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Taking into account the exchange-striction effects, the near-neighbor spin correlation functions of MnO
are calculated for temperatures below the Neel temperature by using Green's-function techniques with a
random-phase Tyablikov decoupling approximation. The resulting theoretical calculations are compared
to some experimental results, and it is concluded that the lattice-distortion-&sduced biquadratic exchange
effects are sufhcient to explain the experimental data. The trigonal distortion and isotropic volume contrac-
tion parameters are found to be j/J2 ——0.019 and j2/J2=0. 0021, respectively. The observed anomalous
behavior of the next-nearest-neighbor spin correlation function near the Neel temperature is theoretically
explained.

I. INTRODUCTION

I
'BE magnetic properties of antiferromagnetic

MnO and n-MnS have been of experimental and
theoretical interest. The neutron diBraction experi-
ments' give evidence that the spin ordering is of the
second kind. ' It has been suggested that the magnetic
properties of MnO can be explained by the presence of
intrinsic biquadratic exchange terms arising from the
superexchange in addition to the usual bilinear ex-

change terms in the usual Heisenberg Hamiltonian. '
However, effective biquadratic terms arise because of the
balance setup between exchange and elastic forces. ' '
The x-ray experiments of Sean and Rodbell' and
Morosin show that MnO undergoes a trigonal lattice
distortion below the Keel temperature T~ as well as an
exchange-striction volume contraction. A molecular-
6eld approximation (MFA) has been applied by
Rodbell and Owen' to explain the experimental results.

More recently the theoretical pictures of antiferro-
magnetic MnO and o:-MnS have been clarified by
Lines' ' and Lines and Jones. ""They used a Green's-
function (GF) method, in the random-phase approxima-
tion (RPA) with the Tyablikov decoupling approxima-
tion (TDA), to examine in detail the magnetic pro-
perties. They considered the trigonal distortion below

T& for MnO and biquadratic exchange terms for
n-MnS. The experimental data (neutron diffraction, '

x-ray, " and NMR'") support the theory that the
magnetization curve can be explained on the basis of
induced biquadratic terms due to the lattice distortion
without invoking the intrinsic biquadratic terms arising
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from the superexchange mechanism. In this paper we
shall consider MnO only, although the techniques are
applicable to other magnetic systems, e.g., o.-MnS,
XiO, FeO, etc.

In Sec. II we shall present the theory for the trigonal
distortion and isotropic volume contraction which are
related to the nearest-neighbor (nn) and next-nearest-
neighbor (nnn) spin correlation functions (SCF's),
respectively. The sects of crystalline anisotropy and
magnetostriction are believed to be small compared to
the exchange energy" at low temperatures and are
therefore ignored; only the effects of the spatial de-
pendence of the nn and nnn exchange constants
(exchange striction) will be considered. In addition, we
shall derive, relying heavily on previous work, ' " the
equations necessary to solve for the transverse spin cor-
relation function (TSCF) (5, 5,+) using a GF technique
in the RPA and in the TDA where we shall use the
double-time GF's as discussed by Zubarev. "- We shall
also derive a theorem which allows us to calculate the
longitudinal spin correlation function (LSCF) (5,'5,')
in terms of the TSCF. We can then combine the TSCF
and LSCF to obtain the SCF (S; S,). The calculations
pertaining to MnO are presented, compared to experi-
mental data, and discussed in Sec. III. The experimen-
tally observed' anomaly in the isotropic volume con-
traction in MnO at T~ is also discussed in terms of the
theory.

II. THEORETICAL CONSIDERATIONS

For temperatures above T~, MnO, as well as many
other iron-group simple compounds, belongs to the fcc
symmetry class of the XaCl lattice, and for tempera-
tures below T~, undergoes a trigonal distortion and an
isotropic volume contraction. ' "The spin pattern for
X'& 7'~ has been observed to be of the fcc type-2. ' ' For
this spin pattern the nn spins are ferromagnetically
aligned when they are on the same (111) sheet as the
reference spin and antiferromagnetically aligned when
they are on. adjacent (111) sheets. The nnn spins are

"D. N. Zubarev, Usp. Piz. Nauk 71, 71 (1960l LEnglish
transl. : Soviet Phys. —Usp. 3, 320 (1960)g.
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antiferromagnetically aligned and are on adjacent (111)
sheets.

