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First, a new method proposed by Baker and Rushbrooke is used to study the simple ferromagnetic Ising
model at and helens the Curie temperature. Of course, the properties of the Ising model are already well
known, so that the main aim here is to assess the potential and reliability of the new method, since it has
wide applicability to other models which have not been otherwise studied. Between 8 and 16 coeScients
of exact high-temperature expansions for fixed values of the magnetization are derived for various two- and
three-dimensional lattices. A Pade-approximant analysis of these expansions at the critical isotherm and
magnetic phase boundary enables us to estimate the critical exponents p, y', and 8, and plot the spontaneous
magnetization. The results are in good agreement with previous calculations. Secondly, an analysis of the
exact series expansions provides no support for the conjecture that the phase boundary is a line of essential
singularities. However, the same expansions strongly suggest the existence of a "spinodal" curve, whose
properties are in reasonable agreement with the predictions of various heuristic arguments (based essentially
upon analyticity at the phase boundary and one-phase homogeneity in the critical region). Finally, struc-
ture and a mild extension of the proven analyticity of the free energy are used to show the 6&5',y&p'.

I. INTRODUCTION AND SUMMARY

KCENTLY, a new method was proposed and used
to study the Heisenberg model at and below its

Curie temperature T= T~.' The method which is
applicable to a wide range of models for which the
one-phase region is thought to be analytic is based upon
exact high-temperature expansions for fixed values of
the magnetization M. One aim of the present paper is to
assess this method by applying it to the spin-~ Ising
ferromagnet with nearest-neighbor interactions, since
its behavior is fairly reliably known in advance. ' 4 In
Sec. 2, between 8 and 16 coeQicients are derived for
various two- and three-dimensional lattices. Pade
approximants'' are used in Sec. 3 to determine the
behavior of these expansions at the critical isotherm and
magnetic phase boundary for values of M not too close
to the critical value. Extrapolation to M=O yields
estimates for the critical exponents p, y', and 5, in

reasonably good agreement with the exact values
(where available) and those derived from exact low-

temperature or high-field expansions. In addition,
spontaneous magnetization curves have been con-
structed for 1—T/To&2&(10 s and are in satisfactory
agreement with the exact results in two dimensions, and
those calculated from exact low-temperature series in
three dimensions.

More specifically, our estimates of the critical
exponents lie close to the values' P= —,'„5=5, y'= 1A in
three dimensions, and P=as, 8=15 in two dimensions.
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U. S. Atomic Energy Commission.
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(The Fade approximants have not converged sufii-
ciently for us to estimate y in two dimensions. ) How-
ever, the confidence limits for the three-dimensional
lattices are not sufficiently small for us to exclude the
slightly larger values of b= 55 and p'=1 —,'6, which have
been proposed. ' '

We have also investigated (in Sec. 5) what conditions
are imposed on the values of critical exponents by the
known structure' ' of the Ising-model free energy and a
slight conjectural extension of its known analyticity
properties"" in temperature and magnetic field. In
particular, we conclude h&d, '. %e show that there
follows a family of inequalities relating high-tempera-
ture exponents, low-temperature ones, and those on the
critical isotherm. One further consequence of our analy-
sis (which assumes the existence of the magnetization,
susceptibility, etc., on the phase boundary) is that the
phase boundary, at least near the critical point, is free
of singularities except at the critical point itself.

It has been suggested" that the boundary separating
the one- and two-phase regions is a line of essential
singularities. %e find in Sec. 4 that the Pade approx-
imants to the high-temperature expansions at fixed 3f,
and also the high-field expansions at fixed T, show' no
sign of them. However, both types of expansion appear
to have singularities whose nature and locations are
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consistent with the existence of a "spinodal" curve, "
i.e., a curve lying inside the two-phase region along
which the susceptibility is infinite. It should perhaps
be emphasized that analytic continuation into the
two-phase region and the existence of a spinodal curve
do not necessarily require analyticity along the phase
boundary. Even if the phase boundary were non-

analytic, one could merely consider, say, the real part
of the complex susceptibility. (The imaginary part
"grows" from the phase boundary. ) It would be nice to
be able to identify analytic continuation with metasta-
bility and regard the spinodal curve as the limit of
metastability. However, no such identification is
known "

We also show in Sec. 4 that if one is prepared to
assume the existence of a Taylor-series expansion in

powers of the magnetic field JI about the phase bound-

ary, then the asymptotic forms of the coeKcients
determined by Kssam and Hunter" lead to a spinodal
curve whose location agrees (to within the accuracy
limits of our calculations) with that obtained from the
exact high-temperature and high-field expansions. This
provides further evidence for analyticity all along the
phase boundary. In addition, it appears that the
asymptotic shape of the spinodal curve and phase
boundary are described by the same exponent P,
although strict asymptotic tangency (equality of
critical exponents and amplitudes) is ruled out. Similar
arguments starting from the usual homogeneity
properties"" or the magnetic equation of state'7 are
also outlined in this section.

2. SERIES EXPANSIONS

The coefficient ts(n) arises from configurations of e lines
having 2k "odd" vertices. (An "odd" vertex is one upon
which an odd number of lines are incident. ) The q

polynomials have been calculated by Sykes and co-
workers (unpublished work) for the square (sq), tri-
angular (t), diamond (d), simple cubic (sc), body-
centered cubic (bcc), and face-centered cubic (fcc)
lattices through v~, where E=15, 10, 16, 12, 12, and 8,
respectively.

From these polynomials we have calculated the series

r(M, s) =M Q P„(M)s", fp 1——
n=O

(2 4)

through the same order in e. Here, M is the magnetiza-
tion and

n

P„(M)= P net. (e)M", v=1, 2, . . .
k=0

(2.5)

is a polynomial in M' of degree e. As mentioned in
Sec. 1, (2.4) is fundamental to our subsequent analysis.
Accordingly, we have listed the f polynomials in the
Appendix.

The P polynomials were derived from the &p poly-
nomials by following the simple steps outlined below.
First, one calculates the magnetization

M = 1+ (1—rs)Lr) (lnA)/Br 1,. (2.6)

Substituting (2.1) and (2.2) into (2.6) gives an expan-
sion for M/r in powers of u through v~, where the orth

coeS.cient is a polynomial in 7' of degree N. This series
is easily rearranged into the form

In the thermodynamic limit, the configurational
partition function for a regular lattice of coordination
number g has the high-temperature expansion'

1nA. (r,e)=in/2(1+r) '(1+v) ' j+ Q y~(r)s". (2.1)
n=1

Here

(2.2)

is a polynomial in r2 of degree e, and e and r are related
to the temperature T and magnetic field H by

s = tanh (J/k~T), r = tanh (III/k~T) . (2.3)

(In (2.3), J is the exchange integral, m is the magnetic
moment per spin, and k~ is Boltzmann's constant. )

"See B. Chu, F. J. Schoenes, and M. E. Fisher (unpublished),
and references therein, where our "spinodal" curve is referred to as
a "pseudo-spinodal" curve. For a more detailed discussion than
that presented below of the background and controversy surround-
ing the spinodal curve, the reader is referred to this paper. .

