
P H YSI CAL R EVI EW B VOLUME 1, NUMBER 4 15 FEBRUARY 1920

Crystalline Stability and Order in One and Two Dimensions
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It is shown that no quantum system of particles, regardless of their interactions, can form a stable solid
in one or two dimensions, if both the temperature and the compressibility are diferent from zero. By stable
solid we mean that (u') be finite. It is also proven that a neutral system of electrons and nuclei cannot exhibit
crystalline order, of the usual kind, in one or two dimensions. This last proof is based on Bogolyubov s
inequality.

I. INTRODUCTION

T was proven long ago, by Peierls, ' that a two-
' - dimensional system of particles connected by linear
springs will not form a solid. Landau' obtained the same
result usjng phenomenological arguments. More re-

cently, Mermin' has been able to prove from first
principles that a system of particles interacting through
a two-body potential g(r) satisfying the conditions

@(r)~ 1/re+' as r ~~,
@(r)—& ~A~/r'+' as r~o

will not form a solid.
Two outstanding examples of systems covered by the

proofs from first principles are the system of hard cores,
and the system of particles interacting through the
Coulomb potential. The computer experiments of
Alder and tA'ainright4 performed on a two-dimensional

system of hard cores indicate a change of phase, from
a fluid to a crystalline state.

The case of the Coulomb potential is of great interest
because it is the source of all pertinent nonrelativistic
forces in macroscopic physics. It has been studied in the
realm of models, and it has been predicted that a system
of nuclei and electrons can undergo a liquid-solid phase
transition in one dimension. '

%e shall discuss now three different criteria that may
be used to diagnose the existence of the solid phase
before we describe the contents of this paper. These
well-k. nown criteria are:

(a) The stability condition is

(u;s)( ~,
where u; is the displacement of the ith particle from its
equilibrium position, and the brackets denote thermal
averages. To speak about (u, s) requires distinguish-

ability of particles. One of the objections that one can
raise against this condition is that even in a system
which one knows to be in a solid phase, (u,') may be

' R. K. Peierls, Helv. Phys. Acta Suppl. '7, 81 (1936);Ann. Inst.
Henri Poincare 5, 177 (1935).

' L. D. Landau, Phys. Z. Soviet 11, 26 (1937); Collected Papers
of Landau (Pergamon Press, Ltd. , London, 1967), p. 193.

~ N. D. Mermin, Phys. Rev. 1'76, 250 (1968).
4 B.J.Alder and R. K. Wainwright, Phys. Rev. 12'7, 359 (1962).' G. Carmi, Phys. Rev. 176, 521 (1968).
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in6nite, meaning only that particles diffuse. But one
can have a solid with diGusion. One way to avoid this
criticism, simultaneously making the particles distin-
guishable, is to join the particles in the system by ex-
tremely weak springs, which would now act in addition
to the previously existing intermolecular forces. If one
still cannot satisfy Eq. (1), one does not have a stable
solid. This criterion was used by Peierls' and Landau. '

(b) A less stringent view of crystalline order is one in
which p(r), the particle density as a function of posi-
tion, has the periodicity of some lattice. Then if G is a
reciprocal-lattice vector,

(po)
lim ~0,
N~~

where S is the total number of particles and

po = p(r)e
—'o'dr

is associated with crystall'ine order.
The criterion given here was used by Landau' and

Mermin. 3 It is necessary for the existence of Bragg peaks
in x-ray' or neutron scattering~ by the system under
consideration.

In Appendix A, the connection between the criteria
(a) and (b) is discussed. It is shown that Eq. (1) implies
Eq. (2), although the converse is not true

(c) We give the last example of a condition that one
may impose on a system to be accepted as a solid. That
is, that the zero-frequency shear modules of elasticity not
be zero. This imposes a condition on the shear-stress—
shear-stress time-dependent correlation function.

As Frenkel' stressed, the high-frequency shear modu-
lus is not qualitatively different in fluids and solids. In
the infinite-frequency limit, the shear and bulk moduli,
in fact, obey the Cauchy relation. ' " It makes sense,

' C. Kittel, Introduction to Solid State Physics (John Wiley &
Sons, New York, 1966), 3rd ed. , p. 63.

L. Van Hove, Phys. Rev. 95, 249 (1954).
8 M. S. Green, J. Chem. Phys. 14, 180 (1946); H. Mori, Progr.

Theoret. Phys. (Kyoto) 28, 273 (1962); J. M. Luttinger, Phys.
Rev. 135, 1505 (1964).