When there exists the trigonal distortion from the fcc
NaCl structure below T~, the resulting crystallographic
symmetry of the unit cell would properly be described
as rhombohedral with an angle o. near 60'.~ In the
previous studies, the pseudocubic cell (four times the
volume of the primitive cell) has been found useful in
the analysis. ' We shall use the pseudocubic cell in
the following work.

Let the trigonally deformed cube have corner angles
~z&D. For small values of the distortion parameter 6
the distance d+ between parallel pairs of nn spins and the
distance d between antiparallel nn spins is given by
Lines and Jones'0 as

d+ =d(1+-', 6),
where d is the nn distance in the cubic phase. In addi-
tion, the nn distance will decrease owing to the isotropic
lattice contraction 8a/a. The exchange interaction
between d neighbors (jq+) and between the d+ neigh-
bors (J& ) may be written" "

with respect to 6 and 8a/a, we obtain for the equilibrium
values of 6 and 8a/a

A„=sgN Jgegg'/24C44,

S'=(S' S;)-"-(S' S )-,
(7a)

(7b)

(8a/a)
S2NJ962(Si ' Sj)nnn+ g s1&VJ161(R

6(C»+2C12)
(Sa.)

N. '=(S, .S,)..~+ (S,"S,)„. , (Sb)

A+ =A~-,'jS' —(A~&/J&e2) j2(S,"S,).„„——',j'(R', (9a)

J2 =J2—j2(S;' Sj) —
2 (J2E2/Jlf1) j'(R', (9b)

where T is the number of spins in the system, z& and s2
are numbers of nn and nnn, respectively, and e& and t.2

are defined by Eqs. (4a) and (4b). In the MFA for
T(T~ S'=2(8)' and (R'=0 and for T)T~ S'=0
but 6t'NO. Using A„and (Ba/a)„given by Eqs. (7a)
and (Sa), the exchange constants jq~ and J2' in the
Hamiltonian Eq. (5) become

Jg+ =Jg(1a-,'egA —egba/a), (2) where

J2' =J2(1—e28a/a),

where e& and e& are given by

eg= rB Injg/Br, —
e2= r8 lnJ2/Br—

(3)

(4a)

(4b)

where e~ and ~ are positive if exchange decreases with
increasing spin separation. We also assume that the nnn
spin interaction changes with nnn spin distance. The
nnn exchange-coupling constant depends on the
isotropic contraction of the lattice so that

j=sgNeg'Jg'/24C44,

j,=s,N~, 'J, '/6(C»+2C»),
j'= (s~A'~l /s2 J2 &2 )j2 ~

(10a)

(10b)

(10c)

In the Appendix, we show an alternative method for
obtaining the effective Hanultonian given by Eq. (5)
with the exchange constants given by Eqs. (9a,)—(10c).

The GF's that need to be calculated can be calculated
using Lines' ' techniques and results, where Lines used
the double-time GF's as discussed by Zubarev. "The
spin 5 is taken to obey the commutation relations

The spin Hamiltonian is taken to be"

ac=a j;S,"S,+P J, S,"S,yP J,'S,"S,, (S)

t 5,+,5;—/=28, ;5
$5~+,5 $ = —5;+8;, ,

$5;,5,'j=5, 8;;,

(11a)

where P„" and P„„' refer to summation over nn
parallel and antiparallel spin pairs, respectively, and
P„„„refers to a summation over nnn spin pairs. In this
work, J& and J2 as they appear in Eqs. (2) and (3) are
intrinsically positive.

