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A careful study of the dispersion of the transverse acoustic phonons and the low-frequency transverse
optic phonons in KTa03 has been carried out by inelastic neutron scattering. In addition to the well-known
temperature dependence of the optic-mode frequencies, both the acoustic-phonon frequencies and the
neutron-scattering cross sections of the TO and TA phonons with q along L100] show a marked temperature
dependence. This anomalous behavior is not, however, revealed in ultrasonic velocity measurements. Sy
means of a long-wavelength expansion of the lattice-dynamical equations, we show that these phenomena
are the result of quasiharmonic coupling of optic- and acoustic-like excitations. In centrosymmetric crystals,
this interaction vanishes as the wave vector q ~ 0, in such a way as to leave the limiting acoustic velocity
unaffected. The existence of this interaction suggests the possibility of a soft Brillouin-zone-center optic
phonon precipitating an instability in a mode with mixed acoustic-optic character and nonzero wave vector,
giving rise to an antiferroelectric (or microtwinned ferroelectric) phase.

I. INTRODUCTION

' T is by now a well-established fact that the ferro-
~ - electric phase transformations which occur in several
cubic perovskites result from an instability of a long-
wavelength optical phonon. "More or less typical is
the behavior of the lowest-frequency optic-phonon
branch in KTa03, an incipient ferroelectric with an
optic-phonon branch which tends toward, but never
achieves, instability at the lowest temperatures. This
behavior is demonstrated directly in the data depicted
in Fig. 1, which was obtained in the present study.
More extensive data of this type, involving phonons
with different wave vectors, q, is summarized in Fig. 2.
These results indicate that all of the transverse-optic
(TO) modes with q= ($,0,0)a* show a marked tem-
perature dependence, but the variation is most striking
in the vicinity of the minimum at the Brillouin zone
(BZ) center (q=0). The increasing instability of this
mode as the temperature is lowered accounts for the
divergent low-frequency dielectric response character-
istic of ferroelectric materials. Somewhat more un-

expectedly, q = ($,0,0)a* transverse acoustic (TA) mode
frequencies also show a remarkably strong temperature
dependence, which is not only of much larger mag-
nitude than typical, but of opposite sign. (Most ma-
terials become acoustically softer with increasing tem-
perature. ) This observation, first made by Shirane,
Nathans, and Minkiewicz, 4 is all the more remarkable

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

P. W. Anderson, in Fisika Dselectrikov, edited by G. I. Skanavi
(Akademica Nauk SSSR Fizicheskii Institute, Moscow, 1960).

2 W. Cochran, Advan. Phys. 9, 387 (1960).' S. H. Wemple, Phys. Rev. 137, A1575 (1964).
4 G. Shirane, R. Nathans, and V. J. Minkiewicz, Phys. Rev.

157, 396 {1967).

because of the fact that ultrasonic velocity measure-
ments in KTa03 by Barrett' show that at very long
wavelengths (q —+ 0) the (t,0,0) TA phonon frequencies
have a rather low and "normal" (i.e., negative) tem-
perature dependence. Barrett tentatively suggested that
this apparent discrepancy between the two types of
measurements might have resulted from the presence
of small amounts of impurities deliberately incorporated
into the sample investigated by neutron scattering.
ramada and Shirane' remarked upon the qualitatively
similar behavior exhibited in SrTi03 and also noted
that in this material the temperature dependence of
the neutron-scattering cross sections for the soft )$00)
TQ and the TA phonons could not be accounted for
by the usual changes in the thermal occupation factors.

Several authors have discussed the acoustic-optic
mode coupling mechanism by which soft optic modes
cause elastic and piezoelectric anomalies in noncentro-
symmetric crystals. ' Lefkowitz and Hazony" have
discussed the temperature dependence of the frequency
of acoustic modes of cubic centrosymmetric lattices
(such as SrTiOs and KTaOs) on the basis of an over-
simplified model which predicts elastic instabilities
similar to those which can occur in noncentrosymmetric
lattices. In fact, there are distinct differences between
the acoustic-optic mode interaction in centrosymmetric
and noncentrosymmetric structures. It is the purpose
of the present paper to examine in detail the nature of
optic-acoustic mode interaction in centrosymmetric