'4 J. W. Essam and D. L. Hunter, J. Phys. C 1, 392 (1968).
'P B. Widom, J. Chem. Phys. 43, 3898 (1965).
16 G. Stell, Phys. Rev. 173, 314 (1968).
'r R. B. GriQiths, Phys. Rev. 158, 176 (1967).

(2 7)

where g„(u) is a power series in s whose leading nonzero
coe%cient is of order v" and which is known through
order u~. Reverting (2.7) yields

(2.8)

where k„(e) is another series of precisely the same form
as g„(tt). )This double-series reversion is readily accom-
plished by an iterative procedure. The iteration
procedure consists of starting with r=M/gp(s) and
substituting this series in M into all the known terms of
(2.7) except the linear term which is used to solve for
the next iterate. The accuracy increases by one order of
M2 per iteration and rapidly yields the reverted series
to the required order. For the Heisenberg model' the
reversion was accomplished by the direct use of
Lagrange's formula, which is easier to the order
required there but harder for the order required here. )
Finally, rearrangement of (2.8) yields the desired form
(2.4). These manipulations were performed, for con-
venience and reliability, on an electronic computer. A
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simple but effective check on the calculations is provided

by noticing that

p„(1)=0 (I=1,2,3, . . .)
=1 (e=O), (2.9)

since if M= |,then v = |.for all v.

The "judicious" choice of r, rather than L=mH—/kiiT,
as the magnetic field variable should be noted. Expand-
ing r in powers of I and substituting into (2.7) gives an
expansion for M(v, L) of precisely the same form as (2.7)
but with I replacing r. However, the leading term of

g„(v) is now of order v'. As before, reversion followed by
rearrangement yields an expansion /this time for
I.(M,v)] of the form (2.4) but with f„(M) a power
series in M2 rather than a polynomial in M'. Con-

sequently, it ip no longer possible to Qx M and evaluate
the coeKcients exactly. On the other hand, the choice
of temperature variable is not so crucial. As can be seen
from (2.4), it makes no difference whether one uses v

or J/k&T; in both cases, the coefFicients are polynomials
in 3f'.

Our subsequent analysis is based upon expansions in
powers of e for Axed values of 3f of the functions

T(M,v), L8(in')/8 lnM)„, L8(in')/8vj~. (2.10)

The expansions have been computed from the basic
series (2.4) in the following way: Suppose M=DR is
the fixed value of 3f; then

Exponent 5

Along the critical isotherm we have

r=DM' (v =v„M -+ 0+)
to leading asymptotic order, so that

(3.1)

(3 2)

where the order of the subscripts prescribes setting
v= v, before allowing M to approach zero.

For 3E&0, we have

3f ranging typically from 0.975 down to about 0.6 in
three dimensions and about 0.8 in two dimensions. The
expansions are too short to give good convergence
properties for smaller values of M. However, even for
such relatively large values of M, one is already chose to
the critical point. For example, on the phase boundary
of a two-dimensional lattice the usual asymptotic form
shows that M=0.8 corresponds to 1 T/T—c 4)&10 '.
As will be shown in Sec. 4, the spinodal curve in this
region lies very closely behind the phase boundary,
which fact contributes significantly to the relatively
slow convergence for smaller values of M.

Detailed results will only be presented for the bcc
and sq lattices. (The results for different lattices of a
given dimension are very similar to one another. )

r (M,v)
~ v((

=—rvr((v) = Q mg„(OE) v",
n=o

(2.11)
(3.3)

$8(lnr)/8 1nMj„~ —=8s(r(v) =1+ g RIP.'(OZ)v"/

g P„(OZ)v", (2.12)

t'8 ln(r/M)
L8(in')/8vq~[„, =] --—

8v

= (d/dv)glnrvr((v)g. (2.13)

The prime in (2.12) means the polynomials P„(M) are
differentiated with respect to M before setting 35=5K.

Finally, we will use the following values of e, :
v.(fcc)=0.10175, v, (d) =0.35383,

v, (bcc) =0.15614, v, (t) =0.2679492. . . , (2.14)

v, (sc) =0.21814, v, (sq) =0.4142136.

In two dimensions, the values4 are exact. The estimates
for the three-dimensional lattices are from Essam and
Hunter, "and are probably correct to 3 parts in 104.

3. SERIES ANALYSIS

The v expansions (2.11)—(2.13) have been analyzed

by the Pade-approximant technique for axed values of

where we have used an asterisk to denote a quantity
which approaches a critical exponent as one of the
independent variables approaches its critical value, the
other having been fixed at its critical value. Evidently,

b*(M) ~ 8 as M -+ 0+, (3.4)

but the manner of approach is determined by the
(unknown) higher-order asymptotic behavior of (3.1).

Ry forming Pade approximants to the 8~(v) series
(2.12) and evaluating these at v= v„we have estimated
[8(1nr)/8 (InM) $„~~,„„where the order of the subscripts
is the reverse of that in (3.3). Of course, at the critical
point the order is crucial, for according to (2.12),
I 8(lnr)/8(lnM) j,~~ p, „,—=1, whereas by (3.4) L8(in')/
8(lriM) j ~

„ i(r—p=8, Away from the critical point,
however, the order of evaluation should not be impor-
tant, and so ideally we expect

$8(in')/8(lnM) j, ii(r...——8*(M), M) 0
=—1, M =0. (3.5)

The approximants to the 8~(v) series are also
evaluated at a series of points between ~=0 and ~„so
by comparing the values of approxirnants of diGerent
orders at corresponding points one may assess how well
they have converged in the neighborhood of e,. Then,
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TAaI.z I. Corresponding values of M, 8*, and r along the critical
isotherm for the bcc lattice.

0.975
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

10.650%0.001
9.453&0.001
7.947%0.001
7.051&0.002
6.48 ~0.05
6.07 +0.06
5.8 &0.25
5.55 +0.2

0.7480
0.5767
0.3618
0.2362
0.1570
0.1048
0.0697~0.0001
0.0457&0.0001
0.0294&0.0002
0.0183&0.0002
0.012 +0.0025

from the higher-order approximants, b*(M) is estimated
together with reasonable confidence limits.