The ela, stic free energy which includes the shear and
isotropic contraction terms is written as '

5,+=5,*+i', 5; =S,' iS,~. -—(11b)

((5'+;~))=(2/N) EGi '" '-", (12a)

For spins i and j on the same sublattice we have from
the work of Lines8 ~

1 Cgg+2C» 38a)'
!F,g =$C445'+—

2 3 ai (6)
G~K=Z ((5";»))~ '

B,=f(5 )5,

(12b)

(12c)
where C~~, C~2, and C44 are the usual elastic constants
for cubic materials. Now BF, /M, = (BK/86) and
similarly when the derivative is taken with respect to
8a/a. "The angular bracket denotes a thermal average
over the ensemble. Thus minimizing the free energy

where E is the total number of spins in the lattice, and
where K is a reciprocal vector which runs over 2N
points in the first Brillouin zone of the reciprocal sub-
lattice. In a similar manner, G2K is dered for spin@
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i and j on different sublattices. The resulting GF's are '

F 1—A 1+A
Crir = — +

4' E+8Ep E 8Ep—

F —C C
GpK= —— —+-

4ir E+8Ep E 8Ep—
(13b)

eE jkT
(15a)

where A=p/Ep, C=)~/Ep, Ep ——(p' —)~')'", 8 is the
average spin per magnetic atom, a,nd F=([5,+,B,]).
The quantities p and X are defined by

p+~ 4~1 (clcp+cpcp+cpcl)+4~2[1 —(y2/~2)

&(S' S )-.](ci'+c '+cp')+4j(l &')

X (3—sisp —spsp —spsi) 1 (14a)

p —)~ =4Ji'(sis&+s2sp+spsi)+4J p[1 —(j2/J p)

&& (S,"S,)„.j(si'+s p'+sp')+4 j(-', &')

)& (3—cicp —c2cp —cpci), (14b)

Ji'= Ji (Jl—plj 2/Jppp)(S Ss) sg (14c)

where c)=cosE)a, s)=sinE)a, and l=x, y, z.
The CF (B,S,+) is calculated from"'

usable form, namely, in terms of the GF rather than
the spectral function. We shall then use this theorem to
evaluate the SCF's [Eq. (17)] for nn parallel and anti-
parallel spins and for nnn spins.

The average spin per site 8 can be calculated from
Lines' expression

28+x (x+1)' +'+(x—1)' +'

25+1 ($/1)' +' —(x—1)' +'

x = (A coth(8Ep/2kT)) K, (18b)

where the transcendental equation [Eq. (1ga)] is to
be solved for 8.

Mills" has given a proof that the expectation value
of the Heisenberg exchange Hamiltonian for ferro-
magnetism could be computed, knowing only the
TSCF's. We shall now prove the theorem for general
operators A(1) and B(t') (tWt' in general) using the
spectral representation function as is usually defined so
that the formalism discussed by Zubarev" can be used.
The advantage of the form of the theorem we shall
derive is that it can be expressed in terms of the Green's
function as well as in terms of the spectral representa-
tion function. The theorem can be derived in a straight-
forward manner from Zubarev's paper. Combining
Zubarev's Eqs. (3.7a) and (3.7b), expressing the spec-
tral function in terms of the advanced and retarded
GF s [Eq. (3.25)], and differentiating e times with
respect to t', we have for the eth moment theorem

1
lim

~' ' kp+4 —px p —4 —ZK)

= —2pri5(E —EK) . (15b)

lim (—i)r)
e-&0

de' gn~ —iE(t—g')

X[((A;B)) „,—((A; B))

Therefore, from Eqs. (11a)—(15b) for f(5,') =1 when i
and j are on the same sublattice we have

(5;—S;+)=-,'F(e'I'&' i'[A coth(8Ep/2kT) —1])K, (16a)

and when i and j are on diferent sublattices

(5; S~+)= ',F(e'K &' &'C—c-oth(8E'p/2kT)) x, (16b)

where here F=28. The brackets ( )K = (2/1V)

X+K (. . .) where again K runs over —,'1V values in the
first Brillouin zone of the reciprocal lattice.

