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Theoretical calculations are presented of the temperature dependence of the electron-phonon mass en-
hancement for 16 nontransition metals. The results are in good agreement with low-temperature measure-
ments on zinc as reported by Sabo in the preceding paper. A pseudopotential model of the electron-phonon
coupling was used, with a modified form of the single-orthogonalized-plane-wave approximation. These
calculations agree well with calculations based on data obtained from superconducting tunneling experiments.

I. INTRODUCTION

ECENTLY, Grimvall! pointed out that the
electron-mass renormalization arising from elec-
tron-phonon interactions has an interesting temperature
dependence which could in principle be observed in
low-temperature experiments such as cyclotron reso-
nance and the de Haas—van Alphen effect. In the
preceding paper,? Sabo has reported the observation of
temperature shifts of the cyclotron-resonance frequency
in zinc for several orbits. In this paper, we present
calculations of temperature dependence of the mass
enhancement which agree well in magnitude with the
effects observed in zinc.

In Sec. II, the theory of the temperature dependence
mass enhancement is reviewed and formulated in terms
of the function F which is in principle experimentally
accessible through superconducting tunneling. In Sec.
III, model calculations and pseudopotential calculations
of the temperature shift of the mass enhancement in
nontransition metals are presented and discussed. It is
shown that failures of the one-orthogonalized-plane-
wave (OPW) model near zone boundaries give a severe
distortion of the temperature shift, although they do
not significantly alter the zero-temperature mass en-
hancement. A simple phenomenological alteration of
the OPW model is proposed to overcome this difficulty.
This modified one OPW method is then used to calcu-
late the temperature shift of the electron-phonon mass
enhancement for 16 nontransition metals.

II. THEORY

In cyclotron-resonance experiments, an electron mass
m.(Ox) characteristic of an orbit Ox in k space is
measured. In the absence of electron-electron and
electron-phonon interactions, the mass can be expressed
in terms of the band structure e,

7 dl
me(O) = — f e,
2w J oy fix- Viex

where 7x 1s a unit vector at k normal to the orbit in the

¢y

* Supported by the National Science Foundation.
1 G. Grimvall, J. Phys. Chem. Solids 29, 1221 (1968).
2 J. J. Sabo, Jr., preceding paper, Phys. Rev. B 1, 1325 (1969).
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plane of the orbit, d/ is an element of path length in k
space, and the integral is evaluated around the orbit
Ox on the Fermi surface. The presence of coulomb
interactions between electrons modifies the energy
spectrum e of single-particle excitations. Although
these effects are not amenable to exact calculations,
recent theoretical estimates by Rice® indicate that
coulomb shifts in € are small and nearly constant near
the Fermi surface, yielding a mass change of the order
of 59 or less. We, therefore, assume that Coulomb
effects are negligible.

The presence of electron-phonon interactions also
modifies the energy spectrum. In this case, the wave-
vector- and frequency-dependent self energy =(k,w)
can be accurately calculated. The modified spectrum
Ey is then given by

Ex=e+2(k,Ey), (2)

and this shift is known to yield important changes in
the measured electron mass. The renormalized cyclo-
tron mass is

72 dl
m:*(Ox) = ; ik -___'ﬁk- —— , 3)
me* (Ox) =14+ (Ox) Jm.(Ox). 4)

Equation (4) defines X (Ox), the renormalization charac-
teristic of the orbit Oy. Combining Egs. (1)-(3),
we find

Adl / di
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where A\ is defined as
92 (kw)
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We have assumed that the k dependence of 2 is negli-
gible, and taken the zero of energy to be the Fermi
energy. The physical significance of A\ is that it measures
the renormalization of the mass of the specific electronic
state k. For those parts of the Fermi surface where
limiting-point cyclotron resonance is observable, Ag is

3T, M. Rice, Phys. Rev. 175, 858 (1968).
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the appropriate renormalization. In typical experiments
such as ordinary Azbel-Kaner resonance or measure-
ments of the temperature dependence of de Haas-van
Alphen signals, the measured renormalization \¢ is
averaged over an orbit. When \i is averaged over the
entire Fermi surface, the result, denoted as A, gives the
renormalization of the specific heat coefficient* v and
the coupling parameter in the McMillan equation® for
the superconducting transition temperature.5—3