~ H. H. Barrett, Phys. Letters 26A, 217 (1968).
6 Y. Yamada and G. Shirane, J. Phys. Soc. Japan 26, 396

(1969).
7 W. Cochran, Advan. Phys. 10, 401 (1961).
8 V. Dvorak, Phys. Rev. 167, 525 (1968).
9 P. B. Miller and J. D. Axe, Phys. Rev. 163, 924 (1967)."I.Lefkowitz and Y. Hazony, Phys. Rev. 169, 441 (1968).
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Fro. 1. Examples of inelastically scattered neutron groups in
KTaO& illustrating the temperature-dependent frequencies and
scattering cross sections for the TA and lowest-frequency TO
modes with g= (0.2,0,0)a*. Due to finite resolution elastic Bragg
scattering is seen below about DE=3 meV.
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crystals, particularly in relation to the understanding
of ferroelectric phase transformations.

In the Appendix we develop a long-wavelength ex-
pansion of the dynamical equations of a complex (i.e.,
non-Bravais) lattice. This formalism admits, in Sec. II,
to further obvious simplifications useful in discussing
the interaction of a nearly unstable optic phonon

branch with other branches. By this means we show
in particular that in centrosymmetric crystals there
exists quasiharmonic coupling of optic- and acoustic-
like excitations which does not, however, aQect the
limiting acoustic velocities, nor does it affect the macro-
scopic elastic properties. In Sec. III we present the
results of an inelastic neutron-scattering study of some
of the anomalous low-frequency transverse phonons in
KTa03 and demonstrate that the acoustic-optic mode
coupling mechanism outlined above provides a quan-
titative description of these observations. Finally, in
Sec. IV we suggest that the existence of mode inter-
action of this type must, in certain cases, influence the
course of displacive phase transformations. In such
cases, although the driving force for the transformation
is the collapse of a q=0 optic-phonon mode, the lattice
first becomes unstable against a coupled excitation with
a nonzero wave vector.

II. ACOUSTIC-OPTIC MODE INTERACTION IN
CENTROSYMMETRIC LATTICES

In order to discuss the microscopic theory of elastic
behavior, Born and Huang" introduced the method of
long waves which consists of an expansion and solution
of the lattice-dynamical equations in successive powers
of the magnitude, q, of the wave vector of the phonons.
Because it was primarily directed at terms which
affected the acoustic velocities in the limit q —&0,
Born's development is not sufficiently general for the
present purpose. In the Appendix we have extended this
method in order to derive the expressions relevant to our
discussion. After expansion of the dynamical equations
in a power series in q, the equations are subjected to a
transformation which diagonalizes the g=0 contribu-
tions, leaving nondiagonal parts which are small for
small g and which exhibit an explicit q dependence. In
this formalism the equations governing the Inode eigen-
frequencies cu (jq) LEq. (A11)7 are
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where a&0(jj) is the eigenfrequency of the g=0 mode
belonging to the jth phonon branch.

I
Because of the

well-known singular behavior of Coulombic lattice sums,
the ~0(jj) may depend upon the direction j of the
wave vector even as g ~ 0, as long as electromagnetic
retardation is neglected. ) The expansion is even in q
for centrosymmetric lattices and the ma, trix elements
J y&"&(j) which are responsible for dispersion of the
phonon branches are seen from Eq. (A10) to be pro-
jections of the harmonic dynamical matrix onto the
space of the g=0 eigenvectors. Ke emphasize that the
eBects being discussed are essentially hannoeic in origin,
and that anharmonicity is invoked only implicitly to

Fro. 2. Summary of the temperature-dependence dispersion curves
for ($,0,0) TA and soft TO phonons in KTa03.

'~ M. Born and K. Huang, Dynarnica/ Theory of CrystaL Lattices
(Clarendon Press, Oxford, England, 1962), Chap. V.
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provide temperature dependent mode frequencies (the
so-called "quasiharmonic approximation").

The transformation performed consists of an ex-
pansion of the eigenstates at nonzero q in terms of the
complete set of q =0 eigenstates

and results in the appearance of the off-diagonal ele-
ments of the matrices F&~&(j) which have the eRect of
coupling together these q=0 basis states. "Mode cou-
pling" is a convenient descriptive term to describe this
situation an we shall adopt it. It is important to realize,
however, that although the actual physical situation
we are describing is one of renormalizing or "recoupling"
of temperature-dependent harmonic modes, the descrip-
tion of what, in fact, constitute the uncoupled basis
modes is arbitrary. The q=0 modes are chosen as the
basis set because the resulting formalism is extremely
convenient, and because of the singular nature of the
q=0 acoustic eigenmodes.

