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Shifts in the Electronic Band Structure of Metals Due to Non-MufBn-Tin Potentials*
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The generally neglected potential outside the mufIin-tin spheres induces average energy shifts of the order
of 0.005 to 0.010 Ry in fully relativistic, high-symmetry levels of fcc palladium, fcc platinum, and bcc
uranium. The high band mass of these transition metals combined with such shifts can cause errors of the
order of 5+o in predicting the Fermi radii. The splitting of the spin-orbit doublets is found to be insensitive
to the inclusion of the outside of the muon-tin potential. By augmenting a phase-shift parameter set with
two or three effective pseudopotential coeScients which represent the effect of the weak added potential,
an ab initio band structure may be used to Gt accurate experimental data.

I. INTRODUCTION

"ANY calculations of the electronic band structure
- ~ of materials have utilized the muffin-tin approxi-

mation to the one-electron potential. First introduced

by plater in his 1947 paper on the augmented-plane-
wave (APW) method, ' this approximation offers several
simplifying features in carrying out the numerical cal-
culations. ' The crystal potential, which is constructed
by tak. ing a superposition of spherically averaged free-
atom charge densities from the neighboring atoms, is
made spherically symmetric within a sphere about each
atomic site. It is taken to be constant (flat) between the
APW spheres and is found' ' from the requirements {a)
that the unit cell be neutral and (b) that the Coulomb
potentials integrate to the sum of the atomic Coulomb
potentials. The muffin-tin potential can be treated as
containing a number of adjustable parameters. Quite
aside from the choice of atomic configuration and state
of ionization (an important question for ionic com-

pounds) assumed in the atomic calculations used to ob-
tain the free atom charge densities, one can vary the
radii of the APW muffin tins and the potential between
the spheres. Used as a semiempirical method to fit cer-
tain experimental features of the band structure, this
parametrization scheme can lead to some improvement
in the results obtained. ' It is not, however, a general

*Supported in part by the Advanced Research Projects Agency
through the Northwestern Materials Research Center, the U. S.
Atomic Energy Commission, and the U. S. Air Force Once of
Scientific Research.' J. C. Slater, Phys. Rev. Sl, 846 {1937).

'T. L. Loucks, Augmented P/ane Wave 3IIethod (W. A. Ben-
jamin, Inc. , New York, 1967), and references therein.

3 For a discussion of the mufFin-tin prescription, see F. S. Ham
and B. Segall, Phys. Rev. 124, 1786 (1961).

4L. F. Matthiess, Phys. Rev. 133, 184 (1963); 134, A1399
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' P. Scop, Phys. Rev. 139, A934 (1965).
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technique —nor a satisfying procedure to carry out from
an ab idio point of view.

For those metals which have many tightly bound core
electrons and only a few, nearly free conduction elec-
trons, viz. , the simple and noble metals, the muffin-tin
approximation has been found to be adequate, as ex-
pected. For covalently bonded semiconductors and
semimetals, the muffin-tin approximation is rather in-
adequate, ' "and the corrections introduced by the non-
Qat potential outside the muffin-tin spheres can cause
substantial shifts in selected energy levels. For the inter-
mediate case of the transition and actinide metals, the
eQect of the muon-tin approximation has not been
studied and is not well known.

In this paper we include the variations of the poten-
tial outside the muon-tin sphere into relativistic APT
calculations and show for the case of transition and
actinide metals '—specifically, fcc palladium, fcc plati-
num, and bcc uranium —the resultant corrections which
are introduced into the calculated energy bands.

II. THEORY

The symmetrized relativistic APT method
(SRAPW)' has been used to calculate band structures

' P. DeCicco, Phys. Rev. 153, 931 (1967).
8 A. R. Williams, Phys. Letters 25A, 75 (1967);F. Beleznay and

M. J. Lawrence, J. Phys. C. 1, 1288 (1968);B.Segall, Phys. Rev.
124, 1797 (1961);R. S. Leigh, Proc. Phys. Soc. (London) '71, 33
(1957).' R. Sandrock, in Proceedings of the First International Sympo-
sium on the Physics of Selenium and Tellurium, Montreal, 1967
(to be published}.