The electron-phonon self-energy = can be written as

3 (k) = [ 4o’ 5| Moo |2B(q0")
0 k!
1N/~
x { +

w—FEy—o'

fI+NI
w—Fy+w’

Lo

where f' and N’ are, respectively, the Fermi function
at energy Ex and the Bose function at energy «’. The
term My.i” is the matrix element for an electron in a
state k to scatter to a state k’ by emitting a phonon of
mode (—gq,») or absorbing a phonon of mode (q,»),
where q is the momentum transfer k’—k reduced to the
first Brillouin zone and » is the mode index which is
suppressed in our equations. The factor B(q,w) is the
phonon-spectral weight function, which is strongly
peaked at w equal to the frequency wg of the (q,w)
phonon. If B(q,w) is approximated by the Dirac é
function é(w—wy), Eq. (7) reduces to an expression
given by many authors.!°

Because we are interested in = for states (k,w) near
the Fermi surface and because the denominators in
(7) strongly weight values of Eyx nearly equal to w
which is at the Fermi surface, the_k’ sum in (10) can
be approximated as follows:

N(0)

(
2 Ak~ ——
2

Kk’

dBx(Axw) s ®

—o0

where N(0) is the density of electronic states (un-
renormalized) at the Fermi surface and the brackets
( ) denote averaging of the intermediate state k’ over
the Fermi surface (FS).

dSw dSw\™!
-——Ak,k( / —-) ) ©
FS Uk’ FS Uk’

and vy is the magnitude of the velocity of the state k'

(Axw)=

4This is strictly true only at 7=0. At finite temperatures, the
temperature dependence of the specific-heat renormalization
?{iﬁ;ers from that of the mass renormalization. See Grimvall,

ef. 1.

5 W. L. McMillan, Phys. Rev. 167, 331 (1968).

6 P. B. Allen, M. L. Cohen, L. M. Falicov, and R. V. Kasowski,
Phys. Rev. Letters 21, 1794 (1968).
(1;6PQ')B- Allen and M. L. Cohen, Solid State Commun. 7, 677

8 P. B. Allen and M. L. Cohen, Phys. Rev. 187, 525 (1969).

9 J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,
Inc., New York, 1964), pp. 196-200.
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We then have

z (k,w) = f dw’/dEkfak2 (w’)Fk (w’)

1 +N/ — fl f/_l__NI
x{ } (10)
w—Epy—o w—Ey+to
The function ai?Fy is defined as!®
(@) Fi(0)=3N (0){| M1 2B (qu)).  (11)

We also define a function o?F:
a(@)F(0)=3N 0){{| Mx-r [*B(qw))),  (12)

where the double brackets {{ )) denote averaging both
the initial state k and the intermediate state k' over
the Fermi surface in the manner of Eq. (9). The latter
function o?F is well known from studies of superconduc-
tivity,"* and can in fact be extracted from superconduct-
ing tunneling data for superconductors where the
coupling is strong enough that phonon structure can
be observed.!?

The integrals in (10) are to be evaluated as principal
parts. Only terms which contain a Fermi function f’
survive the £’ integration. We can then rewrite (10) as

E(k,w)=——f dw’/ dEa? (o)
0 —c0

7

2w
XFk (w’);;—:—’;f(E—}—w) . (13)

Finally, using (6), we get

Me(T) =2 / ’ deG<i;> O aw

w

where G(w/T) is a temperature-dependent function
first discussed by Grimwall,!

w © Af(E) o
G<—~> - [ i
T —w OF F?—uw?
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The function G depends only on the variable
a=hw/2kpT and has the limiting values
G(w/T)=14+@%¥/3) (k5T /hw)?, i ho>kpT (16a)
7¢(3) < fiew

2
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1D, J. Scalapino, in Superconductivity, edited by R. D. Parks
(Marcel Dekker, Inc., New York, 1969).

uD. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, Phys.
Rev. 148, 263 (1966).

2W. L. McMillan and J. M. Rowell, in Superconductivity,
edited by R. D. Parks (Marcel Dekker, Inc., New York, 1969).