For a general direction of q all branches are coupled.
When q is along a high symmetry direction in the BZ
certain of the elements F,t r"&(j) may be shown to
vanish for all e; i.e., some branches become non-
interacting. In fact only modes which transform ac-
cording to the same irreducible representations of the
group of the wave vector q under consideration will
interact with one another.

If the oR-diagonal elements are small (small g), Eq.
(1) may be solved by standard perturbation techniques,
a useful procedure for examining some of the char-
acteristics of the solutions. Further specializing to the
eigenfrequencies of the three acoustic branches, for
which &uo'(j„j)=0,

contributions to the elastic constants mentioned pre-
viously, which in conjunction with soft-optic modes,
do give rise to anomalous elastic behavior in non-
centrosymmetric lattices. ']

The mixed acoustic-optic character of the phonons
directly affects the polarization vectors of the modes,
and when the coupling is strongly temperature de-
pendent as in ferroelectrics, this effect is necessarily
reflected in temperature-dependent changes in the cross
section for inelastic neutron scattering. In the harmonic
approximation the integrated inelastic neutron-scatter-
ing cross section for a phonon of wave vector q is given
by

Here k; and ky are the momenta of the incident and
scattered neutrons and (k; —kr) =Q is the momentum
transferred to the crystal. n(jq) is the phonon occupa-
tion number for a phonon of frequency cu(jq). Q is
related to the wave vector of the phonon by Q=q+G,
where G is a reciprocal lattice vector. The inelastic
structure factor for the (jq)th normal mode may be
written as

unit eeii

F;,r(gQ) = P nrI, "PQ wI, (j q))bj.e ~'e'o "" (4).

Here bl, and e ~I are, respectively, the neutron-scatter-
ing length and the Debye-%aller factor for the kth
nucleus. Due to the coupling effects we have been con-
sidering, aside from temperature dependent changes in
cv(jq), Wr, and I, there occur changes in the polariza-
tion vectors wr(jq). Using Eq. (A8), we may exPress
the structure factor at a general (jq) in terms of the
structure factors of the g =0 modes, as observed at the
nearest reciprocal lattice point G;

F; . ( 'Q) =Q 5,,'F,„('G),

Suppose we are considering the high-temperature para-
electric phase of a typical displacive ferroelectric, with
one branch exhibiting typical unstable soft-mode be-
havior, which for the sake of definiteness we might
assume to be of the form ceo'(j') =a(T T,). Equation—
(2) shows that we should expect a corresponding
temperature-dependent softening of the acoustic branch.
But one notices further that this anomalous contribu-
tion to the acoustic-mode frequency is of lowest order
q' and is thus without eRect upon the limiting acoustic
velocity (B&o;,/Bq), 0 I F;.;,"'

I

't——'. The macroscopic
elastic behavior is therefore not affected, a point we
have previously anticipated. )In noncentrosymmetric
lattices, the expansion of the dynamical matrix con-
tains, in general, off-diagonal terms linear in q, leading
to quadratic contributions to ~ (j,q) proportional to
—g;.IF, ;,&'&I'/a&02(j'). These are the internal-strain

where we have additionally assumed that Q w&(jq)
=G w&(jq), and W&, (Q)=Wr, (G), since q is small
compared with G.

The perovskite lattice is suR&ciently complex (15
branches for a general direction of q) that some simpli-
fication of Eq. (1) is desirable. By limiting q to the
high symmetry directions (I 100], L110j, L111)) the
15&(15 secular determinant factors into three 5)&5
determinants, representing one set of coupled longi-
tudinal modes and two sets of transverse ones. "In the
case of the transverse excitations further simplification
is afforded by an approximation which immediately
suggests itself. Near the BZ center, particularly at
temperatures near T," the TA and soft TO branches

