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Pseudopotential Form Factors for Copper, Silver, and Gold*
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Using the generalized pseudopotential formalism given by Harrison, form factors have been calculated
for copper, silver, and gold at both liquid and solid densities. All quantities entering in the form factors
have been calculated from first principles, including the position of the d resonance. The full nonlocal
character of both the ordinary pseudopotential terms and the additional hybridization terms is included
without approximation. To first order, the orthogonalization hole has also been treated exactly. The Kohn-
Sham approximation is used for the conduction band-core exchange, while exchange among conduction
electrons is included through a modified dielectric function. The effects of electron correlation and crystal-
field splitting are neglected. The calculated form factors are used to estimate the band gap at the L point
and to calculate the resistivity of the liquid metal with good results. It is expected that the form factors will
be useful in further calculations of the electronic properties of the noble metals.

I. INTRODUCTION

HE reformulation and generalization of the pseu-
dopotential method to include the d-band metals

has recently been discussed by Harrison. ' Exactly as for
simple metals, one may transform the Schroedinger
equation to an equivalent pseudopotential equation in
which the ordinary potential is replaced by a weak
effective pseudopotential, 8'. Plane-wave matrix ele-
rnents (k+qlWlk) appear quite naturally in the ap-
proximate solution of the new pseudopotential equation
and hence also appear in the calculation of physical
properties. For a metal with a reasonably spherical
Fermi surface, a particularly important set of these
matrix elements connect plane waves on the corre-
sponding free electron sphere. Apart from the usual
structure factor, these matrix elements are the form
factors and they enter in the calculation of electronic
properties in the same way as do the form factors for
simple metals. Of those d-band metals for which we
might like to calculate a form factor, the easiest to treat
theoretically are those having a completely empty or
filled d-band. These are the alkaline-earths and the
noble metals. Transition metals of interest, like nickel,
for instance, require special treatment and will be
considered elsewhere. In this paper we choose to confine
our attention to one of the two remaining groups: the
noble metals. In the succeeding sections of this paper,
we will discuss the calculation and application of the
form factors for these metals.

seen by a d electron in the metal, —8V. In the Harrison
formulation, this extra potential appears in the hybrid-
ization parameter 6:

The quantity 6 together with an ordinary pseudo-
potential Wo are then the key ingredients which make
up the new effective pseudopotential 8'.'

The new pseudopotential equation may be written
quite generally as

P'+~) IC"&=~~ IC") (2)

(k+qlwlk) =s(q)(k+qlwlk),

where we have defined a structure factor,

(3)

where T is the kinetic energy operator, 4» is the pseudo-
wave function, and Ek is the exact eigenvalue for the
state k. The exact form of 8' is, of course, not unique. In
ordinary pseudopotentia. l theory one usually uses the
optimized form of Cohen and Heine' which is con-
structed to give the "smoothest" pseudo-wave function.
This is also the pseudopotential which is obtained by
approximating the Phillips-Kleinman form consistently
in perturbation theory. In the new method, Harrison has
uniquely specified 8' by simply generalizing the latter
procedure. The resulting plane wave ma, trix elements of
5' may be written

II. GENERALIZED PSEUDOPOTENTIAL METHOD
8(q)=—P e (4)

The essence of the generalized pseudopotential method
is to abandon the small core approximation for the
d-states. It is recognized that the atomic d states, Pe, are
not exact eigenstates of the crystal Hamiltonian and
that they form bands of nonzero width which hybridize
with the s-p conduction band. These facts are taken into
account by consistently retaining the extra, potentia, l

*Research supported by the National Science Foundation
through Grant Xo. GP-6775.' W. A. Harrison, Phys. Rev. 181, 1036 (1969).