In calculating the SCF's (S,"S;), we can write this
as

(S, S,.) =(SJ—5,+)+(5;*5;*) for i N j. (17)

The TSCF (5, 5,+) is relatively simPle to calculate
using standard GF techniques. However, the LSCF
(S;*5,*) is somewhat dificult to calculate. A spectral
theorem similar to the one introduced by Mills" can be
used to calculate the LSCF in terms of the TSCF. In
vrhat follows we shall derive this theorem in a more

ip R. E. Mills, Phys. Rev. Letters 18, 1189 (1967).

=([[X,[X, . .. [X,[X,B($')] ] . . .] ],A($)]) (19)

where the expression on the left-hand side of the com-
mutator, whose right-hand member is A(1), represents
e nested commutators, i[X,B(t')] is the time deriva-
tive operator, and [A,B]=AB—gBA where i)=&1.
We are using the units A =1.

We now consider the GF((5;+;5, ))a and X to be
given by Eq. (5). At equal times for i'd=0 we find that
the application of Eq. (19) gives an identity indicating
the decoupling scheme is a proper one. For v=1 we
arrive at an expression for the LCF in terms of the TCF
as we will show below.

Applying Eq. (19) for m=1 and using Eqs. (5),
(16a)-(17) we have for i&j but i and j on the same
sublattice

([[XA'-]-,5;+] )= -J -[(5;-5;+)+2(5,'5,')]
= —[4(8)'/&] r.
= —2(8)'Ji—,
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and for i/ j andi and j on different sublattices we have

(LPe,s,-),5,+~ )

Jy+ fol i and j nn

J2 for i and j nnn

=(4/iV)(8)' Px e'x'&' &&X

J1
=2(8)'

J2'

P(5;—5;+)+2(5'5')j

(21)

(s*"s )= —(8)'+-'(5~ 5'+)
= —(8)'——,'8(e'x'&' —»C cothSEO/2kT) x. (22b)

The CF (S,"S,)„„"is found from Eq. (22a,), and the
SCF's (S; S,)„„and (S,"S;)„.. are found from Eq.
(22b).

At this point it should be noted that the theorem
given by Eq. (19) is an exact statement which depends
on. knowing the exact GF. However, as Eq. (19) was
applied to obtain Eqs. (22a) and (22b), the GF was
obtained through an RPA with a particular decoupling
scheme, and the accuracy of the results for the SCF's
depends on the TDA as well as the RPA. As will be
shown in Sec. III, the agreement between the theoreti-
cally calculated and experimentally determined SCF's
is remarkable, indicating the R.PA with the TDA are
good approximations for this problem.

%hen T approaches TN from below S—+ 0 and from
Eqs. (20) and (21) it is obvious that (5 5 )~r„-
= —s(5; S;+)

~
r~-, where the TSCF's can be calculated

from Eqs. (16a) and (16b) in the limit of 8~ 0. When
i/ j, we have for i and j on the same sublattice

(5,—5,+)
~

„-r= 2kT (e&'v&'x—»A/E, )x, (23a)

and for i and j on different sublattices we have

(S,-S,+) ~,„-=—2kT» (e'x &'-»C/E, )x. (23b)

These results LEqs. (23a) and (23b)j agree with Lines'
results for T~ T~ LEqs. (4.37) and (4.38) of Ref. 8
where the yy SCF(5"S")has a value of sr(5 5+) and
kTN is given by Eq. (2.26) of Ref. 8j.Now since the xx
and yy SCF's are equal, we have from Eqs. (17), (20),
(21), (23a), (23b) that for T~ T~ from below, the
sz SCF is equal in magnitude to the xx and yy SCF's
but has opposite sign. However, for T —+ T~ from
above, the xx, yy, and ss SCF's are all equal and have
the same sign, indicating an anomalous behavior of the
(S; S;) SCF at the ordering temperature. We shall
discuss this result in Sec. III.