"A general description of the symmetry properties of the
normal modes for a perovskite lattice can be found in the work
of R. A. Cowley, Phys. Rev. 134, A981 (1964)."R. C. Miller and %. G. Spitzer, Phys. Rev. 129, 94 (1963),
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FrG. 3. A comparison of the observed and calculated eigen-
frequencies of the {0.15,0,0) TA and soft TO phonons. I Note
that the ordinate is m, i.e., the eigenvalues of the dynamical
matrix, Eq. {6).jThe dotted lines represent the diagonal elements
of Eq. (6), and indicate the extent to which the TA mode is
depressed and the TO mode raised by the off-diagonal term. The
only temperature-dependent parameter necessary to give this
agreement is the g= 0 TO eigenfrequency, coo{T).

Brookhaven High Flux Beam Reactor, using "constant-
Q" scanning and incident neutron energies ranging from
13 to 45 meV. The KTaO3 sample was grown by I.inz
by a top seeded solution technique and was approxi-
mately 9)&14&17mm, with mosaic spread of less than
3 min. There were no deliberately added impurities. The
sample temperature was controlled to &0.1'K at the
lowest temperatures and within ~0.5'K above liquid
N2 temperatures.

A survey of the temperature dependence of the lowest
transverse-phonon branches for which q= (f,0,0)a* is
shown in Fig. 2. The room-temperature data are in
good agreement with that of Shirane, Nathans, and
Minkiewicz. 4 The frequencies of the TA mode at the
BZ boundary at various temperatures are in generally
good agreement with (uniformly 0.2 to 0.3 meV higher
than) those deduced from second order Raman scatter-
ing by Nilsen and Skinner, "confirming the correctness
of their assignment.

Because of the long-wavelength nature of the ex-
pansion developed in the Appendix, the majority of
the temperature-dependent data was restricted to small

q values, 0~&q~&0.2u*. Plotted in Fig. 3, in a way
convenient for subsequent analysis, are the observed
frequency changes in both TA and soft TO branches

are at much lower frequencies than the remaining
"hard" TO modes which may therefore be neglected.
Thus along the high-symmetry q directions, we may
approximately limit our attention to two coupled modes,
and the secular determinant assumes the simple form

~s +f»(tl) ~ (a)

IO

C9

Lxj
Z (

where f;;=F,,"'q'+Fg"'q'+— , ress(TO) =res',
ress(TA) =0. It is generally accepted that the strongly
temperature-dependent sof t-optic mode characteristic
of displacive ferroelectrics results from rather normal
temperature variation of long- and short-range har-
monic forces which happen to nearly cancel for the
soft mode. Thus the existence of a soft mode in no
way implies exceptional temperature dependences for
any of the interatomic force constants. Since this is the
case it is reasonable, in the first approximation, to
consider the quantities appearing in Kq. (6) to be
temperature independent, with the sole exception of
the q=0 soft-mode frequency +0, for which measured
temperature-dependent values may be substituted.

III. EXPERIMENTAL

D
5

0.05 O. I 0 O. I 5

FIG. 4. A comparison of the wave-vector dependence of ob-
served and calculated ($,0,0) TA and soft TO phonon eigen-
frequencies. Notice that particularly at low temperatures, there
is remarkably large dispersion even at these g values, which are
smaller than typically studied by inelastic neutron scattering.
The limiting slope at q=0 is temperature-independent and in
agreement with ultrasonic' velocity measurements. The size of
the markers~representing the points is roughly indicative of the
experimental uncertainty.

Inelastic neutron-scattering exPeriments were Per '4%. G. Nilsen and J. G. Skinner, J. Chem. Phys. 47
formed on a triple axis crystal spectrometer at the (1967).
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for fixed q= (0.15,0,0)a*. Also shown for comparison
are the results of a least-square fit of Eq. (1) to the
observations, using the measured temperature depen-
dence of 4os'(TO) and treating the three independent
elements f;, as adjustable but temperature-independent
parameters. The good agreement demonstrates the ap-
proximate validity of two of the simplifying assump-
tions: temperature-independent dispersive terms f;,(q)
and negligible inQuence from higher-frequency branches.
The magnitude of the diagonal terms in Eq. (6) are
also indicated in Fig. 3 to show the extent to which
the TA mode is depressed and the TQ mode raised in
frequency by the off-diagonal term fis. Comparably
good agreement was obtained with similar data for
phonons with q= (0.1,0,0)ae. For q= (0.2,0,0)a" some-
what poorer but still reasonably good agreement was
found. This indicates, perhaps, the limit at which the
eGect of higher-frequency modes can safely be ignored.