"A. B. Kunz, W. B. Folwer, and P. M. Schneider, Phys. . Let-
ters 28A, 553 (1969).

ii W. Rudge, Phys. Rev. 181, 1020 (1969); 181, 1024 (1969).
~2The standard muffin-tin SRAPW calculations on Pd have

not been reported by us previously. Preliminary results have been
reported for Pt LA. J. Freeman and D D. Koelling, .Bull. Am.
Phys. Soc. 14, 28 (1969)j, and for U PA. J. Freeman and D. D.
Koelling, ibid 14, 360 (1969)j. .
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TABLE I. I"ourier coefIj.cients for fcc palladium potential outside
muffin-tin spheres derived from an atomic configuration 4d"6s
with full Slater exchange (n= 1) in Rydberg units.

I

Star

1
2
3
4
5
6
7
8
9

10

12
13
14
15
16
17
ig
19

1 term

0.0045

11 terms

—0.8695—3.0092—1.5555—0.7404—0.5141—0.1064—0.0392—0.0023—0.0163—0.0255—0.0085

19 terms

—0.8332—2.8457—1.4538—0.6550—0.4276—0.0869—0.0350—0.0029—0.0093—0.0205—0.0106
0.0010
0.0007—0.0002
0.0000
0.0014
0.0000
0.0001
0.0000

for all three metals. BrieRy, this technique is similar to
the APW' and RAPW' methods, but uses double-space-
group projection operators to greatly reduce the effec-
tive size of the plane-wave basis set. This enables one
to obtain better convergence for an equal rank secular
matrix than one could obtain with the unsymmetrized
RAPW method and to automatically indentify eigen-
function character. In addition, several improvements
in numerical procedure have been introduced. '

The potential for an APW calculation divides itself
naturally into two parts: one inside and one outside
the muffin-tin radius. If one follows the prescription for
the model potential of overlapping free-atom potentials
and charge densities —for which the method of Matt-
heiss yields the muffin-tin approximation —three con-
tributions must be considered. The largest contribution
is made by the strong core charge density centered inside
the muffin-tin sphere on a single ion. It is treated exactly
within the APW sphere. Next in importance is the over-
lapping charge density from a neighboring ion which
falls inside a Wigner-Seitz cell. (It is treated approxi-
mately as a spherical average within the APW sphere. )
The exchange and correlation effects are the weakest.
These are included approximately within the SRAPW
method in terms of the Slater free-electron approxima-
tion, ncp"', where n is treated as a disposable parameter.

Normally within the APW method, the model poten-
tial is spherically averaged within the muffin-tin spheres
and replaced by a constant outside the spheres (the
"muffin tin floor" ). This constant potential is deter-
mined' ' (generally analytically) so that one has charge
neutrality and the correct average Coulomb potential—
consistent with the model chosen. In practice, it is con-
venient to move the zero of energy so that it lies at the
muffin-tin Q.oor.

TABLE II. Fourier coefficients for fcc platinum potential outside
muffin-tin spheres derived from an atomic configuration 5d"6s'
with full Slater exchange (+=1) Rydberg units.

Star 19 terms 11 terms 6 terms 5 terms 1 term

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

—0.8613—2.8715—1.4195—0.5211—0.2443—0.0359—0.0061—0.0033
0.0092
0.0042—0.0054
0.0005
0.0008
0.0029—0.0004
0.0014
0.0000
0.0001
0.0000

—0.9346—3.2171—1.6371—0.7219—0.4639—0.0912—0.0337—0.0030—0.0104—0.0205—0.0091

—0.8885—2.9911—1.4963—0.5796—0.3075—0.0434

—0.7414—2.4038—1.1539—0.3434—0.1314

0.0039

rms error
of fit 0.00004 0.00010 0.00047 0.00198 0.10520

(»i~ "'—~ik's')=(lsia»
+(sos') V, (l"—I ). (2)

(Note that this is not perturbation theory. ) The WMT
approximation will be used in the calculations on the
high-Z fcc and bcc crystals.