Solving for (S,*S ) when iQ j from Eqs. (20) and (21),
we have from Eq. (17) for i and jon the same sublattice

(S; S,)=(8)'+-,'(5;-5, )
= (8)'+-,'8(e'x'&' l&A coth8Es/2kT) K, (22a)

and for i and j on diGerent sublattices we have

III. CALCULATIONS AND DISCUSSION

In this section we calculate the nn and nnn SCF's
for MnO using the equations developed in Sec. II.
The parameters to be used in the calculation of the
SCF's are determined from the available experimental
data. The procedure for the calculation of j LEq.
(10a)j and js $Eq. (10b)g is as follows. Xt is apparent
from Eqs. (7a) and (8) that the evaluation of j and js
from the trigonal distortion and isotropic volume con-
traction data requires knowing the SCF s, which in
turn requires knowledge of these parameters. Thus we
must use a bootstrap technique to obtain values for
these parameters. Using a value of 8=2.43 (where the
spin S=-,'for the Mn++ ion in MnO at T=O'K)"
we rePlaced sr@' by (8)s and (S,"S,)»~ by —(8) in
Eqs. (7a) and (8a) and let (R'=0. Then using the experi-
mentally determinedr D,~= 1.1X10 ' and (&a/a), ~
= 1.1)&10 ', we obtained values J~e~ =230'K and
J2s2 ——130'K where we used 1K=4.7X102s cm ' (Ref. 6),
Cz&=2.23&10" dyn cm ', Ci2=1.2&10" dyn cm ',
and C44=0.79&10' dyn cm, ' and z~ ——12, and
as=6. From Eqs. (10a) and (10b) we obtained the
values j/Js ——0.019 and js/Js ——0.0021 where we used
JR=10'K and J2=11'K as determined by Lines and
Jones's from the experimental data. We could then
calculate sr 3', sr(R', and (S; S;)„„„to use in Eqs. (7a)
and (8a) and then repeat the process. However, we
found that using —'8'=(8)' (R'=0, and (S,"S;)»~
= —(8)s in Fqs. (7a) and (8a) gave us satisfactory
results for j/Js and js/Js. Note that our value of j/Js
is approximately twice as large as the value Lines and
Jones" calculated for MnO, although our Jrsr agrees
with their value. The reason for this is that their effec-
tive Hamiltonian found from the total free energy
gives values for the distortion and isotropic volume
contraction parameters on.e-half of our values. (For
a discussion of their eGective Hamiltonian, see the
Appendix and Ref. 11.)

It is apparent from Eqs. (14a), (14b), (18a), (18b),
(22a), and (22b) that the quantities 8, (S; S,) „&,

(S; S,)„', and (S; S;),„are all interrelated, and the
equations should be solved simultaneously for these
quantities. However, the following procedure was used
to solve for the above quantities. In solving for 8 from
Eq. (18a), we took 8'=2(8)', I'=0, and (8; 8;)„„
= —(8)' in the expressions for &&J, +)& and p —X LEqs.
(14a) and (14b)$. The resulting 8 was used to calculate
the SCF's in the above approximation. For small
values of j/Js and js/Js, we found that the error in the
resulting SCF's from using this approximation was
small. The method we used for calculating the sums is
outlined below.

In calculating the sums over the Brillouin zone, the
singular points, when 80~0, need special attention.
The points in the sum over the first Brillouin zone
where ED~0 were replaced by an integral around

"D.W. Oliver, J. AppL Phys. 40, 8N (1969):
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these points. The points outside the integrated regions
were summed in a conventional manner. The K values
ranged from —or/a to or/a, ' " and a mesh of (48)o
points was used.

We determined that for the above number of mesh
points, the resulting SCF's did not change appreciably
from calculations using meshes of (24)' and (36)'. Be-
cause of the great expense of computer time and the
small increase in accuracy, in the SCF's, we did not feel
that taking more mesh points was warranted.

In our calculations we used the ratio Jo/Jr=1. 1,
whereas Lines and Jones" used Jo/Jt=1. 0 for their
calculations of 8 for T(Tor. However, using the
correct Jo/J& ratio did not greatly alter the 8-versus-
temperature curve from their results.