In practice, the following behavior is found. For
values of M larger than or equal to about 0.65 in three
dimensions and 0.9 in two dimensions, the approximants
converge rapidly to P(M). Then there is a second
region, for which values of M the approximants appear
moderately converged, followed by a third region (for
small values of M), where once again convergence is

apparently very good. In the second and third regions,
5*(M) appears to be decreasing smoothly to unity.
Such behavior must inevitably result from an attempt
to represent a function of the form (3.5) by Pade
approximants based upon a relatively few series coef5-
cients. In actual fact, true convergence has been
achieved only for values of M quite far from the
critical point (that is, in the first region).

Converged values of 8* for fixed M are listed in the
Grst two columns of Tables I and II for the bcc and sq
lattices, respectively. To estimate 8, one must extrap-
olate from these values right down to M=O. For-
tunately, there is a more suitable extrapolation variable
than M. To see this, let us estimate, with the aid of
(3.1), the value of r on the critical isotherm correspond-

ing to the smallest value of M for which 6* has con-
verged. For the bcc lattice' (8 5, D—0.35), r 0.04
when M=0.65, while for the sq lattice' (5 15,D 0.43),

0.09 when M=0.9. Consequently, if 6* were plotted
versus r (rather than M), the range of extrapolation
would be considerably reduced.

To calculate the value of r for a given value of M
on the critical isotherm, the coeflicients of the re(w)
series (2.11) are computed and Pade approximants are
formed and evaluated at a series of points from v=0
through @=v,. From the values at v, the desired value
of r is estimated, while values at intermediate points
enable one to assess convergence, as before. Converged
values of r obtained in this way are listed in the third
columns of Tables I and II.

In Fig. 1 (curve a), values of 5* are plotted versus r
For r&0.23 the curve is accurately linear; in fact, the
error bars do not preclude this linearity continuing right
down to 7 =0. If it does continue, then 8~5.4, which is
a little larger than expected. ' ' It is to be noted,

TAaLz II. Corresponding values of 3II, 8*, and ~ along the critical
isotherm for the sq lattice.

0.975
0.96
0.95
0.94
0.92
0.90
0.85
0.80

24.340+0.003
21.66 &0.02
20.41 &0.07
19.44 &0.09
18.0 &0.15
17.05 &0.08

0.4887+0.0001
0.3426&0.0001
0.2749&0.0002
0.2227+0.0002
0.1488&0.0001
0.1010&0.0003
0.040 &0.004
0.015 ~0.003

however, that the last four points do have a definite
downward trend below this line. We have shown in
Fig. 1 what we consider to be reasonable upper and
lower bounds on 8* for r&0.23. We conclude that

5.0&8&5.4 (bcc) . (3.6)

The plots for the other three-dimensional lattices
strengthen the above conclusions. For example, for the
d and sc lattices, the linear portion for large r extrap-
olates to around 5.7 at r=O, which value is dehnitely
too large to be identified with 8. As before, the last few
values of 8* dip down indictating a value of 6 somewhere
in a range roughly as wide as that in (3.6) and centered
around

5.2 (sc), 5.0 (d, fcc). (3.7)

The values in (3.6) and (3.7) are in good agreement with
previous estimates' ' of 5 for three-dimensional lattices.

The corresponding plot for the sq lattices is given in
Fig. 2 (curve a). Its qualitative behavior is identical to
that observed for the three-dimensional lattices. The
plot is accurately linear for r&0.2, extrapolating to
about 15.3 at r=0. However, the actual estimates of
5* for r&0.2 decrease slightly more rapidly and appear
to be approaching what is almost certainly the exact
value 8=15. Conversely, one may infer

8= 15.0a0.3 (sq), (3.8)

in excellent agreement with previous estimates' ' of 8

for a two-dimensional lattice. The corresponding plot
for the t lattice is consistent with the same behavior
and confirms (3.8) but with somewhat lower accuracy.

Although the extrapolation procedure just discussed
appears to work reasonably well, we could make much
better use of the points closest to the critical point if
only the behavior of 6*(r) for small r were known. At the
end of this subsection we will present arguments which
suggest that

8*=8+cr' "' w=v r ~0+ (3.9)

where c is a positive constant. According to (3.9), the
curvature exhibited by curve a in Figs. 1 and 2 for small
r should be removed by plotting b* versus r' "' $0f.
course, in the region (r large) where P increases linearly
with ry the plots versus r' 'I' will increase faster than
linearly. j Self-consistency requires that after assuming
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Fro. 1. Plot of 8* versus r (curve a), and versus r' 'I~ (curve b) assuming 8=5, for the bcc lattice. Each point is accompanied by
the corresponding value of M. The open circles are approximations to curve a obtained by estimating the slope of curve a, Fig. 4,
at various values of v.

a value for 8, the 8*-versus-7' "' plots must approach
the assumed vatue of 6.

When b* is plotted versus r+s for the bcc lattice (see
Fig. 1, curve b), the central values are accurately
linearly for r&0.23 and extrapolate to 8=5.0 as they
must for self-consistency. On the other hand, a plot of
8* versus ~'215 2 is almost indistinguishable from curve
b, so that the central values of 6* still extrapolate to
around 5.0 instead of 5.2. Thus, for the bcc (and fcc)
lattice, 8=5.0 is definitely the preferred value. However,
taking account of the uncertainties in the values of 5*
closest to v =0, we Anally estimate

8= 5.0+0.2 (bcc, fcc) . (3.10)

For the sc lattice, a slightly larger value is indicated,
namely,

b =5.2&0.2 (sc), (3.11)

while the data for the d lattice are consistent with
either (3.10) or (3.11),preferring neither one above the
other.

Similarly, in two dimensions, plotting 8* against
7.r41" (see Fig. 2, curve b, for the sq lattice) has the
expected e6ect of straightening out the 8*-versus-v
curve, the new plot extrapolating to 8=15.0 as it must
for self-consistency.

Instead of plotting 6* against 7' 'j~ one could

equivalently plot 8* against M' ', since by (3.9) and
(3.1)

5*=8+cD' "'M' ' v= v„M -+ 0+ . (3.12)

In Fig. 3, for example, 6* is plotted versus M4 for the
bcc lattice, thus confirming the earlier estimate (3.10)
but with lower accuracy. In theory, the plots versus
M~ ' are preferable to those versus r' '~', in that the
values of M are exact and, therefore, uncertainties enter
only through 5*. However, the uncertainties in r are
very small (see Tables I and II), and in addition the
linearity versus 7-' 'I' is found to extend over a greater
range of M values than does the linearity versus 3P '.
In practice, therefore, the plots of 5* versus r' 'I' seem
preferable to those versus 3f' '.