I

and the form factor is given by

&k+ql ~ lk) =&k+q
I
~o lk&

' The nomenclature here differs slightly from that in Ref. 1.The
quantity we denote as Wo is what Harrison labels W and calls the
"transition metal pseudopotential. "Our effective pseudopotential
W includes this term plus Harrison's "hybridization term. "' M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
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where

(k+q I vive I k&

=(k+qlvlk&+ Q (k'+(klroelk) —E )
«X=C& 4

&&(k+ql e-&&0- Ik&+Z((k+ql &
I e.&(«lk&

+&k+ql«&(V. I Alk)). (6)

(We have set Itt=2ttt=e'/2=1 throughout. In these
atomic units distances are in Bohr radii and energies are
in Rydbergs. ) In Eqs. (5) and (6) lk+q) and lk) are
plane waves normalized in the atomic volume Qp. For
our purposes, both k and k+q are taken to have a
magnitude equal to the free-electron wave number kp.
The quantity v is the contribution to the total self-
consistent potential (V) arising from a single ion site
and is calculated entirely within the framework of the
theory. The p, and Pz are atomic core states and atomic
d states, respectively. The corresponding expectation
values of the crystal Hamiltonian, (@ I

T+V I&t.&, «e
E, and E&. To lowest order, Ez is just the position of the
d resonance in the metal. The sums in the above equa-
tions run over core states, t,", and d states, d, on a single
ion site. In the denominator of the last term in Eq. (3)
the zero of energy has been ta,ken such that El ——kp'.
We note finally that in the limit d, ~ 0 the form factor
(k+q I

w
I k) reduces to the Cohen-Heine optimized form

for simple metals.

III. CALCULATION OF SELF-CONSISTENT
POTENTIAL

Ke will now proceed to discuss the calculation of the
various components which make up the right-hand side
of Eq. (5). We begin with the self-consistent potential.
This calculation proceeds in the usual way. One first
calculates the total charge density in the metal in terms
of the potential by perturbation theory or some other
means. Self-consistency is achieved by using Poisson s
equation to eliminate the charge density in favor of the
potential and then solving the resulting equation for the
potential. In practice, of course, it is most convenient to
perform these manipulations in terms of Fourier trans-
forms. This also always permits us to separate out a
structure factor and to talk in terms of the potential and
the charge density associated with a single ion site.

We write the Fourier transform of the total electron
density associated with one ion site, eq, as a sum of four
terms:

In all our numerical work we take the &t&
's from the

Herman-Skillman tables for the free atom. 4 These were
calculated in the Hartree-Fock-Slater approximation.

The third term in Eq. (7) represents the remaining
electron density calculated in the Hartree approxima-
tion. This quantity may be divided into two parts:

I '=B +ttq q

The first term is the Fourier transform of the orthogo-
nalization hole density, tt'"(r), which may be written to
first order as

2Qp
&to~ (r) =—

(2&r)'
d'k ((r I

P
I k)(k I r)

The quantity n,'"(r) results from the orthogonalization
of the pseudo-wave-function to the core and d states to
obtain the true wa, ve function. In all our calculations the
orthogonalization hole is included exactly through Kq.
(10). In previous pseudopotential calculations, tto"(r)
has usually been approximated in one way or another.
We have found that such approximations usually
overestimate its effect and we believe that it is im-
portant to treat this term correctly.

The last term in Eq. (7) is the so-called screening
electron density which brings in the self-consistency of
the calculation. For the case of a completely full or
empty d band Harrison has computed eq- with a careful
use of perturbation theory. The result for a full d band
may be written

4 " (k+qlwe! k& 4

(2&r)' r&rz (&'—Ik+ql') (2&r)'

-
&k+qlAI~. )(~.l&lk&

—(k' —Ik+q I
') (k' —&&)

&«le *"l«&&kl«)&«IAlk) —&k+ql@d)(«IAIk&

(k' —Ed)

&e.lc "'led&&kl~l«&&«i~1k)
~ (12)

2 (t't' —Ed)'

+&r I k&&k! I' I r& —&r I
P

I k&&k I
r

I r)), (10)

where we have defined a projection operator,

—tt corc+tt &t+tt cond+tt c&r
q (7) For future convenience we rewrite Eq. (12) as follows.