1 ELECTRON-PHONON MASS ENHANCEMENT

where {(x) is the Riemann zeta function. The result
(16a) enables us to recover the well-known formula
for N\ at zero temperature

o (@)F ()
A=2 / e,

w

a7

A plot of G(w/T) and a useful series expansion are
given by Grimwall.! As a function of temperature for
fixed frequency, G rises from its zero-temperature value
of 1, reaching a peak value around 1.205 at kp7/%w
~(0.26. At high temperatures, G approaches zero as an
inverse square. Thus, we expect the renormalization ¢
or \ to rise with temperature initially, reaching a peak
value less than 209, higher than its zero-temperature
value, at a temperature around 7 the value of the most
important group of phonons and decaying to zero at
higher temperatures. This temperature dependence is
not easy to observe experimentally. The preceding
paper reports a small but significant increase in cyclo-
tron-resonance masses with temperature for zinc, and
we believe that this is the first experimental evidence
for this effect.

The physical origin of this temperature dependence
is not easy to visualize. The mathematical origin is in
the broadening of the Fermi distribution. At low
temperatures, this allows scattering to intermediate
states K’ that lie off the Fermi surface by an amount
~FkpT. This can lead to enhanced self-energies: The
energy of an electron above the Fermi sea is lowered an
additional amount by the presence of a few unoccupied
states below the Fermi surface which it can scatter into,
and the energy of an electron below the Fermi surface
is raised an additional amount by having a few inter-
mediate states above the Fermi surface blocked. The
importance of these finite temperature processes arises
from the fact that they can be more nearly resonant
in energy than the corresponding zero-temperature
processes. At still higher temperatures, however, when
there is nearly constant occupancy of states above
and below the Fermi surface on the scale of phonon
energies, then all states are shifted in energy nearly the
same amount, and the mass enhancement goes to zero.

III. CALCULATIONS

The experimental results of Sabo? for zinc show a
significant variation of A(7) from orbit to orbit. This is
not too surprising in the light of previous experiments
which have indicated that \(Ox) varies from orbit to
orbit.’® A detailed comparison of theory and experiment
for the mass renormalization must take band-structure
effects into account in order to explain variations
between different orbits. To our knowledge, no one
has undertaken an analysis of this type. The existence

13 See, for example, work on magnesium by J. C. Kimball, R, W*
Stark, and F. M. Mueller, Phys. Rev. 162, 600 (1967).

1331

of measurements of masses over a finite range of tem-
peratures provides additional useful data and, thus,
possibly additional incentive for such a calculation.

In the present paper, we shall be content with treating
only the average mass enhancement and its tempera-
ture dependence. The average mass enhancement A
is easier to calculate. In a previous paper,® we have
reviewed a considerable body of evidence showing that
\ can be calculated using a spherical approximation to
the Fermi-surface and single-OPW wave functions; i.e.,
omitting all band-structure effects except for an
accurate empirical pseudopotential.

In addition, we will make the approximation that
the lattice parameters, phonon frequencies, pseudo-
potential, and density of states are all independent of
temperature. At higher temperatures, this will introduce
some errors, particularly for materials like zinc and
cadmium where the band structure and density of
states are apparently quite temperature-dependent.*
However, we are most interested in temperatures
considerably smaller than the Debye temperature where
these approximations introduce negligible errors.

The problem is now reduced to the calculation of

«’F, from which the temperature dependence of X\ is

easily derived. For the case of a strong coupling super-
conductor like lead, the function o?F is known from
superconducting tunneling measurements,'> and X (7")
can be directly obtained from experimental quantities.
Unfortunately, superconducting tunneling is not sensi-
tive encugh to reveal the structure of o*F for zinc, which
is a weak-coupling superconductor. However, it is
known from extensive work on materials like lead that
the function o?F is similar in structure to the phonon
density of states F(w). For a first approximation, it is
reasonable to assume that o?(w) is a constant. The
phonon density of states F(w) has been calculated for
zinc by Young and Koppel*® who used a force-constant
fit to the dispersion relations measured by neutron
scattering. The magnitude of o? can be adjusted to
yield the correct zero-temperature value of \, which is
known from the superconducting transition tempera-
ture, the observed enhancement of the specific-heat
coefficient ¢ above its unrenormalized band-structure
value, and from previous calculations.®® The results
are shown in Fig. 3 of the previous paper for zinc, and
compared with the experimental results. (This is also
shown later, in Fig. 4 of this paper.) There is excellent
agreement between theory and experiment considering
that the electron-phonon coupling o has been treated
simply as a constant. The behavior of \(T)—X(0) for
low temperatures is sensitive to the behavior of o?F
in the low-frequency region, i.e., to the manner in which
electrons couple to long-wavelength acoustic phonons.