We have studied the exponent 5 in one other way.
According to (3.1), a plot of r versus M on log-log graph
paper should be asymptotically linear for small values
of 3f with slope b. Using the estimates in Table I for the
bcc lattice, we obtain the plot shown in Fig. 4, curve a.
Comparing curve a with curve b, which has been
constructed with slope 5, one sees that the slope of
curve a is indeed approaching a value consistent with
8=5. To analyze curve a more carefully we have
calculated the slopes of successive linear segments
connecting pairs of adjacent points. The slope asso-
ciated with any particular pair of points should approx-
imately equal 8* at the value of z which is the average
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Fro. 2. Plot of 8* versus ~ {curve a), and versus ~~ 'I& (curve b) assuming 8=15, for the sq latticei
Each point is accompanied by the corresponding value of M.
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0.975 0
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0.95 ~

0.90 0

0.85

FIG. 3. Plot of b~ versus M' '
assuming 8=5 for the bcc lattice.
Each point is accompanied by the
corresponding value of 3f.

~ I 0.75

& O.7O

0.6 5

0 0.2 0.4 0.6 0.8 1.0

of the r values at each end point. These approximations
to 8* are plotted versus r in Fig. 1 (see the open circles),
and are seen to be in excellent agreement with the
previous results. Comparable results are obtained for
the other two- and three-dimensional lattices.

To conclude this section let us return to the assump-
tion (3.9), which appears to work so well, and. see if
there is any evidence for it.

First, we note that it is valid in the mean-field
approximation with

8=3, c= (6//5) X3"'. (3.13)

Second, as mentioned after (3.4), it implies the
leading correction term to (3.1). Specifically, we find

r=DM'(1+dM' '+ ) (3 14)

or, equivalently,

D—1/brl/8 (1 er—i—1/8+. . .) (3 15)

where d and e are positive constants. Equation (3.15)

may be compared with the asymptotic forms suggested
previously by Gaunt, ' namely,

M =D '/'r'/'(1 e'r+ ~)—
in two dimensions, and

M =D '/'r'/'[1 e"r
I
lnr I+—

(3.16)

(3.17)

in three dimensions, where e' and e" are constants.
Obviously, we do not have precise analytic agreement,
but from a numerical point of view (3.16) will look very
much like (3.15) when 5=15, provided r is not i/ery

close to zero, which it is not. Similarly, for the same
region of r, it is well known that ~lnr~ appears to
diverge like r ~, where ) =0.2—0.3, so that in three
dimensions the r4" term in (3.15) would appear
deceptively like the r

~
lnr

~
term in (3.17).We conclude

that if (3.15) is the correct behavior, there is no
difficulty in understanding the previous results (3.16)
and (3.17).

Third, we may examine the exact integral representa-
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0

0.95 ~

Fro. 4. Log-Iog plot
(curve a) of r versus M
along the critical iso-
therm for the bcc lattice.
Each point is accom-
panied by the corre-
sponding value of M.
The straight line b has
slope 5.

IO

0.50

-2

5 x IO

tion due to Baker, ' namely,

3I=r+r(1 r')—
p 1+TM

(3.18)

right-hand side of (3.18).This would mean the asymp-
totic behavior of the integral contains a constant term
—k, say, so that

where df) 0 /see also (5.7)). To get (3.1), the leading
asymptotic behavior of the integral must be D 'I'
)&v &' ~~). In vievr of the erst term on the right-hand
side of (3.18), it would not be surprising for a term of
the same order to come out of the second. term on the

which is identical with the expected form (3.15)
provided k) 1. (If k(1, The constant e has the wrong
sign. ) Of course, there could. be a term in the asymptotic
form of the integral vrhose order lies between the
constant term and the r &' 'I'& term; for example,
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r ", where 0(X(1—1/8. However, this would lead to

3e g+ z-r (1—1/s)—x (3.20)

and a smaller exponent than 1—1/3 in (3.9) would

appear ruled out by the numerical evidence (see curve
b of Figs. 1 and 2, for example). To get a larger exponent
than 1—1/5, on the other hand, would require k=1,
and the cancellation of terms which this implies would
also seem rather unlikely.

Magnetic Phase Boundary

The value of v=vvb(M) on the magnetic phase
boundary may be determined as a function of the
magnetization M from any of the three expansions
(2.11)—(2.13). To see this, let us consider the behavior
of each function in the vicinity of the phase boundary.
For e&e, and r&0, we will assume that

M(v r) Mp(v)+M—z(v)r . (3.21)

Ms(v) is the phase boundary or spontaneous magnetiza-
tion. For the Ising model there is little doubt that the
new exponent z equals unity, so that M, (v) is the
reduced zero-6. eld susceptibility below T&. However,
since c is unknown for most models, we prefer to use

the general expression and to try and estimate its
value from the series expansions. (For certain models,
notably the spherical model and the isotropic Heisen-
berg model in the noninteracting spin-wave approxima-
tion, it is known that i= sz.zs) Let us rewrite (3.21) as

M —Mp(v) ' '

M z(v)
(3.22)

Mz, (v) =Mz (v,b)+O(v —v b) .

Substituting (3.23) and (3.24) into (3.22) gives

r~(v)=2'(vvb-v) z/',

where the amplitude T is given by

T'= (dMs/dv) i,„/Mz(vnb) .

(3.24)

(3.25)

(3.26)

and regard M and e as the independent variables. For
Axed M, the phase boundary (r=0) is encountered
when e has increased to the value e~b, at which point
M=Ms(vvb). Expanding 3IIs(v) and Mz(v) about v„b

yields

3IIe(v) =M+ (dMQ/dv) ~.„(v—vpb)+O((v —vpb) ) (3.23)

and

0.9—

I I~, 0.975
~ 0.95

~ 0.90
&.O. 85

0.8— — 0.80

I I I I I

0.7—
l0.7 5

~ 0.70

Mo

0.6— 0.60—

0.5

0.5— 0.

0.4

0.4— 0,40
I I I I I I I

0.5 IO

Fzo. 5. Log-log plot of 310 versus (1—v, /v&z) along the plzase boundary for the bcc lattice. Each point is accompanied by the corre-
sponding value of M. The broken solid curve is calculated from the exit low-temperature series, assuming T, and p a«known.

"M. E. Fisher, J. Appl. Phys. 38, %1 (1967).
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0.975 —~

0.950—

0.900—

0.850—

0.800—

0.750

I

-2

Fio. 6. Log-log plot of Mo versus (1—v, /pub) along the phase boundary for the sq lattice.
The broken solid curve is calculated from the exact solution.