We take out (k+qlvlk) from (k+qlwelk) and note
that it does not depend upon k. (This simplification
would not be allowed if we were to include exchange as
an operator, i.e., in the Hartree-Fock approximation. )

The core electron density eq"" and the d-state electron
density eq" are calculated directly from the wave
functions for the free ion or atom:

1
tt corcytt d — g Q Ie

—ia Iy )
Qp CX=C& d

(8) 'F. Herman and S. Skillman, Ato&&»c Struct&&re Catctttotto»s
(Prentice Hall, Englewood Cliffs, N. J., 1963).
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We can then do the corresponding integration over k an analytic expression for G(q):
immediately and obtain

gt2

e -=——(e(q) —1)v,+e,
Sx

where we have set v, =(k+qIeIk) and let ma~ equal
all the remaining terms in Eq. (12). The quantity
e(q) is just the familiar Hartree dielectric function.

The last term in. Eq. (5) represents the exchange hole
seen by a conduction electron in the metal. We divide
this quantity into two parts:

8 fk&~' 4 1( q
' q+2k~—2——

I

—
I

——+-I—
q 35( q ) 15 6(k& q

—2k~

q
'- 1 fq ' 2- q' —4k&'

I

———ln
kp 210&kg 15 q'

(18)

+ ex ~ ex-core, d~+ ex-coIId
i (14)

The first term represents the exchange hole due to the
core and d-state electron density. We do not actually
calculate this quantity directly, but instead we use the
free electron exchange approximation to calculate the
corresponding exchange potential. We obtain

3 —1/3

~'re-"' —2 (rle.)Q-Ir) (15)
Qp 8~ a=c, a

For this contribution we have used the Kohn-Sham
coefficient rather than the Slater coefficient. This seems
appropriate here since we are specifically interested in
the potential seen by an electron on the Fermi surface.
However, the choice is important due to the large ex-
change contribution from the d states. For q=2k~, the
difference between Slater and Kohn-Sham exchange is
approximately 0.1 Ry for the case of copper.

The second contribution to eq' comes from the
conduction electron density eq" d. This quantity we
calculate in the spirit of the Hubbard self-consistent
exchange approximation. ' ' We write

kkk~l4'tf&NP4g'lf" -' H~ ' W$ 4'+4 — ' ' ' - L.' ~ I,'Adkg . -".4'43=.. :n.:- I'is

ex-cond G(q)+ cond, (16)

Hubbard noted that at short wavelengths the exchange
contribution should cancel half of the direct interaction,
so that G(q) should go to 2 as q

—moo. He postulated the
very approximate form

Although algebraically complicated, the result is still
qualitatively similar to Eq. (17). For comparison, five
different G(q)'s are plotted in Fig. 1. Besides those of
Hubbard and Singwi et a/. , we include the forms used in
model potential calculations by Heine and Abarenkovs
and by Shaw and Pynn. ' In our calculations we use the
new expression, Eq. (18). Since conduction-electron
exchange does not make a large contribution to the
calculated form factor, it is probably not too important
which form of G(q) we actually choose.

To the electron density we must finally add the
nuclear density e~""', which is simply

ging
n llc—

atomic number

Qp

= (Z/0, +e -"+e ") (19)

8x
(+ el + nnc)

g2
(20)

Using Eqs. (7), (9), (13), (14), (16),and (19) in Eq. (20)

0.5—
SlNGWI ET AL.

where Z is the valence (which is 1 for the noble metals).
We are then ready to use Poisson's equation, which we
may take in the form

G(q) =-', q'/(q'+k p') . (17)
P,Q

In recent years various other approximate forms for
G(q) have been proposed. r ' All of these involve
interpolations between small and large values of q and
none of them are unlike Eq. (17).Quite recently, Singwi
et a/. ' have reformulated this problem and have found

U'

0.5

0.2

' J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1958).
W. A. Harrison, I'seudopoteetialsirl, the Theory of Metals (W. A.