To determine the effect of the isotropic volume con-
traction and the trigonal distortion on the shapes of

I
I

I
I

t I f I 1 I

j/J 019 J /J .0021

0 2 4 6 8 10 12

kT/32

F&G 1. Shown are curves of the average spin per site as a func-
tion of temperature which were calculated in the random-phase
GF approximation for S=-,', for J2/J& = 1.1, and for various values
of the trigonal distortion and isotropic volume contraction
parameters.

the average spin per site curve (8) and the near-
neighbor SCF curves, various values of j/Jo and jo/Js
were used in the calculation of 8, (S; S;)„„"/S(S+1)
and (S;.S;) „/S(S+1), and (S;.8;)„„/S(S+1) versus
kT/Js where S=-,'. The results are shown in Figs. 1-3.
In addition, we calculated. curves for j/Jo=0, jo/Jo
=0.0021 and j/Js=0. 019, jo/Jo=0 and found that
these curves did not differ significantly from the curves
j/Jo=0, jo/Jo=0 and j/Js=0. 019, jo/Jo ——0.0021, re-
spectively. 'o This indicates that the shapes of the S
and SCF curves versus temperature are rather insensi-
tive to the isotropic volume contraction in agreement
with the conclusions of Sievers and Tinkham. "How-
ever, from the curves in Figs. I—3 and from the work of
Lines and Jones, 'o it is clear that the shapes of the 8
and of the SCF curves versus temperature are quite
dependent on the amount of trigonal distortion, but
the sensitivity to the trigonal distortion is diminished
for values of j/Jo)0. 01."

When j/J x=0.019, the 8 and SCF curves are double
valued for temperatures near the ordering tempera-
ture, indicating a first-order phase transition. That
is, for a sufhcient amount of trigonal distortion, the
normal second-order phase transition (8 versus kT/Jo
for j/Js=0 curve) is forced into a erst-order phase

J2-.0021

+
CA «4
CA

~ =3-

+
CA

CA

sn

fbi

.6-

0-
kT/ 32 10.6

I ~

t tris@
~ &o. o

o t o f f t f t o I r t o I

0 2 4 6 8 10 12 14 16
kT/32-

+
CA

CO

C

-.2-

-4-

- 6-
.0021

8 o 1 ) 1 t t t I f I ( I'
0 2 4 6 8 10 12 14

kT/J2

FIG. 3. The solid curves are the nnn SCF's as a function of
temperature which were calculated in the random-phase GF
approximation for S=-'„ for J,/Jr = Ll, and for various values of
the trigonal distortion and isotropic volume contraction parame-
ters. The dot-dashed curve is Lines and Jones's (Ref. 10) calcula-
tions for T)T~, for S=o, and for Jo/Jr=1. 1. The open circles
sre Morosin's (Ref. 7) experimentally determined values for the
correlation function, Eci. (8a), as s function of temperature, which
were normalized to the j/So=0.019, jo/Jo=0. 0021 theoretical
curve at T=O'K. The straight vertical lines are Blech and
Averbach's (Ref. 19) data.

Fro. 2. The solid curves are the nn SCF's for parallel and anti-
parallel aligned spins as functions of temperature which were cal-
culated in the random-phase GF approximation for S=~~, for
Jp/Ji=1. 1, and for various values of the trigonal distortion and
isotropic volume contraction parameters. The dot-dashed curve is
Lines's (Ref. 9) calculations for T)TN, for S=-'„snd for
Jg Jg=1.

"At T=O'K there was eo effect of jo/Jo=0, 0.0021 on the
j/Jq=O, 0.019 curves, while at higher temperatures the jo/Jo
=0.0021 curve was approximately a linewidth, Figs. 1-3, above
the jm/J2 ——0 curves for j/J2=0, 0.019.