Hence, from (3.25)

(d/dv) ln rsr(v) = c '/(v —vpb).

Returning to (3.21), one easily verifies

her(v) c 'MLM —Mp(v)7-',

and substitution from (3.23) gives

8~(v) =D/(v —vnb),
where

(3.27)

(3.28)

D-'= —cLd(»Mp)/dv7I ., (3 29)

It should be noted that (3.25), (3.27), and (3.28) are
valid only if M &0. When M= 0, B~ p(v)

—=1 according
to (3.5), while from (2.11) it follows that

and
rsr=p(v)

—=0 (3.30)

(r/M) l~=p=—X(v) ' (3.31)

where X(v) is the reduced zero-field susceptibility above
Tc. Using the usual asymptotic formc for X(v), one finds

(d/clv) ln rsr(v) =7/(v —v,), M=0 (3.32)

in place of (3.27).

We see from (3.27) and (3.28) that vpb(M) may be
estimated by forming Pade approximants to either the
(d/dv) ln re(v) or the 5~(v) series and picking out the
appropriate zero of the denominator. Alternatively, if
we assume c=1 in (3.25), an estimate of vpb(M) may
be obtained from the zeros of the numerators of the
Pade approximants to the r3i(v) series. In general, the
best-converged approximants for large 3f are those
formed from either the vpI(v) or the E'er(v) series. For
smaller values of M, the (d/dv) ln r~(v) series tend to be
the best, but if M is smaller than 0.55 (fcc), 0.40
(bcc, sc), 0.50 (d), 0.85 (t), and 0.75 (sq), none of the
series has converged adequately. By studying all three
methods, we have obtained the "best possible estimates"
of spb for various values of N =350 on the phase
boundary. Best estimates of 1—v,/vpb are plotted
versus Mo on a log-log scale in Figs. 5 and 6 for the
bcc and sq lattices, respectively. The broken solid
curve in Fig. 6 is the phase boundary as calculated
from the exact solution" for the sq lattice Lsee (3.35)
and (3.39)7. The corresponding curve in Fig. 5 was

'P C. N. Yang, Phys. Rev. 85, 808 (1952).
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calculated from the exact low-temperature series'
for the spontaneous magnetization (by assuming
V.=0.15614 and P= 188). We conclude that the high-
temperature series are reasonably successful in locating
the magnetic phase boundary.

Exponent g

By definition, the plots of in&8 versus ln(1 —v,/vvb)
should have an asymptotic slope of P. The maximum
and minimum slopes allowed by the error bars on the
last few points in Figs. 5 and 6 indicate

0.26&P&0.40 (bcc) (3.33)

TABLE lII. Estimates of c ' for various values of M. When
M =0, a ' is identically equal to p.

M

0.975
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.40
0.30
0.20
0.10
0.00

4 ' (bcc)

0.9 +0.4
1.0 &0.2
1.005+0.005
1.015+0.015
1.026&0.004
I.036&0.009
1.04 &0.08
1.084&0.005
1.10 &0.03
1.11 &0.03
1.11 &0.03
1.16 &0.05
1.2 &0.1
1.22 &0.01
1.241&0.003
1.250&0.003

4
' (sq)

1.04 +0.05
1.09 &0.04
1.16 &0.02
1.238&0.004
1.32 &0.01
1.40 &0.04
1.47 &0.07
1.51 +0.06
1.56 &0.07
1.60 +0.09
1.63 &0.09
1.7 &0.2
1.71 &0.01
1.74 &0.01
1.746&0.003
1.750+0.001

"M. F. Sykes, J. W. Essam, and D. S. Gaunt, J. Math. Phys.
6, 283 {1965).

Exyonent a

The exponent 4 is defined in (3.21), and for the Ising
model ~=1 is almost certainly correct. According to
(3.27), Pade approximants to the (o//dv) ln rsr(v) series
should exhibit simple poles at v,b with residues ~

provided M&0. By (3.31) the residue equals y when
M =0. Since we only have a 6nite number of coeKcients,
we expect the residues to appear reasonably converged
for all M and increase smoothly from around 1 to the
value y as 3f decreases to zero. The results in Table III
for the bcc and sq lattices show that this is precisely
what happens in practice. Only for 3f greater than 0.85
(bcc) and 0.975 (sq) do the estimated error bars permit
4= 1 independent of M. For smaller values of M (except
M=o) the rate of convergence is deceptively slow, so
that the error bars estimated from the last few approx-
imants are totally inadequate.

If the value of ~ were unknown, the above results
would be rather inconclusive. However, suppose there
was evidence —as there is for the Heisenberg model—
that 1 or —,

' was the most likely value. Then, the fact
that the residue seems to decrease from y to around 1 as
M increases, rather than increase from y to around 2,
would point to &= 1 in preference to ~.

O.O7&p&0. 14 (sq), (3.34)

where the prime denotes differentiation. Thus,

P*=—4 'D '(v b'/v. )(1—v,/v b)

Vvb 8 ('Vvb) Vc

p+ 1—
tl sit' 1,) V 1,)

(3.37)

(3.38)

For the two-dimensional lattices, for which (3.35) is
exact, '

g(v) 2
—1/2v —1/4v —8/8(]+v2)l/4(] v v)l/8

X (1+v v)'/8(v+v ) / (sq) (3.39)

2—1/2v —1/sv —1/4(1+v2)8/8(l v v)1/8

x(1—.+")-" (t), (3.40)

so that the precise variation of p* with 1—v,/vvb may
be calculated from (3.38). Close to the critical point,
one finds

P* P—f) (1—v, /vvb)+ (vvb & v,), (3.41)

with p=-', and

b = (1/32) (7V2 —2)~0.2469 (sq) (3.42)

= (1/48) (N3 —3) 0.1901 (t) . (3.43)

In three dimensions, it is possible that (3.35) is no
longer correct, although (3.41) may remain valid.

One begins by forming Pade approximants to the
f)sr(v) series and calculating the residue D corresponding
to the pole at vvb Lsee (3.28)j. Using D and vvb deter-

TABLE IV. Corresponding values of M, (1—v, /v), cP*, and P*
along the phase boundary for the bcc lattice.