The best fitting values of the f;; at three q values
(0.1, 0.15, and 0.2a") were used to determine the
lowest terms in the power expansion in q. Writing
q= ($,0,0)a* we obtain

fit =4.67(&0.3)X10'|s —2.4 (&0.7) )&104/4 (meV)s

fss= 1.83(&0.8) &&10't —0.8(&0.6) &&10 |4 (meV)' (7)

fts ——2.80(&0.15)&1041 s —2.4(&0.4) )& 104/4 (meV)'

The quartic terms are negligible for I values smaller
than about 0.05, and even higher order terms and/or
inclusion of higher-frequency branches seem necessary

I . I I

50 IOO I50 200 250 300
T ('K)

FIG. 5. (a) The temperature dependence of the TA and soft TO
modes with q= (0.7,0.7,0)o* and displacements along I 110), and
illustrating by comparison with Fig. 2 the anisotropy of the
TA-TO coupling in KTa04. (b) The temperature dependence of
(i',0,0) LA phonons is small and "normal" (des/dT (0), in contrast
to the behavior of ($,0,0) TA modes.
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FIG. 6. A comparison of the observed changes in the inelastic
structure factors, F; (Q), with those calculated on the basis of
TO-TA mode interaction. If the mode eigenvectors were inde-
pendent of q (and thus equal to the q=0 eigenvectors), the
structure factors for the respective modes should be given by
F4O(022), F()y(022), and Fao(033).

for f)0 2 . From the leading term in fss we predict a
limiting (temperature-independent) transverse-acous-
tic-phonon velocity of 4.16(&0.1)X104 cm/sec, to be
compared with the value 3.909(&0.01)&&10' cm/sec at
300'K measured by Barrett. s The close agreement
removes the apparent discrepancy between ultrasonic
and previous neutron measurements.

In order to more fully investigate the q dependence
of the mode coupling, further measurements of the
behavior of O,0,0) TA phonons at smaller I values were
made using low energy (13meV) incident neutrons to in-
crease the resolution and minimize contamination from
nearby Bragg scattering. Even at such small g values
there is appreciable dispersion in the acoustic branch
as evidenced by the failure of the measured points to
extrapolate to o~=0 as q-+0 (see Fig. 4). However,
calculations based upon Eqs. (1) and (7) reproduce
this unusually strong temperature-dependent dispersion
with considerable accuracy in this small q region.

The dependence of the mode interaction on the
direction of q was investigated brieQy by observing the
the temperature dependence of transverse (2't) phonons
with q= g,1,0)a'* and displacements along L110$. As
shown in Fig. 5(a), the behavior of both the TA and
TO modes differ markedly from that of their ($,0,0)
counterparts. The frequencies of the TO modes increase
much more rapidly with q along LI,I,Oj at low tem-
peratures and there is a much smaller fractional fre-
quency change with temperature. In contrast to the
large positive (Boi/BT) found for O', 0,0) TA phonons,
the (|,I,O) TA phonon frequencies have a weakly
negative normal temperature dependence. Thus along
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fi,i,0j the effect of TO-TA mode coupling is so small
as to be more than offset by the slight temperature
dependence of f22, which was completely negligible in
discussing the behavior of D',0,0j TA phonons.

The lowest LO mode at q=0 is neither particularly
soft (24.8 meV at room temperature) nor does it display
any exceptional temperature dependence. ' We would
therefore expect LO-LA mode interaction to be weak
and nearly temperature-independent. Figure 5 (b) shows,
in agreement with these predictions, that the tempera-
ture dependence of a g', 0,0) I.A phonon is again rather
weak and "normal. " No attempt was made to study
the mode interaction in more general q directions.