In this work the potential outside the spheres is
Fourier analyzed by a two-step process. First, the poten-
tial in this outside region is least-squares fit using the
I'& harmonics

s(K„,r) = —Q e'" .'u(r),
g CL

(3)

To investigate the effects of a more general potential,
it is useful to write the potential7 as

~(r) =~ (r)+~ (r)+~ (r)

where Vi and V2 denote the difference between the po-
tential V and its muffin-tin approximation VMT. This
difference has been broken into two parts by requiring
V& to be nonzero only outside the muffin-tin spheres and
V2 to be nonzero only inside the spheres. This is done
because it is appropriate to expand these two quanti-
ties differently —U& as a Fourier series and V& in spheri-
cal harmonics. Furthermore, since the effects of Vi
should be much larger" than the effects of V» it is
possible to consider the inclusion of V» alone. This inter-
mediate approximation will be denoted as the warped
muffin-tin (WMT). Because the basis functions are
plane wave in the region where Vi is nonzero, the WMT
approximation only requires augmentation of the muf-
fin-tin secular equation with the Fourier components
of Ug,

rms error
of fit 0.08420 0.00007 0.00003 » J. C. Slater and P. DeCicco, Q. P. R., Solid State and Molecu-

lar Theory Group, M. I.T. October 15, 1963, p. 46 (unpublished).
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TABLE III. Fourier coefFicients for fcc platinum potential outside muon-tin spheres derived from
an atomic con6guration 5d' 6s with —, Slater exchange in Rydberg units.

Star

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

rms error
of Gt

19 terms

—0.9671—3.4741—1.8201—0.9866—0.7856—0.1867—0.0709-0.0019—0.0406—0.0508—0.0142
0.0003
0.0002
0.0035
0.0001
0.0003
0.0000
0.0000
0.0000

0.00001

11 terms

—0.9314—3.2973—1.7079—0.8725—0.6529—0.1493—0.0437—0.0006—0.0283—0.0297—0.0056

0.00003

6 terms

—0.7608—2.5289—1.2355—0.4654—0.2427—0.0416

0.00041

5 terms

—0.6200—1.9666—0.9078—0.2393—0.0742

0.00190

4 terms

—0.5250—1.6159—0.7038—0.1252

0.00443

3 terms

—0.3620—1.0731—0.4123

0.01240

1 term

—0.0017

0.10100

where K„ is a reciprocal lattice vector and the sum of
the operations n ranges over all g (here 48) operations
of the point group of the syrnrnorphic crystal. n(r) is a
step function defined to be zero inside the spheres and
unity outside the spheres.

The expansion coeKcients C„for the potential V~ are
given by

P', (r) =g C„s(K„,r).

Initially, the C„'s were obtained using approximately
250 random points in the region outside the spheres.
Note that within a Monte Carlo approach this proce-
dure for finding C 's is equivalent to a Fourier trans-
form analysis, but is rather easier to carry out numeri-
cally. However, because there are no points used inside
the mufFin-tin spheres, in effect, we have not defined

Vr(K) = —Q C„Q U(K+nK„),
g n a

U(K) =S,—4a.R,' jt(ER,)

TABLE V. Matrix elements for palladium potential of Table I
for fcc lattice. Here A (I) means A X10".

the function Eq. (4) in this region. Thus, even though
convergence is obtained, the expansion obtained will
not be completely defined and the coeScients will vary
greatly with the inclusion of more harmonics. Tables
I—IV show this variation. If this fit to the outside region
is then reanalyzed with the re'quirement on U& that the
function vanish in the interior of the muon-tin spheres,

Star

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16

rms error
of Gt

1 term

0.0036

0.09100

6 terms

—0.7933—3.7795—0.5152—0.5734—0.0732—0.0343

0.00068

11 terms

—1.0515—5.4965—0.9734—1.5157—0.2984—0.2391—0.0345—0.0614—0.0022—0.0019—0.0008

0.00002

16 terms

—1.1459—6.2119—1.1950—2.0604—0.4621—0.4271—0.0675—0.1839—0.0095—0.0174—0.0096—0.0079—0.0036—0.0013—0.0011—0.0003

0.00001

TABLE IV. Fourier coef5cients for bcc uranium derived from an
atomic con6guration using -', Sister exchange (7s'685 f~) in Rydberg
units.