Benjamin, Inc. , New York, 1966), Chap. 8.' I,. J. Sham, Proc. Roy. Soc. (London) A283, 33 ('1965).' V. Heine and I. Abarenkov, Phil. Mag. 9, 451 (1964l.
R. W. Shaw, Jr., and R. Pynn, g. Phys. C 2, 2071 (1969)."K. S, Singwi, M. P. Tose, R. H. Land, and A. Sjolander, Phys.

Rev. im', 589 (1'968).

O. I

RENKOV

q /kF

Fxo. 1. The function G(q) as used by various authors.
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and solving for vq leads to the result

Z/Q + (+ core + core)+ (+ d + d)
q'p*(q)

++ ex-core, d+(I G(q))(N oh++ B)$ (2$)

where we have defined a new dielectric function

p*(q) =p(q) —G(q)(p(q) —I). (22)

We have discussed all of the terms in Eq. (21) except
eq+. In order to calculate this term we first need to
evaluate the quantities (k

~
wp

~
k), Ed, and A. All of these

require special detailed consideration which we delay
until Sec. IV. We do note that in our calculations we
have chosen to ignore crystal-field splitting in the solid.
We use the average value of Ed for all d states instead of
the two crystal-field-split values which actually occur
for the fcc lattice structure of the noble metals. Although
the splitting itself may be rather large (0.05 Ry for
copper), its effect on the form factor is probably small.
The reason is as follows. In all terms where Ed appears

we sum over all d states. The extra contributions to the
sum from the levels lying above the average always tend
to be cancelled by the extra contributions from the
levels lying below the average. The net effect is a
tendency for the sum to refIect only the average position
of Ed.

The neglect of crystal-field splitting is not strictly
necessary, but it does simplify the details of the calcu-
lation. The approximation implies, for instance, that the
potential )) (and hence 6) will be spherically symmetric.
Furthermore, it allows us to consider the special case of
the liquid metal by changing only one number, the
atomic volume Qp. No additional approximations are
involved in computing eq~ and the full nonlocal char-
acter of all terms is included exactly.

IV. CALCULATION OF (k~wo~l)'. )—E,
GV) d) AND Eg

The term (k~ wp~ k& may be obtained by setting q=0
in Eq. (6). After a small amount of manipulation and
noting that (k~v~k&=(k~ V~k&, we obtain the result

& [w, [k&—E.=(k~V~k& E.
Z (LuPy& IVlk& —E.R&kly. &&y. lk&)+Z(&klAI4d&(ydlk&+& lyd&Qdlslk&)

(23)

CX=C) 0

We have thus reduced the calculation of (k
~
wp ~k) E

to a calculation of (k
~
V

~
k) —E and of A. We need only

compute the potential to lowest order in these terms
since they always appear in first-order quantities. To do
this we simply use the zero-order electron distribution
in the metal. This is the electron density from the
atomic core states, the atomic d states, and the ortho-
gonalization hole centered on each site, plus a uniform
electron density of magnitude

of the orthogonalization hole:

2(z*—z)-
V*=— d'r p'~(r)+

00
(25)

where n'~(r) is the exact potential due to the electron
density rP" (r).