Finally, we have observed changes in the inelastic
scattering cross sections for ($,0,0) TO and TA phonons
similar to those found in SrTi03.' Correction of the
observed intensity data for temperature induced
changes in the mode frequencies and thermal occupa-
tion factors e(jq) reveals the presence of temperature-
dependent structure factors, as demonstrated in Fig. 6.
Note that the square of the structure factors for the
same (0.2,0,0) TA phonon taken about different
reciprocal lattice points show completely different
behavior with temperature. These observations can be
explained in a nearly quantitative manner as resulting
from the same temperature-dependent TO-TA cou-
pling mechanism that causes the frequency shifts we
have just analyzed. From the least-square solution of
Eq. (6) as a function of teniperature it is straight-
forward to obtain temperature-dependent coefficients
S,, (q) describing the mode eigenvectors in terms of
the q=0 eigenvectors. What is additionally necessary
)see Eq. (5)$ is a knowledge of these q=0 eigenvectors
in order to calculate the structure factor for the q=0
phonons at various reciprocal lattice points. The q=O
acoustic eigenvector is just an appropriately normalized
uniform translation of the lattice $Eq. (A13)j and
presents no difhculty. A study of the structure factor
of the soft q=0 TO mode at many reciprocal lattice
points has recently been used by the present authors
to deduce the form of the soft mode eigenvector in
KTaO3 and other perovskites. '6 This information is all
that is necessary to calculate the expected behavior of
the inelastic structure factors.

A comparison of the calculated and measured values
is shown in Fig. 6. A single multiplicative factor has
been used to scale the observed data, which are relative
measurements, in order to maximize the agreement
with the calculations. We have assumed e ~1 =1 for
all atoms, which introduces little error in the present
case. The calculations predict rather accurately the
qualitative behavior of the TA structure factors, par-
ticularly the reversal of magnitude with changing
temperature. A definite discrepancy appears to exist

"G. D. Boyd and R. C. Miller, quoted by A. S. Barker in
Perroelectricity, edited by E. I'. Weller (Elsevier Publishing Co.,
New York, 1962), p. 23/.

'~ J. Harada, J. D. Axe, and G. Shirane (to be pnbhahed).

in the magnitude of the (022) TA structure factor and
similarly develops in P,„at higher temperatures. In
line with our previous discussion it is possible that this
latter eGect is due to the inQuence of higher-frequency
modes. In view of the well-known difhculties involved
in obtaining really accurate eigenfunctions by perturba-
tion theory, the results shown in Fig. 6 are quite
satisfactory. Note how greatly the actual structure
factors diGer from J";„,i (022) and F;„,i (033) which
would apply if the eigenvector were those appropriate
to q=0.

IV. DISCUSSION

The existing dynamical theory of displacive ferro-
electrics describes a lattice distortion resultiag from a
q=0 phonon instability. Although this concept has
proved enormously useful in discussing many ferro-
electric phase transformations, there are questions
which arise in connection with transformations in real
systems which have not been fully answered. For
example, the condensation of a q=0 mode gives rise
to a new structure with a spatially uniform polariza-
tion. . Yet in the absence of external fields real ferro-
electrics invariably condense into domains with dif-
ferently oriented polarization vectors, which must
contain non-q=0 spatial components. It is perhaps
worth pointing out that acoustic-optic mode interac-
tion of the type under discussion provides one possible
mechanism for incorporating such displacements into
the general soft-mode scheme.

As a result of the interaction between acoustic and
soft optic branches, the former are driven down de-
veloping a downward bulge of the sort indicated by
the calculations shown in Fig. 4. An interesting question
now arises. Is it not possible, in some cases, that before
the q=0 soft optic mode frequency goes to zero,
causing the appearance of a ferroelectric phase with
uniform polarization, that the lattice might erst become
unstable with respect to an acoustic phonon with non-
zero wave vector) If this were possible (we shall see
that it is), such an unstable mode would give rise to
a phase which diGered from the parent phase by
spontaneous displacements which would be sinusoidally
modulated with a period and direction dictated by
q„;~ the wave vector of the unstable phonon mode.
Furthermore, because of the coupled nature of the
excitation, the displacements would necessarily give
rise to a (sinusoidally modulated) spontaneous polari-
zation. This simple description is adequate only at
temperatures infinitesimally lower than the (presumed
second-order) transformation temperature to this new
staggered phase. Subsequent evolution of the con-
densed phase, complicated by further instabilities of
modes with wave vectors adjacent to q„;& would require
careful analysis, but can easily be conceived as giving
rise to what might be alternately described as an anti-
ferroelectric phase or as ferroelectric domains, depend-
ing upon the magnitude of the wave vectors involved.
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The condition that the two coupled modes described
by Eq. (6) be stable with respect to their mutual
interaction is simply

~o +fii f)2
I f(q) I

=

The condition determining which mode wave vector,
first becomes unstable is given by requiring

simultaneously that
I f(q) I

=0 and 8/BqI f(q) I
=0.