9 J.Frenkel, EineHc Theory of Ji guids (Dover Publications, Inc. ,
New York, 1955), 1st ed. , p. 188.

'o J. F. Fernandez, Phys. Letters 2'7A, 263 (1968)."R. Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
(1965).
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though, to associate a nonvanishing zero-frequency
shear modulus with a solid, and a vanishing one with a
Quid. This creterion goes along with Alder's" idea of
the solid-Quid transition. We will only use criteria (a)
and (b).

In Sec. II we give an argument, from erst principles,
to show that no system, regardless of the interaction
potential, can satisfy Eq. (1) in one or two dimensions
if the compressibility is not zero at T/0. This argument
is valid for a system of hard cores, particles interacting
through the Coulomb or any other potential. In Sec.
III we prove that a neutral system of nuclei and elec-
trons interacting through the Coulomb potential cannot
satisfy Eq. (2) in one or two dimensions at T&0. In
Sec. IV we discuss the results.

fk ——P e—"&x' x&'{(COSk (u;—u;))

—1+-,'([k (u;—u, ))')—i((sin[k (u, —u,.)j)

k
lim lim —=0.
k~0 N~rro g (6)

We are then left with

We now divide Eq. (5) by X, take the limit &~m, and
finally, let k ~ 0. Since (u;s)(ao, by hypothesis, it is
reasonable to assume that

II. INSTABILITY OF SOLIDS IN
TWO DIMENSIONS

In this section we treat a quantum system of dis-
tinguishable particles. It will be shown that Eq. (1)
is riot satisfied in two dimensions. The argument given
here is not rigourous in one regard, namely the, limit
interchange shown in Eq. (6).Our procedure is to assume
(ii, ) &~ and arrive at a contradiction. For simplicity
we treat the case of one particle per primitive cell.

The definition of-

p. = p(r)e-" dr

(Pk+Pk)
lim lim — =lim lim (k. Qkk Qk).
k 0 N co g k 0 N~oo

Using a well-known relation, the left-hand side of the
previous expression may be replaced by

(X/0)XrEr)T,

where 0 is the volume of the system, X& is the isothermal
compressibility, E~ is Boltzmann's constant, and T is
the temperature. With Eq. (6) we obtain

E
lim lim (k Qk+k Qk) = xrEeT. —
k~0 N~cr) 0/

p(r) =Z ~(r ri)
(3)

From the definition of Qk it follows that

allows us to write

( + ) —P (e
—ik (xi—xi)e—ik ~ (uq —uj))

cosn = 1——,'n'+ (cosn —1+—', n'),

we obtain

sinn =n+ (sinn n), —

where X; is the position vector of the ith lattice site,
and u; is the displacement of the ith particle away from
the site.

If we substitute into Eq. (4) the expression

e—'k't"' "i) =cos[k (u, —u, )j—isin[k (u,"u;)]
and

(ti )&
(2s)'

X+Xgg T
dk.

This equation imphes that if T~O and Xz/0, then
(N,2)) n). It contradicts our hypothesis. X&——0 implies
that the particles are jammed against each other, so it is
geometrically impossible for (n,') to go to infinity. At
'1=0 the entropy plays no role, so again it is not sur-
prising to find (n; ) not infinite. Equations (7) and (8)
also imply, of course, that

In the thermodynamic limit 0 —+Do, &~co, g/g
=const, Eq. (7) and (8) imply that

+N(k. Qk+k. Qk)+ fk, (5)

where G is a reciprocal-lattice vector,

Q Q—1/2 Q u, e
—ik X~

» B.J. Alder, W. R. Gardner, J. K. HoBer, N. E. Phillips, and
D. A. Young, Phys. Rev. Letters 21, 732 (1968).

lim ((u;—u;)') = ~ if T~0 X~0
[z—j/ —&oo

If each particle is not "permanently bound" to its
nearest neighbor, (I') = ~ may simply imply diffusion.
If, however, in addition to the given intermolecular
potential, one connects the nearest-neighbor particles
by extremely weak springs, and (u') = n) persists, then
it must imply only mdaite Quctuations m the absence of
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diGusion. The Hamiltonian of the system plays no role
at all in the derivation of Eq. (9). It follows, then, that
this equation is still valid whether we join particles by
springs or not. So &242) = ~ persists, after we join par-
ticles by springs to prevent diGusion. For a discussion of
the relation between &I') = cc and Eq. (2) see Appendix
A.

%e point out that the results of this section are in-
dependent of the interaction potential. It is also worth
noticing that the results are useless for a system of
charged particles in an oppositely charged static back-
ground, since the compressibility is zero in this case.