0.975
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50

1—v, /vvb

0.438&0.004
0.361+0.001
0.267&0.001
0.206+0.001
0.162&0.003
0.12 &0.01
0.096&0.006
0.08 ~0.015
0.06 ~0.02
0.050&0.008
0.040+0.009

0.114&0.007
0.152+0.003
0.197&0.001
0.223&0.001
0.239a0.004
0.26 ~0.04
0.27 &0.01
0.27 %0.02
0.28 &0.01
0.29 &0.01
0.30 +0.03

0.10 &0.06
0.15 +0.03
0.198&0.001
0.226&0.005
0.245&0.004
0.27 &0.04
0.28 &0.03
0.29 &0.03
0.31 ~0.02
0.32 &0.02
0.33 &0.05

which bracket the known values4 of ~~ and ~~, respec-
tively. Similar results are obtained for the other two-
and three-dimensional lattices.

A better method of estimating P is the following.
Suppose

~8(v) =&(v) (1—v./v) ', (3.35)

where B(v) is an analytic function of v at v, . Substituting
into (3.29) gives

/' 'Vc 'Vc +'(Vpb)D- = —
4P~ 1—— —4-, (3.36)

Evpb vvb B(vvb)
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mined in this way, one then calculates cP* defined by
(3.38). Corresponding values of 3I, 1—v,/v, b, and cP*

are tabulated in the first three columns of Tables IV
and V for the bcc and sq lattices, respectively. (The
Pade approximants have not converged for smaller
values of M.) Since c should exactly equal unity, we
first try plotting cp* against 1—v, /v, b. The plot for the
bcc lattice in Fig. 7 extrapolates linearly to a value
very close to rss. For large values of 1—v,/v~b, there is
possibily a slight downward curvature. Plots of almost
comparable accuracy are obtained for the other three-
dimensional lattices. On the other hand, the plot for
the sq lattice in Fig. 8 is rather disquieting, for although
the estimates of cP* seem fairly well determined, they
lie well below the exact theoretical curve (solid line
in Fig. 8) calculated from (3.38) and (3.39), and appear
to extrapolate to around 0.10 rather than 8.

Suppose now we make no assumption about the value
of c. For fixed M, the product of cP* (in Tables IV and

V) and c ' (in Table III) should provide an estimate
of P* alone. This follows from (3.37), (3.27), and (3.28),
since then

cP*c '= —D '(vvb'/v, )(1—v,/v, b)(v —vvb)(d/dv) ln rsr(v)

1 Vpb 1—
&—&lb

&c

(v —v,b)—ln re (v)
'Vpb d'V

V,bs tr V, (d/dV) In r~(V)

vz 5 vyb 5M(v)
(3.44)

where we have assumed the Pade approximants to
Bsr(v) and (d/dv) ln rsr(v) have poles at precisely the

0.975
0.95
0.90
0,85
0.80 '

1—vc/vpb

0.236&0.003
0.168+0.008
0.100&0.003
0.066&0.004
0.035+0.015

pQ

0.059+0.004
0.073&0.006
0.084&0.002
0.089&0.001
0.09 &0.02

0.061+0.008
0.080&0.009
0.097&0.004
0.110+0.002
0.12 &0.03

same value of v~b. Using the chain rule

~(g anm, a»T . (3.45)

(3.44) becomes

(3.46)

where the last factor must be evaluated at the phase
boundary. Calculating this term from (3.35) and
substituting into (3.46) yields precisely the right-hand
side of (3.38).Thus, cP*c '=P* as expected. Values of P*
are listed in the fourth columns of Tables IV and V for
the bcc and sq lattices, respectively. Because of the
uncertainties in the values of c ', the uncertainties in
the values of P* are larger than those in cP*. Neverthe-
less, it is still possible to construct a line passing
through all points of the p*-versus-(1 —v,/v, b) plot for
the bcc lattice, and having an intercept close to ~'~.

While such a plot is inferior to that in Fig. 7, the plot
in Fig. 9 which is for the sq lattice is a distinct improve-
ment over that in Fig. 8, since the central values now
lie very close to the exact theoretical curve (broken

TABLE V. Corresponding values of M, (1—v,/v), cP*, and P*
along the phase boundary for the sq lattice.

5
I6
O.~ ~=-'"

006 0 7
0.50

O.Z—

0.65

0.75

~ o.a

0.85 .0.9

O. I—
I

O. I

I

0.2 0.3

t
0.95

0.975 $~
I

0.4 0.5

VcI-
Vpb

Fzo. 7. Plot of cp versus (1—v, /v~bl for the hcc lattice. Each point is accompanied hy the corresponding value of M.
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0.09

0.07

0.06

0.05

Fxo. 8. Plot of ~P* versus (1—o,/sob) for the sq lattice. Each point is accompanied by the
corresponding value of M. The solid curve is calculated from the exact solution.

solid line in Fig. 9). If the exact value of p= ~~ were
unknown, one might estimate

P=0.127+0.009 (sq) . (3.47)

The P*-versus- (1—s,/sob) Plots can also be determined
from the 1nM versus ln(1 —s,/sob) plots in precisely
the same way that we obtained the 5*-versus-r plots
from the Inr-versus-1n3II plots Lsee the last complete
paragraph preceding (3.13)j. We give no further

details since the plots are no more accurate than those
in Figs. 7 and 9.

Finally, we note that according to (3.35) and (3.41)

(3.48)

where m is a positive constant. The plots of p* versus
3fo'I~, which must be self-consistent and asymptotically
linear, will also be omitted, since they do not yield more
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0.85

.IO—

0.95

0.975

0.05—

j c

~pb t
FIG. 9. Plot of P versus (1—e,/e») for the sq lattice. Each point is accompanied by the corresponding

value of M. The solid curve is calculated from the exact solution.
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accurate estimates for p despite having uncertainties in
only one direction.

Exyonent y'

Mg(v) =C'(1—v,/v») &', v» ~ v.+ (3.49)

where C' is a constant amplitude. According to (3.25)
and (3.26),

(3.50)sr(v) = T(v» —v), v v s
where

T= (dMp/dv)
t „,/Mr(v»).

Substituting (3.49) and

(3.51)

We will now assume r=1, so that Mr(v) in (3.21) is
the reduced susceptibility evaluated at the magnetic
phase boundary. The exponent y' is then defined by

s, respectively. Since P= ~'~ in three dimensions and s
in two dimensions, this means the asymptotic slopes of
curves a and b are consistent with values for y' of 1~
and 14, respectively. 4 However, a slightly different
value (for example, 1~~~ in three dimensions'7) cannot
be ruled out.

The I"*-versus-(1 —v,/v s) plot in Fig. 11 is for the bcc
lattices and was calculated from a plot similar to curve
a of Fig. 10 but which contains more closely spaced
values of M. Unfortunately, the error bars are too large
for us to determine accurately either the intercept on
the F* axis or the manner of approach. However, it
is clear that the plot is consistent with either y'= 1~ or
1~'~. For the sq lattice, the error bars are even larger
and the corresponding plot is, therefore, omitted.

