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Coupled Surface-Plasmon Modes in Metal-Thin-Film-Vacuum Sandwiches
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The normal surface-plasmon modes for a thin-layered plasma bounded on one side by a semi-in6nite
plasma and on the other side by a vacuum are determined. The characteristic frequencies of the coupled
modes resulting from surface oscillations of the plasma-plasma interface and the plasma-vacuum interface
are found. The relevance of these results to recent experiments by MacRae, Muller, Lander, Morrison,
and Phillips is indicated.

HE presence of cesium surface-plasma oscillations
in a system in which cesium is adsorbed on a

metal surface has recently been postulated. "Callcott
and MacRae have observed an energy loss in photo-
electron emission from nickel coated with a few layers
of cesium. ' They suggest that this energy loss may be
indicative of the excitation of a solid-cesium surface
plasmon. More recently, MacRae, Muller, Lander,
Morrison, and Phillips have reported characteristic
energy losses in back-scattered electrons in low-energy
electron diffraction studies from cesium-covered tung-
sten surfaces which they assert to be evidence for the
excitation of surface plasmons in the cesium layer.
Because of the different crystal structure of the cesium
thin film compared to its bulk structure, the electron
density is different in the layer and consequently the
surface-plasmon frequency a&, = (4srne'/rn)'t'/v2 is dif-
ferent for a layered structure than for a semi-infinite
plasma. Here, e is the free-electron density.

It is the purpose of this note to determine the normal
surface-plasma modes of a thin layer of a solid-cesium
plasma, bounded on one side by a semi-infinite plasma
corresponding to the nickel or tungsten substrate and
on the other side by a vacuum. %e will extend some of
the ideas put forth by Ritchie, Ferrell, and Stern for
treating thin plasma films. ' '

Following Stern and Ferrell, consider a semi-infinite
plasma in the half-space G&0 characterized by a dielec-
tric function e'er(O, a&) =1—oo s/cos with cu the plasma
frequency of the metal. In the region 0&G&r, another
thin-layered plasma is located with a dielectric function
e, (O,co) =1—co s/&os. The vacuum is in the region s) r.
The electric potentials in the three regions, from surface-
polarization charge, are given by

(p~(x,s, t) =2pp cos(kx cot)e s~*~,— G&0

io, (x,s, t) =cos(kx —cot)(Ae'*+Be "*), 0&s(r-
q„(xmas)t) =cos(kx oot)De ' ' *— G& v-.

At each boundary, continuity of the transverse electric
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and continuity of the normal electric displacement

~Pi ~Pj

~G ~G z=p, ~

give four equations, three of which are used to deter-
mine the constants A, 8, and C. The fourth equation
yields the eigenvalues through

with

1+~e—2sr

1 +~e skr—
6c—1

'y=
6c

(2)

Introducing the frequency-dependent dielectric func-
tions, Eqs. (1) and (2) are solved to yield the dispersion
relation

co'=-'{4o) '+2co '+L(4'.s+2cu ')'
—16((o '(u '(1+e—"")+to.'(1—c "'))j"') ( )

Ke shall look at certain limiting cases of the eigenvalues
given by Eq. (3).

(u) Thick cesium ftlrn in which e '~'-+0. In this
limit, Eq. (3) gives two branches

co~= (co&+co,s)"'/V2, oo =ro,/V2.

These solutions are just the eigenfrequencies of an
uncoupled cesium-metal interface and a cesium-vacuum
interface as they should be when the two interfaces are
far apart and thus do not interfere.

(h) Thin cesium ftlnt in which e s'~ 1;
Co+ =Q)sr/v2 ~

G7 =ooq.

The cesium does not affect the metal surface-plasmon
frequency as evidenced by the co+ solution. On the
other hand, if there is to be a characteristic frequency in
the cesium, it must be at the bulk-plasma frequency
since a zero thickness film has no surface layer. This,
however, may be a metaphysical problem.
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FIG. 1. Dispersion relations for
electron excitations in a cesium layer
bounded by a metal and a vacuum.
co„(k) is the cesium volume-plasmon
dispersion, co (k) the coupled surface-
plasmon dispersion, and the cross-
hatched area is the region of pair
excitations. The wave-vector scale at
the top is normalized to the cesium
Fermi wave vector, whereas the
bottom scale is in inverse angstroms.
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(c) Cesium film bounded by a vacuum oe bo/h sides
amounts to setting m =0 amd thus e =1 usia M,cuum.

This is the standard thin-61m result obtained previously
by Ritchie and Stern and Ferrell. ' ' It is, however, not
the relevant solution to the metal —thin-cesium-layer—
vacuum sandwich.

(d) Tbirr film with disPersiori Equation (3). has been
numerically evaluated with @co =20 eV, a typical
metal value, Ace, =2.96 eV, the value appropriate for
solid cesium, and r=2 5A. The disp. ersion relation for
the ~ branch is drawn in Fig. 1. Also drawn is a
schematic bulk. -plasmon dispersion curve. The cross-
hatched area corresponds to the region of electron-hole
pair excitations in which the left-hand limit is given by
E. i,

——0'(b'+2kkp)/2m. ' It is seen that the co branch
of the coupled surface-plasmon mode merges into the
continuum of cesium pair excitations as the character-
istic frequency is reduced to that of a cesium-vacuum
interface. Even with the possibility of dispersion in the
coupled mode, the cesium surface-plasmon frequency
may never be realized because of the increased damping
as the coupled-mode wavelength decreases. Finally, we
note that Fig. 1 should be rescaled according to the
true free-electron density in the cesium layer in order

' R. D. Mattuck, A Guide to Feynman Diagrams in the Many-
Body ProMem (McGraw-Hill Book Co., New York, 1967), p. 200.

to make a direct comparison with presently available
experimental results.