“R. V. Kasowski and L. M. Falicov, Phys. Rev. Letters 22,
1001 (1969).

13 W. L. McMillan and J. M. Rowell, Phys. Rev. Letters 14,
108 (1965).

16 J. A. Young and J. U. Koppel, Phys. Rev. 134, A1476 (1964).



1332 P. B. ALLEN

a?(w)

Model 1’
------ Model 2*
——— Model 3’
----- Model 4’

(All models)

Wp/5 ® Wp

F16. 1. Models of the electron-phonon coupling o?(w).

To illustrate some of the possibilities, it is useful to
explore several models of the phonon coupling. We
first rewrite Eq. (14):

@D oy
ADAO= [ —re)

* dx 2
X / . (18)
—e COsh?x (hw/2kpT)?—x2

This equation can be integrated to yield the limiting
behavior for small temperature assuming a particular
model for o?F.

We have considered 4 models, and the results are
summarized in Table I. The first 3 models assume that
F(w) is of the Debye type, scaling as a quadratic
function of w. The coupling o? is then assumed to go as
", where the values =—1, 0, 1 are chosen. The
choice =0 corresponds to coupling to longitudinal
acoustic phonons and give a 72log7 increase of A
with 7. The choice =1 may be realistic for transverse-
acoustic modes. The essential point we wish to make is

------ Model 2

ul -
Al0)

F16. 2. The mass renormalization as a function of temperature
calculated using the models of Fig. 1 for o? and the phonon
density of states of zinc for F(w).

AND M. L. COHEN 1

that a variety of types of behavior are possible, in-
cluding a somewhat surprising decrease with tempera-
ture for the »=—1 model. The reason for this is that
phonons with #w<2.27kpT have a diminished contri-
bution to N\(7) (arising from the shape of the Grimvall
function G). The n=—1 model strongly emphasizes
the effect of small w phonons and leads to values of A
decreasing with 7. The fourth model treats o?F as a
constant in the range wo<w<wp and zero outside this
range, where wp is the Debye frequency and w is some
low-frequency cutoff. This model gives a fourth power
increase in N\ with T for kpT<<hw,.

We have also explored four more realistic models
where F(w) is the actual phonon density of states of zinc
and o?(w) is a constant for wp <w<wp and behaves for
w<3}wp as in the previous set of models. The new models
for o? are shown in Fig. 1, and the computed values of
N(T) are shown in Fig. 2. It is interesting to note that,
in spite of the diversity of possible low-temperature
behaviors shown in Table I, the realistic models 2/, 3’,
and 4’ give very similar results for A(7) in the region
below 15°K. Model 1/, however, with its extra emphasis

TaBLE I. Low-temperature behavior of A (T) —A (0)
for various models of o2F.

Behavior Behavior of A (7) —A(0)
of a? Behavior of o2F for small T
1 1/ (w/wp)* — (kpT /hwp)?
2 const (w/wp)? (kT /wp)? log (hwp/ksT)
3 @ (w/wp)? + (kT /fisn)*
4 const if wo<w<wp  + (kT /fwo)t

0 otherwise

on the small-frequency phonons, gives a weaker tem-
perature shift than the more physical models.