(c) The average direct potential due to the remaining
charge density. This we may write as

Z*/Qp =Z/Qp—
002

d'r m (ro) (24)
1 Sx

Vcore, d — lim (I core+)p d ~ core ~ d l
q q 0 0 p

Q q~0 ~2

The quantity Z*—Z is the magnitude of the orthogo-
nalization hole. Strictly speaking, the orthogonalization
hole must be considered a first-order quantity, but it is
customary to include it with zero-order terms since its
effect can be significant. Using this charge distribution,
we can systematically write down the contributions to
(ki Vik& —E:

(a) The average potential seen by an electron in a
lattice of point ions of charge Z* and a compensating
uniform background. The calculation of this quantity is

easily done and is discussed in Harrison's book. '
(b) A correction t.o (a) resulting from the 6nite size

3Qp CL=C) 8
(26)

(d) The average exchange potential due to the zero-
order charge density, t/" . Here we use a free-electron-
exchange approximation with the Slater rather than the
Kohn-Sham coefficient. We have found that the Slater
exchange leads to a much more realistic value for the
position of the resonance, Eq. That calculation is dis-
cussed below. The probable reason that Slater exchange
works" better here is that in another contribution to
(k~ V~k& —E we use atomic term values E which have
been calculated in the Hartree-Fock-Slater approxima-
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TABLE I. Relevant parameters for the noble metals (in a.u.).

Element

CU
Cu
Ag
Ag
Au
Au

Phase

solid
liquid
solid
liquid
solid
liquid

0.5169
0.4782
0.4045
0.3717
0.4061
0.3774

0.7189
0.6915
0.6360
0.6097
0.6372
0.6143

Op

79.68
89.54

115.1
130.7
114.4
127.7

2.669
2.775
3.018
3.148
3.012
3.124

1.1937
1.1688
1.2345
1.2025
1.2971
1.2610

0.1877
0.1795
0.4293
0.4240
0.4519
0.4330

tion. .
I
See (e) below. ] Since the average exchange po-

tential in the free-electron approximation does not
depend linearly on the position of the ions, this potential
is only properly calculated by integrating the actual
charge density in the metal over one Wigner-Seitz cell.
In our calculations we have replaced the cell by a sphere
of equal volume and have neglected overlap from the
neighboring ions in computing the charge density in the
cell. The latter approximation was verified to be a good
one for the case of copper. It also removes any slight
dependence of the form factor on the position of the
ions.

(e) E, the atomic term value: We use the Hartree-
Fock-Slater values calculated by Herman and Skillman. 4

(f) (g I 8vlp &: The ca,lculation of this term is dis-
cussed below. The inherent constant in this term
exactly cancels the constant from contribution (a).

These contributions may be added to give the net
result

& I vl 1)—z.= —(18/5)z*/z .+v*+v-- "
yv-+IE. I+&q. lsvly. ), (27)

where Rws is the radius of the Wigner-Seitz cell.
Equation (27) may then be used directly in Eq. (23) to
calculate (k I

wp
I k& E. —

Next we consider the calculation of 5V. We recall that
bU is defined as the difference in potentia, l seen by an
electron in the free atom and an electron in the vicinity
of an ion site in the metal. Again we only need to
calculate this term using the zero-order charge distribu-
tion in the metal. We divide the contributions to 6V into
four parts:

(a) The direct potential from the valence s electron
in the atom, sq;, '(r), minus the direct potential from the
free electron gas in the metal.

(b) The direct potential from the orthogonalization
hole, p'"(r), on the site in question.

(c) The exchange potential seen by an electron in the
free atom minus the exchange potential seen by an
electron in the metal.

(d) The potential due to the charge distributions of
the neighboring ions in the metal.

We retain contributions (a) and (b) and calculate
them exactly by integrating Poisson's equation using
the appropriate charge densities. The spatial variation
of contribution (c) is assumed to be small (i.e., at least

first-order) and we approximate this term as a constant.
The quantity (d) gives rise to crystal-field splitting.
Since we have chosen to ignore this effect in our
calculations, we consider only a spherical average of this
term which then contributes just a constant to the
potential. The resulting 5U is simply

8V =sq;, '(r)+Z*r' /Rw-s' tt'"—(r)+const (.28)

The calculation of (Q I AVID ) and of 6 is now quite a
straightforward matter. We note the important fact
that any constant potential makes no contribution to
(k I

pep I k) —E nor to 6 and hence we need never
evaluate the constant in Eq. (28).