Star

3
4
6
8

10
11
13
14
15
17
18
20

1
2
5
7
9

12
16
19
21
22
23

K vector

(4,0,0)
(4,4,0)
(4 4 4)
(8,0,0)
(8,4,0)
(8,4,4)

(12,o,o)
(8,8,0)
(8,8,4)

(12,4,0)
(12,4,4)
(8,8,8)
(0,0,0)
(2,'2', 2)
(6,2,2)
(6,6,2)
(6,6,6)

(10,2,2)
(10,6,2)
(10,6,6)

(io, io,2)
(io, io,6)

(io, io, io)

11 terms

0.9866 (—2)
0.4348 (—2)
0.6181 (—3)—0.2464 (—3)
0.5437 (—3)
0.1561 (—2)—0.1863 (—2)
0.4533 (—3)—0.1161 {—2)—0.1370 {—2)—0.4928 {—3)
0.4630 (,—3)
0.1629 (—3)—0.6274 (—2)—0.4042 (—2)—0.1702 (—3)
0.5475 (—3)
0.1758 (—2)—0.7048 (—3)—0.5814 (—3)
0.3874 (—3)
0.8042 (—3)—0.7079 (—3)

19 terms

0.9867 (—2)
0.4348 {—2)
0.6178 {—3)—0.2472 (—3)
0.5440 (—3)
0.1560 (—2)—0.1864( —2)
0.4523 (—3)—0.1161 {—2)—0.1369 (—2)—0.4944 (—3)
0.4651 (—3)—0.4630 {—3)—0.6275 (—2)—0.4042 (—2)—0.1698( —3)
0.5471 (—3)
0.1758 (—2)—0.7048 (—3)—0.5805 {—3)
0.3891 {—3)
0.7997 (—3)—0.7060 (—3)
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the coefficients rapidly stabilize with the inclusion of
more and more I'~ harmonics in the fit. Tables IV—VIII
show the stabilization. In Eq. (5), U(k) is the Fourier
transform of the unit step function (zero inside the
spheres and one outside); 0 is the volume of the unit
cell; and E, is the radius of the muffin-tin sphere. The
stability of Vi(K) is far more important than the sta-
bility of the C& since Vi(K) appears in the matrix
elements.

III. RESULTS

Tables I—IV present values of the coefficients in the
Fourier function expansions for the WMT potential,
Eq. (1).They were derived by the least-squares proce-
dure above for fcc palladium (n=1 or full Slater free-
electron exchange), fcc platinum (rr=1), fcc platinum
(n=as), and bcc uranium (a=i), respectively. In all
four cases the convergence and absolute error of the fit
suggest that 15—18 stars form an adequate representa-
tion of the WMT potential. The atomiclike d states are
slightly more extended in the case of the n=-', exchange
than in the case of the full Slater exchange. Therefore
the WMT coefficients for o.= 3 are larger, term by term,
than the WMT coefficients for 0.=1 in the converged
18-term-fit representation.

Tables V-VIII present the matrix elements of the
four cases of WMT potentials whose coefficients were
given in Tables I—IV, respectively. The important point
to notice is that the actual matrix elements entering the
SRAPW secular equation have much better conver-
gence properties than the Fourier expansion coefficients
alone —a very useful resul. t since the matrix element is
the actual quantity affecting the results. This follows
from the fact that the step function U present in the
definition of Vr(r) is now being represented within the
Fourier series removing the uncertainty in the
coefFicients.

Tables IX—XI present the actual shifts in energy of
selected high-symmetry levels induced by the VVMT

potentials for the four cases considered. Because of the
symmetry of the eigenfunctions, individual energy

TABLE VI. Matrix elements for platinum potential of Table II
for simple-cubic and bcc vectors. Here A (n) means A &&10".

X vector 19 terms 11 terms 6 terms

(0,0,0)
{4,0,0)
(4,4,o)
(4,4,4)
(8,0,0)
(8,4,o)

0.6121
0.1221
0.5852—0.3683—0.1108
0.5341

Simple cubic

(—4) 0.6081 (—4)
(—1) 0.1221 (—1)

o.s8s3 (—2)
(—4) —0.3672 (—4)
(—2) —0.1107 (—2)
(—3) 0.5338 (—3)

Body-centered cubic

0.5232 (—4)
0.1220 (—1)
0.5850 {—2)—0.3781 (—4)—0.1121 {—2)
0.5472 (—3)

E vector

(2,2,2)
(6,2,2)
(6,6,2)
(6,6,6)

19 terms
—0.8033 (—2)—0.4795 (—2)—0.3351 (—3)

0.1123 (—2)

11 terms
—0.8033 (—2)—0.4795 (—2)—0.3355 (—3)

0.1124 (—2)

6 terms
—0.8027 (—2)—0.4793 (—2)—0.3365 (—3)