To calculate o?F accurately, we need models of the
phonon spectrum, the Fermi surface, and the electron-
phonon coupling.!” For the sake of simplicity, we will
assume a single atom in the unit cell and 3 acoustic-
phonon modes. We approximate the phonon spectral
weight function B,(¢q,w) by a é function 6 (w—w,,) at the
observed frequency wg, of the (¢gv) phonon. Then, if we
assume a spherically symmetric phonon spectrum and
Fermi surface, we get

(@) (@) =2 a?(@)F, (),

=1

My dﬂq

@t (w)=
dmep G 4

| Miokiare’[202kr—|q+G])
lq+G|/2kr

17 Single-OPW calculations of o?F have been discussed pre-
viously by J. P. Carbotte and R. C. Dynes, Phys. Rev. 172, 476
(1968); J. P. Carbotte, R. C. Dynes, and P. N. Trofimenkoff,
Can. J. Phys. 47, 1107 (1969); also see Ref. 10.

, (19)

=gy (w)
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F16. 3. The electron-phonon coupling o?(w) for zinc calculated in the single-OPW approximation using the Stark-Falicov pseudopotential.

where er is the free-electron Fermi energy, my/m is the
ratio of the band-structure density of states at the
Fermi surface to the corresponding free-electron value,
¢»(w) is the wavevector of the phonon of mode » and
frequency w, the integration is over angles, the summa-
tion is over reciprocal lattice vectors, and the 6 func-
tion assures that the states k and k+q+4G are both
on the Fermi surface.
The matrix element in a one-OPW model is

h 1/2
Mk—>k+q+GV:<2 ) @qf (q+G)V(Q+G’) y (20)

Wy

where M is the ionic mass, & is the polarization vector,
and V(q) is the empirical pseudopotential, evaluated
on the Fermi surface in a nonlocal model. To evaluate
a,?(w) for zinc and cadmium, we must make adjust-
ments to take account of the fact that there are two
atoms in a cell and optical phonons as well as acoustic.
These modifications have been described previously,®

and consist of replacing the six phonon modes by three
acoustic modes in an extended Brillouin zone. Then
Egs. (19) and (20) are correct, provided the pseudo-
potential in Eq. (20) is supplemented by a structure
factor S(G) normalized such that S(0)=1. The phonon
density of states F,(w) is also normalized to unity. A
quadratic model described previously?® is used for the
phonon-dispersion relation and density of states with
polarizations taken to be pure longitudinal or pure
transverse. The results are shown in Fig. 3 for zinc
using the empirical pseudopotential of Stark and
Falicov!® and other parameters as listed in Ref. 8. For
comparison, the function o? of model 2’ is also shown;
both models yield A(0)=0.42. The G=0 (normal or N
part) and the G50 (umklapp or U part) of o2 are
shown separately in Fig. 3. The transverse phonons do
not couple to electrons by N processes within our model,
so a;n* is zero. Both umklapp parts, aip® and a:.?,

18 R. W. Stark and L. M. Falicov, Phys. Rev. Letters 19, 795

(1967).
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0.14 |- ™ Constant a? (model 2/ n

===+ Modified single OPW calculation, Zn

Stark-Falicov potential
0.12 |- == Modified single OPW calculation, PR —
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F16. 4. Theoretical and experimental values of the mass renormalization as a function of temperature in zinc. The experimental
points are [#* (7)) —m* (0)]/[m* (0) —my ], where m* is the measured mass and s is an estimated band mass for the orbit. Uncertainties
in the masses m; could lead to small scale factor changes in the experimental points, and might change the ordering of the temperature

shifts of various orbits.

diverge as 1/w for small frequencies in the single-OPW
approximation. This behavior is radically altered if
band-structure effects are properly included. The
reascn is that only electrons that lie on the intersection
of the Fermi surface and a zone boundary can couple
to long-wavelength phonons by an umklapp process.
But for these electrons, the single-OPW approximation
breaks down completely. If more than one OPW is
taken into account, the matrix element My.zy 416 ap-
proaches zero as g goes to zero (this follows from the
deformation-potential theorem), and o? goes like w for
small frequencies.

——— Using the empirical function a?F \\\
0.7~ of McMillan and Rowell
——=— Modified single OPW calculation,
0.6~ Heine-Animalu model potential 1
0.5 1 I 1
0 10 20 30 40

T (°K)

F16. 5. Comparison of a modified single-OPW calculation and a
calculation using,the empirical function o2F for lead.