The value of E~ may now be inferred from the above
results. We note that we can write

E~=l ~'+—
& F l~plk~)+ I

E"I+&ed I ~vie~& (29)

If the zero of energy is chosen such that EI; ——kI,", then
we simply have for Ez

&~= —LIE"I+&~~ l &VI@~)+(k~l~plkr)7 (3o)

The values of Er Fq calculated —from Eq. (29) are
listed in Table I. The results for solid copper and silver
compare favorably with existing band structure calcula-
tions. " The situation for gold, however, is unclear
because of the scarcity of theoretical work on this metal.

7. FORM FACTORS AND THEIR APPLICATION

To finally compute the form factor, we simply need to
add the remaining terms in Eq. (5) to the self-consistent
potential, Eq. (21). Since these extra terms do not
introduce any new quantities, the problem has been
reduced to one of translating the existing formulas to
forms which may be readily evaluated numerically. For
the simple metals this procedure has been considered in
detail. ' For the noble metals the process is necessarily
more lengthy and involved, but it is sufficiently similar
that only a few brief comments are in order. We note
that two principal types of integrals appear in the
form factors. The first of these have forms like (k I @ ),
(kl&p ), and (Q Ie '~'I@ ). By symmetry these all
reduce to radial integrals of some or all of the following:
a spherical Bessel function, a simple power of r, a
tabulated radial wave function, and a previously calcu-

' For example, for Cu: B. Segall, Phys. Rev. 125, 109 (1962);
E. C. Snow, ibid. 171, 785 (1968);for Ag: S.Segall {unpublished)
and E. C. Snow, Phys. Rev. 172, 708 (1968).
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~e
+
V

O.l—

-O.l

-0.2

COPPER

I

2.0
(

q/kr

lated function of r such as e'"(r). These are easily
evaluated as a function of k and needed values may be
obtained by interpolation. The second principal type of
integral involves a triple integration of some combina-
tion of these latter quantities over k either inside or
outside the Fermi sphere. These integrals are the terms
in e~ appearing in Eq. (12).Those involving a factor of

t k' —(lt+q~'j in the denominator must be handled as
principal-value integrals. A simple but accurate Simpson-
like integration procedure is used to calculate these.
This involves replacing the integrand by its first deriva-
tive at the singularity. The integrations outside the
Fermi sphere are found to converge rapidly. This is
largely because the matrix element (k(5 ~&&) turns out

—0.3

-04

(
l

q/kF

—05—

FIG. 2. The computed form factor for copper in Ry at both solid
and liquid densities.

-O. l

-0.2

Q2—

+
& 0(

-0.3

-0.4—

q/kF
-0.5—

—O. l
FIG. 4. The computed form factor for gold in Rz at both solid

and liquid densities.

-0.2

—0.3

-0.4—

-0.5—

FIG. 3. The computed form factor for silver in Ry at both solid
and liquid densities.

to be a rather sharply peaked function of k around
k=k~. In all cases it was found that these integrations
need only be taken out to k=4k+ to obtain four-place
accuracy.

PoRTRAN Iv computer programs have been written to
perform the above intergrations and to calculate the
form factors as a function of q/k~ from 0 to 2 at both
liquid and solid densities. The results are plotted in
Figs. 2—4 for copper, silver, and gold, respectively. The
corresponding numerical values of the form factors are
listed in Table II. The density of the solid was inferred
from the room-temperature lattice constants, while the
density of the liquid metal was taken from experimental
measurements made at the temperature at which
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TABLE II. Form factors in Rydbergs for the noble metals at liquid and solid densities.