We are now left with the problem of determining
what is responsible for the energy loss at 1.5—2.4 eV
as the multilayers of cesium are deposited on the
tungsten. To do this, we contrast the coupled surface-
plasmon mode analysis presented here with the "zeroth-
order approximation" given by MacRae et a/. ' They
assume "that the inelastic scattering is associated with
the emission of surface plasmons defined by Ree(~)
= —1." As seen in the analysis given here, the char-
acteristic frequencies of surface plasmons for the
three-component structure are defined by a more
complicated condition, expressed in Eqs. (I)—(3).
MacRae et al. then claim that for a thin cesium film on
a tungsten substrate, the surface-plasmon mode splits
into two branches de6ned by the vacuum —thin-6lm-
vacuum equation given in case c. They assume that the
or branch is responsible for the measured loss and that
the dependence on film thickness is qualitatively
described by Eq. (4). It is felt that the generalized result
given by Eq. (3) and treated in case d here for a metal—
thin-plasma —vacuum configuration is a more realistic
model of a tungsten —thin-cesium-layer —vacuum con-
6guration than the vacuum —thin-plasma —vacuum con-
figuration assumed by MacRae et al.'

Regarding the energy loss, if a collective oscillation
is excited in the thin cesium layer, then the plasmon
frequency is given by Eq. (3) for a cesium electron gas
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with a density considerably less than that in solid
cesium when we deal with only a few (less than about
five) cesium layers. This can occur for two distinctly
different reasons. As seen in Fig. 1 of Ref. 2, the areal
density of the cesium lattice constantly increases from
an initial low density as the evaporation time and thus
coverage increase. The initial density and consequently
the free-electron density is thus less than in metallic
cesium. Second, as is well known in the theory of alkali
adsorption, for cesium to reduce the work function,
considerable charge transfer from the cesium to the
metal must occur, thus making for a much smaller
effective electron density in the region of the adsorbed
cesium. ~ 8 Put another way, if a thin cesium layer with
a work function g, is placed upon a tungsten substrate
with a work function P„)g„sufficient electron charge
would have to Qow from the cesium to the tungsten
in order that a dipole layer with a potential drop of
g„—P, could form and bring the Fermi levels of the
two materials into coincidence. If the cesium is suffi-
ciently thick, this Qow of electrons will not appreciably
affect the electron density in the cesium layer. On the
other hand, if one is dealing with a layer one to three
atoms thick, losing one electron per surface atom will

very much reduce the resulting electron density in the
cesium layer and thus, as seems to be observed experi-
mentally, the energy of coupled surface-plasmon modes
will be much smaller. As the coverage is increased to
the point where the thick-film limit is applicable, the
cesium surface plasmon, discussed in case a, will appear.

Next we note that the energy loss 6rst appears
experimentally at 1.5 eV in the thin layer. Equa-
tion (4) describing the vacuum —thin-61m —vacuum sur-
face-plasmon modes has the co branch going con-
tinuously to zero. Thus, Eq. (4) is not consistent with
the experimental observation that as ~ goes to zero
the characteristic energy loss to a surface-plasmon
mode goes to 1.5 eV. On the other hand, Eq. (3),
derived here, shows that as the cesium layer becomes
thinner, the co branch approaches a nonzero limit which

r J. W. Gadzuk, Surface Sci. 6, 133 (1967).' J. W. Gadzuk, in Proceedings of the Fourth International
Materials Symposium on the Structure und Chemistry of Solid
Surfaces, Berkeley, California, 1968 (John Wiley fair Sons, Inc. ,
New York, 1969).

could correspond to a cesium plasmon for a lower-
density electron gas, in accord with the experimental
observations in which the energy loss goes to 1.5 eV
rather than zero. Put another way, as the thickness
approaches zero, co —+

t 4srn(r) e'/ntj'ts, where we have
explicitly written the electron density as a function of
thickness for the reasons mentioned in the previous
paragraph. Thus, even though the ~ solution of Eq.
(3) approaches co, as r goes to zero, if rt(r) -+ small,
the or solution can decrease without going to zero, as
is evidenced experimentally. This decrease in frequency
occurs for a distinctly different reason than the inter-
ference effects causing the co solution of Kq. (4) to
decrease. It is the decreasing cesium electron density as
the cesium becomes thinner and not the interference
effects implicit in the co solution of Eq. (4) that we
feel are responsible for the drop in the characteristic
cesium "surface-plasmon" loss.

Finally, we note the possible role played by retarda-
tion effects in the interaction between the electric fields
at the two interfaces. Economou has presented a
detailed study of the role of retardation in various
sandwich configurations of metals and dielectrics. In
general, he finds that for wave numbers less than
ko=coo/c, with c the speed of light, retardation will
qualitatively alter the form of the surface-plasmon
dispersion curve and, in fact, may cause some of the
characteristic solutions of Kq. (3) to go to zero at
extremely low k. For Sar„=3 eV, as in the cesium layer,
k„=10 'A '. However, the available phase space and
density of surface-plasmon states is so small in this
region that the probability of exciting a 0&k„plasmon
is vanishingly small compared to the probability of
exciting one in the k„&k&k .„region (k, =0.2 A—',
the point where the plasmon curve merges into the
pair continuum). The instantaneous analysis implicit in
Eq. (3) should suKce, therefore, for interpretation of
surface-plasmon excitation data, and for this reason
retardation effects, thoroughly discussed by Economou, '
are neglected here.
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