It is clear from the example of model 1’ that the
unphysical divergence in o? will have the effect of
severely depressing the predicted temperature shift
of A. Thus, in order to calculate A (7") reliably, the small-
frequency divergences must be eliminated. The ex-
amples of models 2, 3, and 4’ indicate that the exact
manner in which this is done is not very important,
especially in determining A(7) for temperatures below
15°K. Thus, we chose an arbitrary phenomenological
form, namely one where a;x* and a;n? were taken to be
linear in w below fwp, and joined continuously with
their single-OPW values at that point. This has the
effect of decreasing the predicted value of A(0) by a few

200

150

100
T (°K)

F16. 6. Predicted temperature dependence of X for alkali metals
using the Heine-Animalu model potential.
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0 f | |
0 50 100 150 200

T (°K)

F1c. 7. Predicted temperature dependence of A for group-IT
metals using empirical nonlocal pseudopotentials (and a Heine-
Animalu potential for mercury).

percent, and increasing A(7)—\(0) by over 1009, at
small temperatures. The resulting values of [\(T)
—X(0)]/7(0) are shown in Fig. 4 for zinc and compared
with both the experimental values of Sabo and the
values obtained from a constant coupling o? and the
experimental density of states. The one-OPW theory
and the constant-o® theory are in remarkably good
agreement. Also shown in Fig. 4 is the result of a one
OPW calculation using the Heine-Animalu model po-
tential.’® This potential underestimates A(0) by 35%,
and predicts a slower increase of A with 7" than the other
calculations.

As an additional test of our modified single OPW
scheme for calculating N\ (7), we show in Fig. 5 a com-
parison between a one-OPW calculation for lead using
the Heine-Animalu potential,’® and a calculation using
the experimental values of a?FF of McMillan and
Rowell.’s The agreement is satisfactory, especially con-
sidering that the density of states used in the one-OPW
calculation is based on a quadratic-phonon spectrum,
and is somewhat different from the actual density of
states for lead. It would appear that, because of the
sensitive nature of the temperature dependence, there
is an inherent uncertainty in our calculations of 20-30%,

150 200

0 50 100
T (°K)

Fic. 8. Predicted temperature dependence of A for metals of
groups IIT and IV using the Heine-Animalu model potential.

¥ A. E. O. Animalu and V. Heine, Phil. Mag. 12, 1249 (1965).
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in the form of N(T) and the position of the maximum.
Thus, although a reliable pseudopotential is the domi-
nant factor in calculating A (0), the state of the calcu-
lation of N(Z)/A(0) is such that uncertainties in the
pseudopotential are not much more important than
other uncertainties.

We have used the modified single-OPW scheme to
calculate N(T)/\(0) for 16 nontransition metals. The
results are shown in Figs. 6-8. The parameters needed
in the calculation are given in Ref. 8. Heine-Animalu
model potential® were used for all metals except
beryllium, magnesium, zinc, and cadmium, where em-
pirical nonlocal potentials were used from Refs. 20, 13,
18, and 18, respectively.

IV. CONCLUSIONS

Temperature-dependent shift of electronic masses
has been observed in cyclotron resonance by Sabo in
zinc at temperatures up to 11°K. A simple theoretical
estimate of the shift requiring only a knowledge of the
phonon density of states gives good agreement with
experiment, but cannot explain a variation of the
temperature shift from orbit to orbit. A reliable first-
principle calculation of the shift requires at least
modest improvements on the one-OPW model. The
more challenging problem of calculating shifts for
individual orbits requires detailed information about
the band structure and the phonon spectra, and has
not been attempted in this paper. It is possible, how-
ever, to draw certain qualitative conclusions based on
the model calculations in Sec. III. It was shown there
that the coupling to long-wavelength phonons is crucial
in determining the low-temperature increase of A\ (7)),
e.g., a particularly strong coupling to long-wavelength
phonons result in a smaller increase in AM(T").