III. NUCLEI AND ELECTRONS

Here we treat a system of electrons and nuclei inter-
acting through the Coulomb potential in one and two
dimensions. The system is treated quantum mechani-
cally. (Classically, such systems are unstable and
collapse. ) It is proven in this section that Eq. (2), the
condition for crystalline order, it not satisfied by such
system. "The proof fails for a system of charged par-
ticles in static charge background. The proof given here
is based on the Bogolyubov" "inequality.

The system is placed in a "soft box, " i.e., in the one-
dimensional case every particle is subjected to the ex-
ternal potential

H =fI&1'14 g L
—x;(I(—x,)+(x,—L.)0(x;—L,)),

are used for electrons and Greek. ones for nuclei. C is
the kth Fourier component of the mass current density
of the electrons plus nuclei. A is the G —k Fourier
component of the nuclear number density. (In Sec. IV
the physical idea motivating the choices of C and 3 is
discussed. )

Let the wave vector k take the values k, =22r22 /I.„
k„=27m„/L„, where 22, and 22„are integers. The func-
tions e'~' do not make up a complete set for the soft
box, although they do form a complete set in the re-
stricted region where the external field is zero. However,
in the thermodynamic limit, the set e'~' with out choice
of k's, goes into a complete set.

The various terms in Bogolyubov's inequality must
now be computed. The term on the right-hand si.de is

I &EC,~])I'=L(k —6) k]2l &p I' (13)

We wish to show that no crystalline order exists by
showing that &&PG) =0, where &&PG) =lim»l~„1V '&pg), for
GNO. At TWO, &&PG)=0 in any number of dimensions
if LP,H]=0, where P is the total momentum. In order
to enable the system to condense into a crystalline state
if periodic boundary conditions are used, one adds a
term to the Hamiltonian which breaks the system's
translational symmetry. (See Wagner, " for example. )
However, this procedure is not necessary in our case
since the walls break the translational symmetry of the
Hamiltonian. We now compute the term ($C,H],C+] in
inequality (10). First we obtain

where g(x) is the step function, x is the particle position,

f is a finite quantity, and 1V is the number of nuclei. In
the thermodynamic limit, X ~et&, 0 ~ce, E/fI 6nite,
we get impenetrable walls. (The external potential in
the two-dimensional case is the obvious generalization
of this. )

To start with, we invoke Bogolyubov's inequality

2&L~ ~+]+)&IIX»]C+D&&eTI &Ã,~])I2 (1o)

and choose

C=JR=+(k p;+-', k2)e '""'

&[p R,H],IR+])=4X[Z/222+1/M]k'+6p(tr) Ã&KE)k4

+Q (k v'„k v'„H)e'R'&Rc —R &

+Q ((k v;k v'H)e'2'i" —'»

+2 Q ((k v;k v„H)e'"'&"—R~&

„)0(1)
+f»"'I in dimensions, (14)

(0(+1/2)

where $&KE) is the total kinetic energy of the system,+~( ' "+2 ') ' ""
.
(1 ) pis given by

g —
pG

N —Q e—riG—k& R„ (12)
p (tr) —

(g&KE elect) ((k .p,)2)/$2(p .2)&KEnuc1)

&&&(k P )2)/&&, 2&P 2))&KE)—l

Here the brackets denote thermal averages; y; and ri
are the momentum and position, respectively, of the
ith electron; P„and R„are the momentum and position
of the vth nucleus. To avoid confusion, Latin indices

'3 The results of this section were reported at the Twenty-First
Yeshiva University Statistical Mechanics Meeting, March 31,
1969 (unpublished).

'4
¹ ¹ Bogolyubov, Physik Abhandl Sowjetunion 6, 1 (1962);

0, 113 (1962); 6, 229 (1962).
~5 N. D. Mermin and H. Wagner, Phys. Rev. Letters I/, 1133

(1966).

where n is the angle between k and 6, and the last term
in the equation is due to the contribution of the soft
walls to B.The explicit form of II is

p.2 P2
yl p/ U @E+1 pl D.

i 2m v 2~ ij vp,

Q U;Pe+H„, (15)

tc H. Wagner, Z. Physik 195, 273 (1966).
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sense that

= —22M2
I
r I, in 1 dimension

= —2e' ln I r I, in 2 dimensions. (16)

Substituting this Hamiltonian into Eq. (14) gives

NA(k)k'= 'E-[Z/m+1/M]k4+6//(a)E(KE)k'

(Oq
[1—2 sin'(0 —n))l Ir-'

(p~(r)p~(R+r))dR dr

is finite, where AQ~ and 602 are any two 6nite domains
of integration for r and R. It then follows that D is
Gnite.