0.1169 (—2)

eigenvalues shift by rather large amounts (of the order
of 0.01 Ry), whereas other states, at the same point in
the Brillouin zone, do not shift at all. Note also that the
shifts induced by the WMT may be either positive or
negative in sign. To clarify the nature of these induced
shifts, we define four types of averages of the energy
levels of Tables IX—XI. The first is the simple average
shift defined as

1
AZ = — Q $E„(k)—E„'(k)],

where the sum over m and k; is carried out over all the
points k, or levels ts given in the tables, E„'(k) are the
levels without the WMT, E„(k) with the WMT, and ill';

is the total number of points and levels. We see from the
tables that the average shift, Eq. (6), is, in fact, very
small for the metals considered. We believe that this is
due to the fact that the zero of energy of the muffin-tin
potential (the muffin-tin floor) is exactly the same as the
zero of energy of the warped muffin tin. Thus the aver-
age shift between the energy bands for the two cases
would involve essentially second-order differences.

TABI.E VII. Matrix element for platinum potential of Table III for simple-cubic and bcc vectors. Here A (I) means A )&10~.

E vector

(0,0,0)
(4,0,0)
(4,4,o)
(4,4,4)
(8,0,0)
(8,4,o)

11 terms

—0.1785 (—2)
0.1237 (—1)
0.4974 (—2)
0.5703 {—4)—0.1122 (—2)
0.6240 (—3)

6 terms

—0.1784 (—2)
0.1237 (—1)
0.4973 (—2)
0.5642 (—4)—0.1113 (—2)
0.6105 (—3)

5 terms

Simple cubic

—0.1785 (—2)
0.1239 (—1)
0.4996 (—2)
0.7542 (—4)—0.1181 (—2)
0.6953 (—3)

4 terms

—0.1898 (—2)
0.1236 (—1)
0.4988 (—2)—0.2552 (—3)-0.1266 (—2)
o.s6s7 (—3)

3 terms

—0.1773 (—2)
0.1233 (—1)
0.5383 (—2)
0.1123 (—3)
0.1373 (—3)
0.7065 (—3)

Body-centered cubic

X vector

{2,2,2)
(6,2,2)
(6,6,2)
(6,6,6)

11 terms
—0.7354 (—2)—0.4680 {—2)

0.2142 (—4)
0.9129 (—3)

6 terms
—0.73s3 (—2)—0.4678 (—2)

0.2517 {—4)
0.9171 (—3)

5 terms
—0.7367 (—2)—0.4696 (—2)—0.3501 (—4)

0.9548 (—3)

4 terms
—0.7317 (—2)—0.4619 (—2)

0.1426 (—3)
0.1019 (—2)

3 terms
—0.7344 (—2)—0.5201 {—2)

0.2876 (—3)
0.7674 (—3)
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TAai,z VIII. Matrix element for uranium potential of Table IV
for bcc lattice. Here 2 (e) means A X10".

Star X vector

1 (0,0,0)
2 (2,2,0)
3 (4,0,0)
4 (4,2,2)
5 (4,4,0)
6 (6,2,0)
7 (4,4,4)
8 (6,4,2)
9 (8,0,0)

io (6,6,o)
(8,2,2)

12 {8,4,0)
13 (6,6,4)
14 (8,4,4)
15 (S,6,2)
16 (10,4,2)
17 (8,8,0)
18 (8,6,6)
19 {8,4,4)
20 (10,6,4)
21 (12,4,0)
22 (10,8,2)
23 (12,4,4)
24 (12,6,2)
25 (8,8,8)
26 (10,2,0)
27 (10,6,0)
28 (12,0,0}
29 (12,2,2)

6 terms

O.41O6 (—3)—0.2251 (—2)
o.iooo (—1)
0.4420 (—3)—0.1849 (—2)—0.4392 (—2)—O. 191O (—2)
0.2005 (—2)
O.4548 (—2)
0.1031 (—2)
0.2180 (—2}—O.1511 (—3)—0.8087 (—3)—o.io73 (—2)—o, 1472 (—2)—0.5617 (—3}
0.5044 (—3)
0.1028 (—2}—0.10/3 (—2)
0.8436 (—3)
0.1089 (—2)
0.5208 (—3)
0.1725 (—3)—0.1183 (—3)—O. 1O63 (—2)—0.1873 (—2)
O.9209 (—3)
0.5022 (—3)
0.9795 {—3)