Ms(v) =8(1 v,/v)~—, v —+ v,+ (3.52) 4. SPINODAL CURVE

(where 8 is a constant amplitude) into (3.51), we get

T=P(&/(.")("/v»')(1 —v /v»)"' '. (3 53)

While (3.50) shows that corresponding values of T and
e~q can be estimated from Pade approximants to the
vlf(v) series, (3.53) shows that a log-log plot of (v»'/v, ) T
versus 1—v,/v» should be asymptotically linear with
slope I'=—P+7'—1. Since P has been determined
previously, knowledge of I' yields an estimate of p'.

The plots for the bcc and sq lattices shown in Fig. 10
(curves a and b, respectively) appear to become
parallel to curves c and d, which have slopes of ~~ and

M, =g, (1—T/To)Ps T~ To (4.1)

r, = —D, (1—T/To) a', T &Tc—(4.2)

The spinodal curve has already been discussed in
the Introduction (see also Ref. 13). Let us begin this
section, then, by supposing a spinodal curve exists. As
we move along it towards the critical point, the suscept-
ibility remains in6nite while both the magnetization
3f, and magnetic field variable r, approach their
critical value zero. Asymptotically, we will write

FIG. 10. Log-log plot of (vvs'/v, }7
versus (1—v,/vpl, ) for the bcc and sq
lattices (curves a and b, respectively}.
Each point is accompanied by the corre-
sponding value of M. The straight lines c
and d have slopes of —,', and —,', respec-
tively.

5xlO
5xlO lo' 5xlO '
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Fro. 11.Plot of P~=—(P+7' —1)*versus
(1—s./pub) for the bcc lattice. The inter-
cepts marked by arrows corresponding to
y'=1r4 and 1—,'„(assuming P= —,', ).

/ Vc

Vpb f

where P, and 6,' are new critical exponents, and B,
and D, the corresponding amplitudes. Along the phase
boundary, on the other hand, we have

M p=Bp(1 T/Tc)&, T~ TG — (4.3)—
and v.—=0.

As is well known, mean-6eld theory yields a single-
phase solution which is analytic at the phase boundary.
It is, therefore, easily continued into the two-phase
region and predicts the existence of a spinodal curve.
Ke begin by showing that in this approximation

p, =p, (4.4)

where 6'=1-,'is the low-temperature "gap" exponent,
and P=s. The amplitudes D„B„and Bp are also
readily calculated.

If one assumes the existence of a Taylor-series
expansion in powers of mH/knT for fixed T about a
point on the phase boundary, then the asymptotic
behavior of the coeKcients (as deduced by Essam and
Hunter" ) suggests the existence of a spinodal curve with
the properties (4.4), and enables one to estimate B,
and D, for various lattices. Alternatively, one can
start from the equation of state for a ferromagnet in
the critical region. ' The equation has been expressed in
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various forms, the most convenient for us being that due
to Bomb,"namely,

Essam and Hunter's Series

with

ce=M '(1—1)&. (T)L~—i
M=+

(m —1)!
(4.14)

(There is also a high-temperature branch, which we
will not need. ) The equation of state can arise, in turn,
from the homogeneity properties" "of certain functions
in the critical region. The connections between these
various approaches are briefly discussed.

Finally, we study with the aid of Pade approximants
the exact high-temperature expansions at 6xed mag-
netization derived in this paper, as well as the exact
high-field expansions at Axed temperature. If the phase
boundary is a line of essential singularities, the Pade
approximants certainly give no hint of this. However,
they do indicate branch-point singularities which may
be identified with a spinodal curve. It is possible to
estimate M, and z, at various points on the spinodal
curve and these values are found to be consistent with
those calculated from (4.1), (4.2), and (4.4) using the
estimates of 8, and D, we have derived from Essam
and Hunter's work.

where f„(T) is essentially the eth field derivative of the
free energy evaluated at the phase boundary in the
one-phase region. In particular, fi(T) is the spontaneous
magnetization and f2(T) is the reduced zero-field
susceptibility below Tz. After analyzing the low-
temperature series for fi(T) through fe(T), Essam and
Hunter'4 suggested

f„(T)=C„(1—T/To)~ &" '&~', T—-+ T, (4.15—)

for all e, where 6' is the low-temperature "gap"
exponent. Differentiating (4.14) with respect to L to
give the reduced susceptibility X and replacing the
coeflicients f„(T) by their asymptotic forms (4.15)
yields

C„(1 T/To)~ —'" '&~'L" '
X(L)= Q—

n=2 (I—2)!
(4.16)

('onsider a point on the phase boundary and let us

(4 5) assume the existence of an expansion for the magnetiza-
tion at fixed T(To as a power series in mH/kaT=L.

(4 6)

Mean-Field Theory

As pointed out by Bomb," a particularly useful
way of writing the mean-6eld approximation for the
spin-~ Ising model is

which should be valid close to To. Regrouping (4.16)
as an expansion in power of

(4.17)

gives for fixed T& Tq

M —tanh(1M)

1—M tanh(tM)
(4.7) (4.18)

Expanding the tanh terms gives

7 = —(t—1)M+ [-',P—t (1—1)]M'+

which for T(To (1)1)and r=0 yields

where we have used y'=6' —P, which follows from
(4.15) when m= 2. Suppose the series on the right-hand
side of (4.18) exists and has a finite radius of conver-
gence determined by a singularity at

Bo——3"', p= -' (4.9)
Z.—= (1 T/To) ~'L. = D—., —(4.19)

Along the spinodal curve

X '= (clr/BM)g = —(t—1)
+[8—3t(1—1)]M'+ =0

so that for t&1, one Ands

ps=2

(4.10)

(4.11)

at which point X(Z) diverges to infinity. In this case,
(4.2) follows immediately from (4.19) with A, '=A'
as in (4.4).

Alternatively, substituting (4.15) into (4.14) and
regrouping in powers of 2 gives

(4.20)

D,—3 6, —6 —12

Thus, we have confirmed (4.4) and found

D,=-,', Bo/B, = 3'"

(4.12)

(4.13)

"C. Domb, J. Appl. Phys. 39, 620 (1968)."C. Domb, Ann. Aced. Sci. Fennicoe A6, 167 (1966).

Substituting M, = (1 1)'~' into (4.8)—, we get (4.2) with
At 2= Z„ the series on the right-hand side of (4.20) is
presumably singular although finite —equal to 8„ in
fact. Thus we get (4.1) with P, =P as in (4.4).