Disregarding spurious solutions at large q, it is found
that such an instability occurs only if

p (p (2)p (2) (p (2))2+(d 2p(4)}(0
&

—(P,i(2)P„(4)yp„(2)P„(4) 2P, (2)P,(4)})0 (8)

dynamical ma, trix C p(kk', q)

C„p(kk', q)

=(m),m(, ) "'QC' p(lk;l'k')e 'i ('(") *('~'" (A1)

where 4 „p(lk; l'k') is the harmonic force constant cou-
pling atoms at the sites x(lk) and x(l'k'). Expressing
the wave vector q in terms of a unit vector q (q=q q),
for a fixed direction of q the dynamical matrix can be
expanded in a power series

C p(kk'; q) =C p(')(kk'; q)+iqC p(')(kk' q)
+-', q'C. p(2) (kk'; q)+ . (A2)

By definition C p(kk'; —q) =C*(kk'; q) and therefore

q„;t, and ~0(crit), the frequency of the q=0 soft mode
at the transition temperature (a.nd thus indirect:ly the
transition temperature itself), are given by

C p'")(kk'; q) =C.p("'*(kk' j).
If the lattice is centrosymmetric

(A3)

q.,'a'= gP/v, —
co0'(crit) = —(P/2F»('))q„;P.

Assuming that the inequalities of Eq. (8) are satisfied,
it appea, rs that it is the P parameter which is decisive
in determining the quantitative features of the pro-
posed transformation. If IPI is small the instability
occurs at small q and at a temperature just above the
ferroelectric transition temperature (co0'=0). For larger
values of

I P I
the instability involves shorter wave-

length phonons and transformation temperatures fur-
ther removed from the incipient q=0 instability. It is
diS.cult to predict the behavior of the pertinent pa-
rameters for any given material, but it is reasonable
to suppose that materials exist or will be found satis-
fying Eq. (9) for a considerable range of values of q„;&.

It must be pointed out that in materials which
exhibit a real instability, e.g., BaTi03, the TO branch
is often highly damped and the quasiharmonic ap-
proximation may not be adequate for a truly quanti-
tative description of the transformation itself. For
other materials not satisfying the instability criteria
Le.g. , KTa03, for which we find P/(a*)'= (0.7&0.9)
)&10' (meV)' and y/(a*)'=52&&10' (meV)'j it would
appear that a dynamical theory of domain formation
is to be constructed from different considerations in-
volving normal modes of finite samples, the role of
surface charges and related unpleasant effects.

C.p("'(kk'; q) =0 (n odd) . (A4)

Since we are here exclusively concerned with centro-
symmetric crystals, all odd order terms will henceforth
be omitted.

D edning the displacements associated with the
normal mode of wavevector q in the jth branch as

u), ( (jq) =(m)) "'w), (jq)e'«'"""' """". (A&)

The equation of motion of wz (jq) is given by

~'Uq)w~-Uq) =Z C-l (kk'; q)w~ p(jq), (A6)

and the eigenvectors of (A6) satisfy orthogonality and
completeness relations

p w), (jq)w),.(j'q) =().. .

2 w~. (jq)w~ p(jq) =&.p&»'

Since the eigenvectors at q =0, w), (j, q
=0)—=w& '(j)

are a complete set, the eigenvectors at finite q may be
expanded in terms of them:

C.p(kk'; q) =C.p*(kk'; q),

i.e., the dynamical matrix is real, from which it follows
that
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APPENDIX: LONG-WAVE LATTICE DYNAMICS

In the harmonic approximation the vibrational
normal modes of a lattice are determined by the

where the transformation matrix S depends of course
upon q. Upon substituting Eq. (8) into Eq. (6), multi-
plying by w& '(j), and summing the result upon (kn),
one finds that

