtracting
Use of the Inurn-tin approximation reduces the integral
to a convenient result. Accordingly, we assume (chang-
ing the zero of energy) that the electron-ion potentials
are nonzero only within a sphere of radius R surround-
ing each ion and that in no configuration of the ions do
these spheres overlap. This implies ti(x,y) =0 if either
x)R and/or y)R, and g(R)=0 if R(R . The
integral (BS) then yields's

I= -', &r(2mk p/It)h„+(k pR)j,,(k px, )j,,(kpx,), (B6)

vt —v=v(G ——G+)vt.

Taking plane-wave matrix elements, we arrive at
Eq. (A1).

APPENDIX B

This analysis follows closely, the work of Beeby. "
By the definitions introduced in the text, the first term
in the expansion of v LEq. (30)7 is given by

2mk'
0(k

~
t

~

k') = ———P 4wF'i, (k) I'r,*(k')e's' sinai. (81) where
szk p

L1,L2

kp=kp+ze'& e'= skp(e/Ep). (B7)
The next term may be reduced to (note Using this result, Fq. (B2) becomes (note k= zk

—(4w)' Z I'~.(k) y~.*(k')

2mb p
4&rn; p (2ls+1)c"(limilsms)8~&, ~, R'dRttg(R) —17t„(kp kp)k, ,+(kpR)~, (k R)t, (k k )

0

2mk p
+ 47ris; p (2ls+1)c"(limilsms)5 & ~, R dR&„(t,kp)kp, ,k( +k)pjRi (kpR)ti (k k )

l3 h 0

—47ris;ti, (k p, k )(21,+1)'t'8, »(1/e) 5, (21,+e1)'»t, (k p k p) . (BS)

"This proof was suggested to us by J. W. Wilitins (private communication).
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Introducing the identities'0

—l—1

R'dRht+(kFR)j &(k) R) = —

~
1+i-

ke(k p'+(e' —ike)') k kt:
(89)

rt; R'dRPg(R) —1jht+(heR) jt(keR) = kdkf S(k) —1j RdR sin(kR)h&+(kt R)j t(keR), (810)
0 (2w') o 0

and expanding in e' where necessary to remove divergences, we 6nd

2m ''
4n I'z&(k) V~,*(k') (—exp(ib«) sinb«) ~

—P (2lo+1)c"(l)trt)lotto) b~,
mkp», L:

2lg+1 2 00—+— kdkP'(k) —1) RdR sin(kR)ht, +(keR) j»(keR) ~(
—exp(ibt, ) sinbt, )3' 7l 0 0

2m& p 8

+(— — ti(kpk—) , )
(24+1)'~ i, — i, (24+1)'~ ~(

—exp(ili, ) siniir, )
h' olk ~=),„4 3srZ

tr 2i 'l ) 2rttk p 8
+(—exp(ib«) sinB«) (

(2lz+1)'"B~« — (b~, , (o2l +oI)"'
)

— ——tt, (k,ke)3Z] '

h W
(811)

Here use has been made of the sum rule"

Q (2lo+1)c"(lgrtt~lotttg)beni, mg
——(2lj+1)"'(2l~+1)'"&m&,o~ o, o. (812)

Similar structure appears in higher order. In this form it is clear that we can make a cutoff in the angular
momentum expansion since the phase shifts decrease rapidly with increasing l. Furthermore, the matrix series
may be simplified by noting that each matrix contains a 8, on the two magnetic quantum numbers nz and m,
which means that any product or sum of such matrices also has this property. Coupling this with the fact that.

I'1.,(k) = I'g, (~)= L(2lg+1)/4~j'"B, , o, (813)

we see that we need only work in the subspace where all magnetic quantum numbers are zero. Using this ob-
servation and introducing the cutoff in angular-momentum indices, we obtain the answer given in the text.

oo A. Krdelyi et ai. , Table of Integral Transforms II (McGraw- Hill Book Co. , New York, 1954), Vol. II, p. 63."A. Messiah, Ref. 13, p. 1057.