An electron at a point k on the Fermi surface couples
by long-wavelength phonons to nearby states k--q.
The relevant wave vectors q lie in the plane tangent to
the Fermi surface at k. The function ai?Fy for small
frequency will scale as the inverse square of the velocity
of the longitudinal phonons in the plane tangent at k.
Thus, phonon-anisotropy effects can cause a marked
variation in ax?Fy from point to point. For example,
at the limiting point on the top of the lens in zinc, the
relevant phonons lie in the base plane of the hexagonal
cell, where the velocities are 609, higher than they are
in the direction of the ¢ axis. Thus, ax*F for the limiting
point should be lower at small frequencies than for
points along the rim of the lens which couple to phonons
in the direction of the ¢ axis. This provides a possible
explanation for the fact that the temperature increase
of the mass enhancement of the limiting point appears
to be larger than that of the lens orbits which explore
the region of the rim. It does not, however, explain the
fact that the mass of the lens orbit around the rim

2 J. H. Tripp, W. L. Gordon, P. M. Everett, and R. W. Stark,
Phys. Letters 26A, 98 (1967).
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(H parallel to the ¢ axis) appears more strongly tem-
perature-dependent than the mass of the lens orbit
over the poles (H perpendicular to the ¢ axis). A possible
explanation for this is that the bare band masses for
these orbits should be chosen somewhat differently.
For example, if the estimated band mass of the orbit
with H perpendicular to ¢ were increased slightly, this
would readjust the points in Fig. 4 upward, and could
actually change the ordering of the two lens orbits.
To resolve this question, we need either a band-structure
mass calculation or a calculation of the enhancement
N (Ox) for these orbits. It would be an interesting test
of the pseudopotential model of electron-phonon
coupling to attempt the detailed calculation of the mass
enhancement for different orbits. Once the zero-
temperature mass is calculated, there is no added
difficulty in calculating the temperature dependence.
The experimental knowledge of the low-temperature
increase in A\(7) then provides a useful extra check on
the theory of the mass enhancement.

The experimental observation of the maximum in
the mass enhancement as a function of temperature
would be an interesting verification of the theory.

P. B. ALLEN AND M. L.

COHEN 1

Unfortunately, this is a difficult experiment at the
present time, at least by the cyclotron-resonance
method, because of temperature-dependent lifetime
effects which prevent the observation of resonance at
temperatures closer to the Debye temperature.

Note added in proof. Since submitting this paper, we
have learned of several studies of the temperature de-
pendence of the mass renormalization. Apparently the
first was by Eliashberg? who pointed out the existence
of a T?logT term in the electronic specific heat. Grim-
vall? has presented calculations similar to ours for A(T°)
in lead and mercury using experimental values of
o?(w)F (w). Appel® has studied the influence of this
effect on the superconducting transition temperature.
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The single-band tight-binding model of random binary alloys is studied in the limit of second-order self-
consistent perturbation theory, allowing the off-diagonal, as well as the diagonal, matrix elements of the
model Hamiltonian to be dependent upon alloy composition. Fluctuations of both types of matrix elements
about their configurational averages are assumed to be small but comparable, so that the randomness intro-
duced into both parts of the Hamiltonian must be treated on an equal footing. Only nearest-neighbor hopping
between constituent atoms (type 4 or B) is considered, with the hopping integrals parametrized by the three
numbers e, 8, and  for 4-4, B-B, and A-B hopping, respectively. The single-particle alloy spectrum and the
alloy density of states are obtained from an equation for the effective single-particle self-energy using stan-
dard techniques and with the dependence on model parameters explicitly displayed. With the assumption
that y=%(a+g), the theory is found to be rather simply characterized by the wave-vector-dependent dis-
place ment E4 (k) — Ep(k) of the pure constituent spectra E4 (k) and Ep (k).

I. INTRODUCTION

N important contribution to the one-electron
theory of disordered alloys has been Soven’s! in-
troduction of the coherent potential approximation
(CPA), with subsequent development and application

* Supported in part by the Center for Theoretical Physics, the
U. S. Office of Naval Research, and the Advanced Research Proj-
ects Agency.
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to a model alloy Hamiltonian by Soven,? and by
Velicky, Kirkpatrick, and Ehrenreich.?

These authors have shown that, with certain limita-
tions, the CPA provides a powerful and elegant means
of extending the theory of simple binary alloys beyond
the confines of low-order perturbation (or ‘“weak-
coupling”) theory to the regime of relatively large con-
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