"A. J. Sievers, III, and M. Tinkham, Phys. Rev. 129, 1566
(1963).
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transition. Lines and Jones" determined in their cal-
culations that the transition from second to first order
occurred for a distortion parameter of 0.001(j/J&
&0.005. For the first-order antiferromagnetic-to-
paramagnetic phase transition we shall take the Neel
temperature to be the largest temperature for which
there is a solution; i,e., the right-hand extremity of the
8 and of the SCF-versus-kT/J& curves for j/J& ——0.019,
j~/J2 =0.0021 of Figs. 1—3. Hence, we find that k Tiv/J&
=10.6 and for JR=11'K we have T~=117'K, which is
in excellent agreement with the experimentally observed
Tiv of 117&1'K"is

The near-neighbor SCF's can be experimentally
determined from the trigonal distortion and isotropic
volume contraction data. Measurements of h,~ and
(8a/a), a give us measurements of (S; S,) „"—(S; S,) „
and (S;.S;)„„„through Eqs. (7a) and (ga), respectively,
where we set R'=0.

In order to determine (8a/a), a experimentally, we
must know the thermal expansion of the solid when
there is no contribution from the magnetic interactions.
Morosin~ has calculated the lattice constants for the
"nonmagnetic" solid, and from his work we have
(8a/a), a versus temperature. In Fig. 3 we have plotted
Morosin's' data of (ha/a), a(T)/(8u/a), ~(T=0) nor-
inalized to the theoretical curve j/Js=0. 019, js/Js
=0.0021 at T=O'K. (Calculation of j and j& from the
data implies the normalization at T=0'K.) For a com-
parison we have plotted in Fig. 3 the' values of
(S; S;) „„/S(S+1)for T) TN calculated by Lines and
Jones" for Js/Jr =1.1. In their calculations they ignored
the volume dependence of J2 for T&T~ which in-
troduces a small but probably negligible error. In
addition, we have plotted the diffuse neutron-scattering
data of Blech and Averbach' as given by Lines and
Jones "

In Fig. 4 we have plotted the theoretical curve of
(8'/2)'I' versus kT/Js obtained from Eq. (7b) and
Fig. 2 for j/Js ——0.019 and js/J&=0.0021. In addition,
we have plotted Morosin's" experimentally determined
trigonal distortion data )h,a(T)/A, a(T=O)$'~' which
were normalized to the theoretical (8'/2)'~' curve at
T=O'K.

From Figs. 3 and 4 we see that there is excellent agree-
ment between theory and experiment, and that the
introduction of ie]riess biquadratic exchange terms are
not needed to explain the experimental results. In
Fig. 3 the predicted anomaly in the SCF at Tz (see
Sec. II) is experimentally observed and has a magni-
tude of approximately the predicted value. The ex-
perimental points of Morosin~ in Fig. 3 show a marked
departure from Lines and Jones' s" calculated curve
just above T~. At the higher temperatures, the experi-
mental points fall approximately on the calculated

"R.W. Millar, J. Am. Chem. Soc. SO, 1875 (1928).' S. S.Todd and K. R. Bonnickson, J.Am. Chem. Soc. 73, 3894
(1951).

's L A. Blech and B.L. Averbach, Physics 1, 31 (1964).
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FEG. 4. The solid curve is the calculated curve of (-,'5')"' as a
function of temperature determined from Kq. (7b) and Fig. 2 for
j/J2=0. 019 and j2/J&=0.0021. The open circles are Morosin's
(Ref. 7) data of the trigonal distortion, LA,~(T)/A. ~(2'=0) /is,
normalized to the theoretical curve at T=O'K.

B.Morosin (private communication).
"R.A. Tahir-Kheli and H. B. Callen, Phys. Rev. 135, A679

(1964).

curve. Note that Blech and Averbach's" data show the
same sort of departure from Lines and Jones's curve
just above T~ as does Morosin's data. In Fig. 4 the
agreement between the calculated curve and the ex-
perimental points is very good except for temperatures
near T~. Morosin's data give a T~ of 120'I, whereas
the theoretical curve has TED=117'K.