1369

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Cu
(solid)

—0.3319—0.3392—0.3578—0.3866—0.4158—0.4420—0.4566—0.4588—0.4459—0.4213—0.3878—0.3499—0.3105—0.2705—0.2299—0.1852—0.1337—0.0704
+0.0080

0.1061
0.2286

Cu
(liquid)

—0.3105—0.3167—0.3327—0.3574—0.3828—0.4059—0.4193—0.4217—0.4103—0.3874—0.3552—0.3178—0.2781—0.2379—0.1983—0.1573—0.1134—0.0631—0.0039
+0.0679

0.1557

Ag
(solid)

—0.2546—0.2595—0.2713—0.2903—0.3077—0.3228—0.3285—0.3260—0.3130—0.2927—0.2659—0.2349—0.2009—0.1651—0.1282—0.0896—0.0498—0.0076
+0.0376

0.0880
0.1463

Ag
(liquid)

—0.2385—0.2425—0.2525—0.2686—0.2840—0.2975—0.3035—0.3024—0.2919—0.2745—0.2507—0.2226—0.1914—0.1585—0.1247—0.0897—0.0542—0.0176
+0.0204

0.0612
0.1067

Au
(solid)

—0.2379—0.2437—0.2575—0.2810—0.3009—0.3198—0.3271—0.3264—0.3141—0.2948—0.2689—0.2385—0.2043—0.1681—0.1299—0.0887—0.0447
+0.0046

0.0605
0.1266
0.2070

Au
(liquid)

—0.2301—0.2351—0.2471—0.2669—0.2848—0.3016—0.3089—0.3088—0.2982—0.2807—0.2566—0.2279—0.1953—0.1608—0.1249—0.0868—0.0472—0.0044
+0.0422

0.0953
0.1580

structure factor data had also been recorded. The
corresponding atomic volumes are listed in Table I.

To test the usefulness of our form factors we have
made two simple calculations. The 6rst is a rolgk esti-
mate of the band gap at the I.point in the Brillouin zone
of the solid. In perturbation theory this band gap is
given by 2(—Gj2~zv~G/2), where G is a reciprocal
lattice vector equal to twice the I' to I. vector in the
Brillouin zone. The gap is roughly estimated by the
backscattering form factor (q = —2k= —2k~), the dif-
ference being that the FI. distance is about 10%greater
than kg. In Table III we give the estimated band gaps
for copper, silver, and gold. For comparison, we also
list experimental values inferred from optical measure-
ments as well as values taken directly from band
structure calculations.

The second calculation we have performed is of the
resistivity of the liquid metal. This calculation involves
an integration of the form factor squared times the
experimentally measured intensity function (the struc-
ture factor squared) over the Fermi sphere. The results

TABLE III. Band gap at the I point in Rydbergs. For the
present estimate the backscattering value of the form factor
(q= —2k= —2k') is used. The experimental values listed are
those inferred from optical measurements.

are listed in Table IV together with those of experiment.
We have found it important to use the liquid density
form factors and other liquid parameters in this calcula-
tion to obtain the best results. Use of the solid density
counterparts roughly doubles the calculated resistivity
for copper and silver.

A detailed comparison between our theoretical calcu-
lations and experiment is neither intended nor of par-
ticular significance here. In the case of the band gap, for
instance, we have not concerned ourselves with the
exact relationship between the number we calculate and
the quantities to which we compare it. The resistivity
calculation, on the other hand, suGers from the well-
known sensitivity of the answer to the details of the
form factor used. Although we have established the
importance of using liquid density parameters in such a
calculation, it is clear that comparable variations in the
form factor due to other sources (e.g. , the use of a
different conduction band-core exchange approximation)
could be equally as important. For this reason, close
agreement between theory and experiment, such as in
the case of liquid copper, must be viewed as fortuitous.

TABLE IV. Resistivity of the liquid metal in pQ cm.