In one dimension, it follows from Eqs. (20) and (17),
and the assumption that the kinetic energy per particle
is finite, that there exists a k'&0 such that

g(r) =— &g(R)II(R+r)) ——Z(Z+1)b(r) dR, (18)

y[1—cos(k r))g(r)dr

/
0(1) (1

+fpl/4I in
I

dimensions, (17)
&OP'/2) k2

where

k/2TG2 ' dlkl» l&~-)I'
6(KE) 2 k'

and therefore, that Eq. (2) is not satisfied.
The two-dimensional case is not as simple. It is shown

in Appendix 3, where we take care of A(k), that there
exists a k&QO and a finite quantity b such that inequality
(20) implies

and /t(R) is the charge density at R, i.e.,

q(R) =Zep~(R) —epe(R) . (19)

keTG2
»IQ )I' ~

—her /2 (24)

p/r(R) and p (R) are, respectively, the nuclear and elec-
tronic number density at R, Ze is the nuclear charge;
Eh(k)k'=&. [[J2,H),J2+]), and 8 is the angle between
r and G.

Using the definition of h.. Eqs. (11)—(13), Eq. (10)
may be cast into the following form:

I&po)l'[(k —G) k)'
&p op2"po 2—~)&&eT

g E2 A(k)k4

Multiplying both sides of the above inequality by
e—"~'~2, summing over all the allowed values of k, and
taking the thermodynamic limit results in

D = S(G—k)e—r'""2dk (21)

1
5(G—k) = lim —

&p .op2+po &,+) .
N-moo

To conclude the proof, we have to show that D is
finite and. how A(k) depends on k. It follows from the
definition of D that

L(k —G) k)2
D&keTI &i/to) I' dk e& ""'"& (20)

A(k) k'
where

wlllch again shows that Eq. (2) is not satisfied in two
dimensions.

IV. DISCUSSIOÃ

We will first indicate the physical ideas that motivate
the choice of C and 3 in Bogolyubov's inequality. One
wants to have [C,A) po/cV on the right-hand side
of the inequality, since this is the operator whose expec-
tation value we want to show vanishes. Now
[J&,~,po &,~]-pa~ and [Jo /, ~,p,~]-po~. One has to
decide which one of these, J or p, is to be identified with
C, and which one with A. [[p,H],p+] is independent
of the spatial part of H, and nowhere else in Bogolyu-
bov's inequality do the properties of H enter. Therefore,
if the proof would go through with this choice of C it
would imply no crystalline ordering even in the presence
of an external field having the periodicity of the lattice.
Therefore, the proof cannot go through with such a
choice. One should then choose C to be the current and
A the density. That is not enough for the proof to go.
We are dealing with two speciew of charged particles,
nuclei and electrons. Each of these species has approxi-
mately two modes, the plasma mode and the sound
mode. The plasma is mode undesirable for the proof to
go through for the reasons that follow. We note first that

2x. j
D = —lim — dR dr &pN(R) p~(R+r))

~2 N~eo g
e r'8 re r2/2r2 (2—2)—

We assume that the system is nonpathological, in the

t=o

-&[A(/), A (0)»
Bt

(uf((a)dc&

=([[A,H),A+]).
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Furthermore,
Bpg

Jg~(t) =3fi—

and, from the f sum rule'r

~x»(k, cg) Ckv =tVk'/lE,

where

g»(lr ~) = (Lp~~(t) p~ v+(0)]&e'"'dt,

it follows that

o)'X»(k, (o)do)

harmonic solid yields an equation like (26), but one
knows that Eq. (A2) is valid in this case and therefore
Eq. (25) holds for this particular system.

With some modifications, the proof of Sec. III can be
extended to partially 6nite geometries. "The extension
of Sec. II to partially 6nite geometries follows the work
of Krueger" in a trivial way.

Although the results of Sec. II are useless for a system
of electrons in a positive background in one dimension,
it follows from the results of Sec. III, i.e., that there
can be no crystalline order for this system, and Ap-
pendix A, that this system is unstable, i.e., it does not
satisfy Eq. (1).No such statement can be made about
the two-dimensional system.
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in two dimensions, which for systems such as a har-
monic solid, where Eq. (A2) is valid, implies that

( (p,)~/N(N "x~'"r. -
(25)

On the other hand, the proof of Sec. III implies that

i("&i/~((i-~)- t (26)

in two dimensions for a system of E nuclei and ZE
electrons. It follows that either Eq. (A2) is not a good
approximation in this case, or Bogolyubov's inequality
provides a poor bound. The latter is probably the case,
since the application of the Bogolyubov inequality to a

"P. Nozieres and D. Pines, Nuovo Cimento 9, 4 (1958).