The small discrepancies between the theory and ex-
periment at Tz may be caused by (i) in the calculations,
using J&/Jr and/or j/Js ratios which are too small;
(ii) the possibility of an error in the measurement of the
temperature in the experimental data (the experi-
mental A,~ vanishes at a measured T=120'K. rather
than the expected 117&1'K);(iii) the breakdown of the
RPA with the TDA which were used in the calcula-
tions; (iv) the contribution to the lattice contraction
because of a nonzero 6l' for T)T&, (v) the possibility
of a nonzero 8' just above Tiv. Lines and Jones have
ruled out this last possibility. "

It is interesting that MnO should be quite markedly
a 6rst-order phase transition with a respectable sized
hysteresis. It is somewhat surprising that a large
hysteresis and/or associated latent heat has so far
escaped detection. Morosin'0 did, however, find a
small amount of hysteresis in his work.

In order to resolve the discrepancies between the
theoretical calculations and the experimental data for
temperatures near T~, it is hoped that the theoretical
calculations and the predicted anomaly given in this
paper will stimulate further experimental and theoreti-
cal investigations for temperatures near the ordering
temperatures in magnetic systems —in part. icular, in-
vestigations into those systems which obey a Heisen-
berg-type model. In their calculations of the LSCF of
the Heisenberg ferromagnetic, Tahir-Kheli and Callen"
have observed a difference between -the TSCF and
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I SCF for near-neighbor spins at the ordering tem-
perature. A preliminary investigation shows that in a
simple RPA GF calculation, the Ising model does not
exhibit the anomaly for the nn SCI' at the ordering
temperature.
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APPENDIX

It is the purpose of this Appendix to illustrate an al-
ternative method for obtaining the effective spin-
lattice coupled Hamiltonian used in Sec. II. To il-
lustrate the method we shall consider the simplified
Hamiltonian

K= A+XhA+P'/2p+-'CA' (AI)

where A is a spin operator (e.g. , S,'S,), & the lattice
strain with the canonical momentum P, p is the density,
C the appropriate elastic constant, and A. is the coupling
constant. We can eliminate the interaction term (term
linea, r in 6) by a change in the origin. Let d, =D' —60
and choose 60 to eliminate the terms linear in 6'. The
resulting Hamiltonian is

K= A —(A'/2C) A'+E'/2p+-, 'CD" (A2)

which contains terms depending only on the spins (A
operator) and terms depending only on the lattice. In
calculating the GF ((S;8)& where S and J3 are some spin
operators (supressing sub- and superscripts), we ha, ve
from the term quadratic in A the GF

((fS,A JA+ALS, A1; 8&)

which we decouple as follows:

((LS,A JA+ALS, W; Il)) ~2(A&((LS, A3 Il&&

This decoupling scheme is equivalent to taking an
effective Hamiltonian for the spin terms of

x,=A- j(A&A,

j= 1%.'/C.

(A3)

(A4)

'2 The author has discussed this factor of & with M. E. Lines and
he concurs that the effective Hamiltonian used in this work is the
appropriate one to use.

The effective Hamiltonian LEqs. (A3) and (A4)g is
equal to an effective Hamiltonian obtained by the
method employed in Sec. II. That is, the effective
Hamiltonian found by minimizing the free energy ob-
tained from Eq. (AI) with respect to the lattice strain
6, and then replaced ~ by its equilibrium value A,~ in
the second term of Eq. (A1). This results in a spin
Hamiltonian equal to 3C, given by Eqs. (A3) and (A4).

It is noteworthy that Lines and Jones' s" "effective
spin-Hamiltonian results in a j one-half our j value.
Essentially their method is to minimize the free energy
as we did in Sec. II, substitute the resulting h,~ into the
expression for the total (exchange plus elastic) free
energy, and then choose an effective Hamiltonian which
yields the total free energy. The factor of —,

' difference
in the "j"values arises from the 6 term of the lattice
free energy. When D,~ is substituted for 6, this 6'
depends on (A)', and in the effective Hamiltonian it is
of the form (A)A. Their resulting effective Hamil-
tonian would be A —(X'(A&/2C)A. " In earlier work,
Rodbell and Owen, ' using a MFA, calculated the
effective exchange energy and the distortion and
isotropic contraction parameters for MnO and XiO in
a manner similar to Lines and Jones, ""and therefore
their work also reflects this factor of ~.