11 terms

O.3991 (—3)—0.2248 (—2)
0.1000 (—1)
0.4414 (—3)—O.1S49 (—2)—0.4392 (—2)—0.1943 (—2)
0.2019 (—2)
0.4548 (—2)
0.9919 (—3)
0.2163 (—2)—0.1437 (—3)—0.8041 (—3)—0.1082 (—2)—0.1463 (—2)—0.5638 (—3)
0.5077 (—3)
o.io27 (—2}—o.ios2 (—2)
0.8421 (—3)
0.1086 (—2)
0.5206 (—3)
O.1S29 (—3)—O.1132 (—3)—0.1060 (—2)—0.1857 (—2)
0.9141 (—3)
0.4751 (—3)
0.9695 (—3)

16 terms

0.3991 (—3)—0.2248 (—2)
0.1000 (—1)
0.4414 (—3)—0.1848 (—2)—0.4392 (—2)—0.1943 (—2)
0.2019 (—2)
0.4548 (—2}
0.9919 (—3)
0.2163 (—2)—0.1438 (—3)—0.8043 (—3)—0.1082 (—2)—0.1463 (—2)—0.5639 (—3)
0.5075 (—3)
0.1027 {—2}—o.ios2 (—2)
0.8420 (—3)
0.1086 {—2)
0.5205 (—3)
0.1831 (—3)—0.1134 (—3)—0.1060 (—2)—0.1857 (—2)
0.9145 (—3)
0.4752 (—3)
0.9697 (—3)

The second type of average corresponds to the rms
deviation of individual levels away from the average
shift. The square of the second average is defined as

~2 —Qg2—
g; n, X;

Level

p +
p +
r7+
ra+

X6+
X7+
X7+
X6+
X7+
X6
L +

+
L +
L +
L +
L6

S'7
8'6
8'7
W6
8'7

%MT
—0.0014

0.2830
0.3073
0.4034

0.1102
0.1356
0.4793
0.5030
0.5246
0.7691

0.1242
0.2734
0.2994
0.4809
0.4954
0.5958

0.1851
0.2525
0.2627
0.3967
0.5123

Muon-tin

—0.0007
0.2854
0.3098
0.4044

0.1055
0.1403
0.4794
0.5032
0.5248
0.7803

0.1296
0.2749
0.3009
0.4811
0.4956
0.5892

0.1805
0.2564
0.2667
0.3973
0.5125

Difference

—0.0007—0.0024—0.0025—0.0010
—0.0047—0.0047—0.0002—0.0002—0.0002—0.0112
—0.0054—0.0015—0.0015—0.0002—0.0002

0.0066

0.0046—0.0039—0.0040—0.0006—0.0002

~a= —0.0016
0.=0.0034

ZE„=0.0006
0;g =0.0073

TABLE IX. Selected high-symmetry levels for fcc 4d"Ss' full
Slater exchange {m=1) palladium with and without the outside
mufFin-tin potential in Rydberg units.

The rms deviation of the shifts 0- is actually more sig-
nificant than the simple average since o- would enter,
for example, as an effective broadening of the density
of states. The rms deviation is smallest in the case of
palladium, and largest for uranium with platinum for
n= 1 and n= —,

' intermediate. This increasing sensitivity
to the WMT terms for heavier metals is consistent with
the increased softening and broadening of the d and f
resonances with higher Z and higher number of core
levels. Again, it should be noted that the energy levels
derived for platinum in the case with o.=3 are more
sensitive to the %MT potential than the full plater
(n=1) case. The effective 5d radius of the former is
larger than in the latter case.

For the fcc metals, where the separation between
d-like states and plane-wave like states is rather clear,
we define two more averages which test the relative
sensitivity of the s or d levels to the WMT. The first
such s-d average shift is defined as

~~.~= —Q L'&, (k) —E (k)j
gg i=a,g

where the sum on j is carried out over the "s-like"
levels, I'6+, X6, and L6, and the sum on i over the
"d-like" levels at the points F, X and L; E~ is the num-
ber of d levels, and E„the number of s levels. Again the
E,(k) levels are the warped muon tin, and the E;e(k)
are the muffin-tin levels as before, The surprising result
of our analysis is that the net s-d shift AE,~, in both
palladium and platinum, is very nearly zero. We con-
jecture that the relative insensitivity exhibited here is
due to the fact that the muffin-tin potential used has
been defined so that the unit cell average potential is the
same as that for the model potential. ' Thus, any net
s-d shift would involve essentially second-order
differences.