for small k.
This last expression is proportional to ([$C,H$, C+]& if

we choose C=J~~, and the k dependence will ruin the
proof. On the other hand, if only sound waves were
present the previous expression would go as k4 for small
k, which is the desired k dependence. The way to cir-
cumvent the plasma mode is to choose C equal to the
total mass current density, i.e., electronic plus nuclear,
as in Eq. (11). The local center of mass of the two
charged species does not feel the plasma motion; in the
plasma mode the two charge species move 180' out of
phase as in an optical mode in a solid. This is the reason
why the choice of C made in Eq. (11)yields ([LC,H$, C+])

Sk4.
The previous discussion makes clear why the proof

of Sec. III does not go through for a system of electrons
in a static positive background, in two dimensions.

If one tries to prove lack of crystalline order for a,

system of hard cores in a fashion similar to that of Sec.
III, one gets A.= ~.The inequality seems useless in this
case.

The stability proof of Sec. II implies that for large 1V,

(I;2)&kiiTXr inÃ

APPENDIX A

We discuss here the connections between Eqs. (1)
and (2), i.e., the relations between the stability condi-
tion for a solid, (I,')(m, and the crystalline-order
condition

I( o)l
lim — ~p.
N~~ g

It follows from the de6nitions of pG and 6 that.

(p-)/A =('"'&.
For a harmonic solid"

(A1)

(po)/Q —e—( (G.u~i ) /2 (A2)

and the connection is then very clear. Unfortunately,
no similar equation can be written in general. Glauber2'
proved Eq. (A2) in "general, "but under the assumption
of independent linear fields which has only been justified
for the harmonic solid. For a reflection invariant system
Eq. (A1) may be written as follows:

(po)/X=(cos(G u,))= cos(G u, )P(u,)du;, (A3)

where P(u, ) is the probability that the ith pa, rticle is
at a point. u away from its lattice position

It follows from Eq. (A3) that if P(u) is a reasonable
function of u then (mp&(~ implies Eq. (2) but the
converse does not follow necessarily. In fact, an example
can be given in which Eq. (2) is satisfied but Fq. (1)
is not. A system under the influence of an external po
tential such as cpo+cpg will satisfy Eq. (2) in any

J. F. Fernandez {to be published).' D. A. Krueger, Phys. Rev. Letters 19, 563 (]96&)."D.Pines, Elensentary Excitations in Solids (W. A. Benjamin,Inc. New York 1963) pp 40—44
2' R. Glauber, Phys. Rev. QS, 1692 (1955).
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~
.

h pwn ln Sec II +a~)er of dimensions,
d' jpns even in the

Presslbility rem
s not true.Eq. ( i. '1 b« the converse ls

APPENDIX B

a2) is strengthened if we
.
f ~&o that the ineq&a i y

replace A(k) by

4 x'

~(k)d & g(k) d& ~

3

271

g'(k) =—

Therefol e,

2p(k —G) 'k] i,~gGgdo'.

g'(k)
(a3)0endlx that there exist ah wn ln this aPPen lx a

Gnite uantity 6 suc

dk —"""[(k—G) k]' Iixl dfP fe k—
4k 0A(k)

o from inequality 20 to in-which enables o e o go
(24). Consider the integraequality

A(k)

deG

4 1
3KE +lim lim ——1

lim A'(k) =8 ——+—+

31 we now have torive at inequality
'k f ilkhe behavior of A.

E . (17) rinition of A'(k), and q.

dn L(k —G) k]'/A. (k),
0

d as the angle between kk and G.where n has been define as e a
~k'j)0 it follows thatSince A~

X e ~'~gl —2 sin2(0 —Q.)]
X)1—cosk r] g(r)dn d8 r dr

Also,

L(k —G) k]'
dc'

x(k)

L(k —G) k]'
6k'

X(k)

l theprem22 in two imimensionswith the help of viria ep

2pQ/sV =2(KE)+—,
' g(r) dr,

3L(k-G) k]'&-,-'O'G' for —&n(7r w h been defined in Eq. 18 we getwhere g(r has een

It follows, then, thathat

L(k —G) .k]'

0 h.(k)

)
. f(*)

dS

., v())

the fact that, in general,It follows from t e ac

k'G'

2A(k)
(a2)

0
limb. '(k) =8 p—+2(KE)
k~0

Inequality (a )

33) J. de Boer, Physica
154 410 (1967)

. Ph s. 1, 687 {19
15, 843 (1949) P. X. Argyres, Phys. ev.

the ressure aure and kinetic energy per
nite then there exls s a

b and a k~/0 such that A

1 follows.