~'(jqp' =Z {~ '")(q)+q'~ '")(q)
jl

+q4F '(4)+ .}S ' (A9)
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where use has been made of. the fact that

F,, '(j) =o&'(j, q=0)8,,'=cop'(j)8, ;.. (A12)

where

l~ ""'(j)=(rt!) ' p w/ o(j)C e&"'(kit' q)
kn It."P

Xtt&&, t&"(j') . (A10)

Equation (9) is the familiar eigenvalue problem with
solutions given by

The acoustic eigenvectors at q=0 consist of the
uniform translations

tt&s.o(j.) =nte't'v. (j.), (A13)

where v(j,) is an arbitrary vector. There are thus three
linearly independent eigenvectors ws (j,) with eigen-
frequencies cos'(j, ) =0. The ws'(j, ) can be completely
defined by requiring in addition to wo(j,) w'( j,')
=8;.,;,' CEq. (A7)j, thatF;„;, "&=Oif j,&j,'. lf there
are other degeneracies in the optic branches at q=0
any arbitrariness in the eigenvectors w'(jc&) can also
be removed by requiring within the degenerate set that
Jt'. . . ( ) —0 for jo+ jo'
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Effect of the Spin-Phonon Interaction on the Thermal Conductivity
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The effect of dilute concentration of the Kramers ion, Yb+++, and the non-Kramers ion, Ni++, on the
thermal conductivity of CaF2 has been measured as a function of magnetic field at various temperatures
in the range 0.3—1.3'K. The results have been compared with a theory due to Elliott and Parkinson based
on the Jacobsen and Stevens dispersion relations. It has been found that it is possible to account for the
effect of temperature on the change in conductivity with magnetic field in both cases, for fields such that
gPH/hT &6. If the temperature dependence is factored out of the expression for the change in conductivity,
the remaining terms predict that at low fields it should increase as H'I' for the Kramers ions, and as H'" for
the non-Kramers ions, unless a zero-field splitting is present which dominates, and then the change in con-
ductivity should increase as H' increases. The Yb-doped crystal yielded an H"', and the Ki-doped yielded
an H3 dependence in agreement with the theory.

INTRODUCTION

HE first data on the thermal conductivity of a
system for which the spin-phonon interaction is

important were obtained by Morton et al.' for holmium
ethylsulphate. The characteristic behavior of these
systems lies in the variation of the conductivity E with
magnetic field at fixed temperature. Typically, E is ex-
pected to first decrease with field, then reach a mini-
mum, and recover finally to a value equal to the zero-
field value if the magnetic ion obeys framers's rule, or
an amount greater than this for the non-Kramers ions.

Qualitatively, this behavior is readily understood in
terms of a strong interaction between the spins and a
band of phonons whose frequencies are close to the
Larmor frequency of the spin system (see Fig. 1); at
low temperatures, the phonon carrier distribution is a
function which has a maximum. The interaction sup-
presses the contribution of those carriers close to the
J armor frequency (see Fig. 2). As the field is increased,

*Research supported by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.' I. P. Morton and H. M. Rosenberg, Phys. Rev. Letters 8, 200
(1968).

more important carriers are affected until the peak in
the distribution is reached, after this the interaction
occurs at less important frequencies until at very high
fields the interaction is with phonons whose contribution
is negligible.

Because the spin-phonon interaction affects the con-
ductivity by suppressing a relatively narrow band of
phonon frequencies, the variation of thermal conduc-
tivity with magnetic field forms a convenient phonon
spectrometer, '' which has been used4 to study the
resonant scattering by the Li ion in KCl. For this reason,
it is important to understand in some detail how the
spin-phonon interaction modifies the conductivity.

For those ions which do not obey Kramers's rule, an
interaction is possible at zero magnetic 6eld, which is
removed at very high fields and, as McClintock et al. '

2 R. Berman, J. C. F. Brock, and D. J. Huntley, Phys. Letters 3,
310 (1963).

3 D. Walton, Phys. Rev. 151, A267 (1966).
D. Walton, Phys. Rev. Letters 19, 305 (1967).

' P. V. E. McClintock, I. P. Morton, and H. M. Rosenberg, in
I'roceedings of the International Cotsference on Magnetism, Eotting-
ham, England, 1964 (The Institute of Physics and the Physical
Society, London, England, 1965), p. 455.