At individual k-space points, however, a substantial
s-d shift can exist. We test for such a dispersive shift by
defining a root-mean-square deviation, o-,&, analogous
with Eq. (7). We give

Osd =

where Xs is the number of k points used (here 3), and
the sum on k is taken over the points I', X, and L. For
the three cases considered, the value of a,q is of the order
of 0.01 Ry.

Although we have not explicitly carried out a fac-
torization of the levels of bcc uranium because of com-
plications due to the increased hybridization of the
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TABLE X. Selected high-symmetry levels for fcc Sd' 6s' full and -', -full Slater exchange platinum with and without
the outside muf6n-tin potential in Rydberg units.

Level

r6+
r +
r7+
r,+

X6+
X7+
X7+
X6+
X7+
X6

1-6+
L4+
L'6

L6
L'6
L +

W7
W6
W7
W6
W7

WMT

—0.0992
0.3274
0.4040
0.5252

0.1196
0.1595
0.6115
0.6387
0.7106
0.7645

0.1101
0.3129
0.3892
0.6028
0.6095
0.6582

0.2171
0.2926
0.3159
0.4936
0.6683

&=1
Muon-tin

—0.0977
0.3314
0.4087
0.5274

0.1127
0.1667
0.6118
0.6389
0.7110
0.7779

0.1183
0.3155
0.3918
0.5940
0.6102
0.6584

0.2099
0.2971
0.3213
0.4953
0.6683

Difference

—0.0015—0.0040—0.0047—0.0022

0.0069—0.0072—0.0003—0.0002—0.0004—0.0134
—0.0082—0.0026—0.0026

0,0088—0.0007—0.0002

0.0072—0.0050
0.0046—0.0017
0.0000

%MT
—0.0422

0.5015
0.5682
0.7142

0.2332
0.2958
0.8229
0.8550
0.9240
0.8291

0.2183
0.4825
0.5495
0.6600
0.8198
0.8658

0.3438
0.4413
0.4475
0.6601
0.8841

Muffin-tin

—0.0391
0.5065
0.5738
0.7167

0.2255
0.3045
0.8233
0.8555
0.9246
0.8450

0.2287
0.4857
0.5527
0.6525
0.8206
0.8661

0.3346
0.4490
0,4565
0.6613
0.8835

Di6erence

—0.0031—0.0050—0.0056—0.0025

0.0077—0.0087—0.0004—0.0005—0.0006—0.0159
—0.0104—0.0032—0.0032

0.0075—0.0008—0.0003
—0.0008—0.0077

0.0010—0.0012
0.0006

aZ= —0.0014
0 =0.0050

d E,g =0.0001
o.,d =0.0102

AE= —0.0027
o- =0.0051

AL",g = —0.0011
o.,g =0.0109

various s, p, d, and f symmetry types, it is clear from
Table XI that in this case as well one could expect dis-
persive shifts of the order of 0.01 Ry.

In the fcc lattice, the triply degenerate F~5. and
doubly degenerate X5 and L3 single group, d-like repre-
sentations, become in the double-group representation,
the levels Fs+ and F7+, X6+ and X7+, and L4+ and L6+,
respectively. The degeneracy of each of these levels is
lifted by spin-orbit coupling' between atomiclike
d states. From the tables it is clear that each of these
levels shifts by exactly the same amount as its single

group mate. Alternatively one can say that the net spin-
orbit interaction between these levels is unaffected by
the WMT terms. This is consistent with the picture that
the greatest strength of the spin-orbit interaction occurs
at short radius, i.e., far inside the muffin-tin sphere
radius.

IV. CONCLUSION AND DISCUSSION

In this paper we have considered the effect of the
non-muffin-tin part of the one-electron potential on the
electronic band structure of three diferent metals, two
crystallographic structures, and full (n= 1) and partial
(0.=3) Slater exchange. We find, for the cases con-
sidered, that the neglected terms induce net shifts of
the order of 0.005—0.010 Ry. Since these shifts are sub-
stantial, it is essential to include the WMT terms, Kq.
(5), in calculating transition and actinide metal band
structures. Particularly signihcant is the fact that levels
of completely d-like character also have net shifts rela-

tive to the s-like levels of the same order of magnitude,
since such shifts can change critical point structure, i.e.,
change the density of states. Since the effective masses
of transition metal bands can be of the order of 10,
energy shifts of the order of 0.01 Ry could induce in-
accuracies in predicting Fermi radii of the order of 5%
of a half-Brillouin-zone distance. Thus, if one wishes to
derive effective scattering potentials from accurate ex-
perimental data, it is essential to include the WMT
terms.