Element 2(k+ q [ w
~
k)

0.46
0.29
0.41

Experimental

0.35.
0.28c
0.308

a G.P. Pells and M. Shiga, J. Phys. C2, 1835 (1969).
b B. Segall, Phys. Rev. 125, 109 (1962).
& From table in J. F. Cornwall, Phil. Mag. 6, 727 (1961).
~ B. Segall (unpublished).' R. L. Jacobs, J. Phys. C 1, 1296 (1968).

Band-
structure

calculations

0.44b
033
0 37e

Element Experimental'

CU

Ag
Au

21.5
18.1
32.0

Theoretical

21.6b

28.2b

~52 ic

Temperature
('C}

1125
1050
1120

a From table in N. E. Cusack, Rept. Progr. Phys. 26, 361 (1963).
b Structure factor data taken from C. N. J.Wagner, H. Ocken, and M. L.

Joshi, Z. Naturforsch. 20A, 325 (1965).
c No tabulated structure factor data on gold are available in the literature.

From the plotted x-ray data of H. Hendus LZ. Naturforsch. 2A, 505 (1947)g
and O. Pfannenschmid t ibid. 15A, 603 (1960)g, however, we were able to
infer that the intensity function (structure factor squared) for gold is about
the same as that for silver and we have used the latter in this calculation.
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Nonetheless, the over-all qualitative picture suggests
that there is no particular mystery in understanding the
properties we calculate in terms of the theory we use.
We are, therefore, generally encouraged by the results
of these calculations. We hope that our form factors will

prove useful in future studies on the noble metals. With
the computed form factors it may now be possible to do
systematic quantitative calculations of the electronic

properties of these metals just as has been done for the
simple metals.
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It is shown that an approximation for the e-body ionic correlation permits the generalization of nearly
free-electron formulas for some of the electronic properties of liquid metals. The electrical resistivity is
considered in detail and it is shown that a result identical in form to that due to Ziman can be obtained,
but in terms of an effective potential involving both the electron-ion potential and the static structure
factor. Some further assumptions are necessary for this effective potential to be approximately evaluated.
The numerical work strongly indicates that the effective potential differs little from the commonly used
pseudopotentials. Finally, generalized expressions are obtained for the electrical resistivity and Knight
shift for liquid metal alloys.

p= —Q2

12Ze'e A'm'
q dq S(q) l&klvlk+q& I'

where e, is the number density of electrons, Z is the
nominal valence, k~ is the Fermi wavevector, and 0 is
the total volume of the system. In (I) it is understood
that

lkl = lkyql =kg (2)

I. INTRODUCTION

'HIS work is concerned with an extension of the
nearly free-electron model for the electronic

properties of liquid metals. The specific property we

discuss is the electrical resistivity, p. The well-known
Ziman formula for p is the lowest-order result and yields'

N

p
—Q e Cq ~Ri-

d=1
(6)

where R; gives the instantaneous position of the ith ion.
In (5) the brackets denote an ensemble average over
ionic configurations. The liquid structure factor $(q) is
readily obtained from either x-ray or neutron-diffraction
experiments or may be sufficiently well represented by
the hard-core structure factor for a suitable choice of
parameters. '

The derivation of (I) may be made clear if we rewrite
the result as

screened ion. S(q) represents the liquid structure factor
and is defined by

s(q) = &/cv«p, p,»
with

p= rn/n, e'r, (7)n,/Z= n; = density of ions =S/Q.

The potential matrix element is defined by 2' 1
l v(k —k') pR R.

l

'
(4) r t't 0 (2sr)'Q(klvlk')=v(k —k')= dre " R')'v(r),

X(l —ccc8 „)3(e —e ))), (t!)

E), = tt'k "/21,
where v is a pseudopotential describing the interaction where
between an electron and a single self-consistently

~ YVork supported by the National Science Foundation under
Grant No. GP-9402.

f' National Science Foundation Predoctoral Fellow.
~ J. M. Ziman, Phil. Mag. 6, 1013 (I961).

and
Et = t't'ke'/2nt.

2 N. K. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).