State

r +
r7
r8
r8
r7+
r8
F6
r +

H8+
H7
H6-
H8
H7
H8

+6/7
2'8
+8
+6/7
~8

WMT

0.5809
1.0065
1.0138
1.0883
1.1282
1.3085
1.3397
1.3540

0.5622
1.1023
1.1626
1.1905
1.3458
1.3621

1.1513
1.1555
1.2140
1.2416
1.2579

Muffin-tin

0.5750
1.0052
1.0125
1.1036
1.1443
1.3065
1.3403
1.3419

0.5528
1.1094
1.1647
1.1911
1.3463
1.3625

1.1575
1.1506
1.2178
1.2437
1.2750

DiGerence

0.0059
0.0013
0.0013—0.0153—0.0161
0.0020—0.0006
0.0129

0.0094—0.0071—0.0026—0.0006—0.0005—0.0004
—0.0062

0.0049—0.0038—0.0021—0.0171

TABLE XI. Selected high-symmetry levels for bcc 7s'6d'5 f
uranium with (WMT) and without the outside the muKn-tin
potential in Rydberg units.

'4 F. M. Mueller, A. J. Freeman, J. O. Dimmock, and A. M.
Furdyna (to be published).

ALi'= —0.0023 0 =0.0079
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The rapid convergence of the matrix elements,
Tables V—VIII, for all three metals suggests that it is
sufFicient to find the first few terms of the WMT ex-
pansion, Eq. (5), and set the rest of the terms equal to
zero. This simplification is of little practical value in
calculating band structures including the WMT terms
from ab irido potentials since it is about as easy and
quick to include many terms in Eq. (5) in the matrix
elements as a few, provided a sufficient number are used.

The real value of the rapid convergence is in using
the band structure to simulate experimental data. Here
we consider de Haas —van Alphen (dHvA) Fermi-sur-
face data, which restricts our discussion to states on
or very near the Fermi energy shell. In terms of eBec-
tive one-electron muon-tin potentials, such states are
wholly determined by the energy-dependent phase
shifts (or logarithmic derivatives) at the muffin-tin
sphere radius. For states at the Fermi energy, this
means that the effects of the strong core potential over
all k space may be given in terms of just a few phase
shifts, and these may be treated as disposable param-
eters for fitting experimental data.

Fermi radii can be obtained from dHvA measure-
ments to an accuracy of the order of —,'%%uq. Assuming an
average band mass of the order of 2—3, this means that
the effective experimental error in L+ p, the Fermi energy,
given by this experiment is of the order of 0.003 Ry for
the metals considered here. Thus the WMT terms,
which induce changes of the order of 0.005—0.010 Ry
must be included in order to meaningfully compare
theoretical predictions with experimental data.

If one wishes to derive effective scattering potentials—phase shifts —from experimental data, then the WMT
terms must be included in the variational scheme in
order not to distort the phase shifts by the effects of the

WMT terms. The simplest means of accomplishing this
is to augment the parameter set representing the inside
the muon-tin spheres potential as either energy-depen-
dent phase shifts or logarithmic derivatives by a set
representing the WMT potential itself, i.e., augment the
parameter set by the coefficients of the Fourier series,
Eq. (5). Since in all four cases examined in the paper the
WMT terms were found to be small, one may treat these
terms as being derived from an effective pseudopoten-
tial." Moreover, since the matrix elements, Eq. (2),
were actually rather insensitive to the number of stars
used, Table VII suggests that perhaps two or three ad-
justable parameters are sufficient to adequately repre-
sent the WMT potential.

Still left unanswered is the question of the uniqueness
of the separation of the effective scattering potential
into phase shifts and WMT terms. Clearly, the result
is unique if one proceeds from calculated charge densi-
ties to potentials to band structures, as in the SRAPW
method. Whether the inverse is also true cannot be
stated at this time, although the small size of the WMT
terms suggests that if we use a perturbation argument,
the value of the WMT terms, but perhaps not the signs,
can be determined uniquely. We hope to return to this
topic in a future publication.
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