Let us rewrite the series on the right-hand sides of
(4.18) and (4.20) as

(4.21)
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~ C+g 2"
M(z)—= P

nm ~!
(4.22)

Since Essam and Hunter have estimated the first few
C„ from exact series expansions, we may attempt to
verify directly the conjectured behavior of Q(2) and
M'(2). One finds for the bcc lattice

g(Z) =0.1954—0.1652+0.18482'
—0.2182s+0.27924— (4.23)

3II(Z) = 1.5056+0.19542—0.08252'
+0.06162s—0.054524+ 0.05582'— (4 24)

and for the sq lattice

g (2)=0.02568—0.017462
+0.01742s—0.0282'+, (4.25)

M(Z) = 1.22241+0.025682 —0.008732'
+0.0058Zs —0.00724+ . (4.26)

Notice that the x(Z) series alternate in sign, indicating
that the closest singularity lies on the negative real 2
axis as demanded by (4.19). The ratios of successive
coeKcients in (4.23) and (4.25) are

—0.844, —1.120, —j..i80, —1.280,
(bcc) (4.27)

8, 1.21+0.01 (sq)

8,~1.25+0.10 (bcc) .

(4.34)

(4.35)

Both these estimates are of the expected order of
magnitude, the mean-held value being unity. Using the
known values of 80, namely,

does not seem unreasonable. The estimates (4.31) and
(4.33) are of the expected order of magnitude, the value
for the three-dimensional lattice lying closest to the
mean-field value of —', [see (4.13)], as might have been
anticipated.

If we adopt the above values for D„ then the ampli-
tudes 8, may also be estimated by forming Pade
approximants to the iV(Z) series in (4.24) and (4.26),
and evaluating these at Z, = —D,. Fortunately, it
turns out that 3f(g) varies quite slowly in the vicinity
of 2, (particularly for the two-dimensional lattices),
so that reasonably accurate estimates of 8, can be
made despite the fairly large uncertainties in the
estimates of D,. Consider, for example, the sq lattice
for which the uncertainty in D, is the greatest. The
complete Pade table is shown in Table VI. The entries
not in parentheses were obtained by evaluating the
approximants at 4,= —0.39, while those in parentheses
resulted from evaluation at 2,= —0.49 (representing a
deviation from the central estimate of one-half the
estimated uncertainty). Thus, we are able to estimate

D,=0.72&0.03 (bcc) . (4.29)

—0.680, —0.997, —1.609, . . . (sq) . (4.28)

Plotting the sequence (4.27) versus 1/I indicates a
limit around —1.39~0.05, corresponding to

we get

8p 1.22241 (sq)

1.5056 (bcc),

8s/8, 1.01&0.01 (sq)

1.20&0.10 (bcc),

(4.36)

(4.37)

(4.38)

D ~0.39&0.2 (sq) (4.33)

~ In the fM,Nj Pads approximant, M and N are the degrees
of the denominator and numerator, respectively.

This estimate is supported by the locations of the poles
of the Pade approximants to the (d/d2) in'(2) series,
namely,

—0.72[1,0], —0.76[2,0], —0.76[1,1],
—0.67[3,0], —0.66[1,2], . . . (bcc), (4.3())

where the [2,1] entry has been omitted since there is a
pole-zero pair on the positive real axis closer to the
origin. From (4.29) and (4.30), we obtain the final
estimate

g ~0 69, , -w.or (bcc) (4.31)

For the sq lattice, the ratios (4.28) are increasing quite
rapidly and the only Pade-approximant entries are
—0.76[1,0], —0.49[2,0], —0.41[1)1],

(sq). (4.32)

It is, therefore, not really feasible to estimate D,.
Nevertheless, a value around

TABLE VI. Estimates of 8, for the sq lattice obtained from the

LM,N j Pads approximants (Ref. 23) to the M(Z) series, by
evaluation at 2 = —0.39 and —0.49 (in parentheses).

1.2125
(1.2100)
1.2111

(1.2078)
1.2107

(1.2071)
1.2106

(1.2067)

1.2124
(1.2098)
1.2109

(1.2073)
1.2106

(1.2067)
1.2104

(1.2061)

1.2111
(1.2077)
1.2106

(1.2067)
1.2103

(1.2055)

1.2107 1.2106
(1.2070) (1.2066)
1.2104

(1.2061)

compared with the mean-field value of 3'".
It appears from (4.37) that the spinodal curve and

phase boundary might be asymptotically tangent at
the critical point, that is, 8s/8, =1. However, if the
11II(Z) series [(4.24) and (4.26), for example) continue
to alternate in sign, as seems likely, we must have
80&B, for all lattices. This follows by observing that
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the leading coeKcient of M(Z) is always Bo and that
for 2, negative, all the remaining terms will be negative.

If the heuristic arguments presented above are
correct, it appears that even though asymptotic tan-
gency is unlikely, Bo/B, 1 is—so small that in the
vicinity of the critical point the spinodal curve lies very
close to the phase boundary —particularly for two-
dimensional lattices. Specifically, we find from (4.1),
(4.3), and (4.4),

series expansion for F*(ko) about koo is easily shown to

imply (4.14) with (4.15). Analyticity at koo enables us
to simply continue F*(ko) for ko(kdo into the region
or&~p. Suppose the continuation exhibits a minimum
at some point ko=ko )koo. According to (4.49), the
susceptibility is infinite at this point, which must
correspond, therefore, to the spinodal curve. Thus
(4.1) and (4.2) follow from (4.6) and (4.5), respectively,
with

Av=—v, —e b=E3P~&, (4.39)
and

(4.50)

where v~b and e, are the values of v on the phase-
boundary and spinodal curve, respectively, for a given
value of 3f, and E is a constant given by

K= (I/k&T, )(1 Q,o)(B, '~—& Bo 'i~). —(4.40)

Substituting (4.34) to (4.36) yields

D = IF*(~.) I

From (4.48) and (4.50),

Bo/B.= ko8/koo

It follows from (4.49) and (4.15) that

(4.51)

(4.52)

and

When M=0.7, for example, these give

AQ~0.011&0.006 (bcc)

~0.0004&0.0003 (sq) .

The asymptotic formula

(4 43)

(4 44)

hv =KM" K='0.034+0.02 (bcc) (4.41)

Do=KM', K= 0.006&0.005 (sq) . (4.42)

(dF*/dko)
~ „„,= —1/(koo'Co )&0, (4.53)

so that if F*(ko) is analytic at koo, we must have ko, )koo,
and, hence, Bp&B,. Thus, asymptotic tangency of the
phase boundary and spinodal curve is definitely ruled
out if koo is an analytic point of F*(kd).

To illustrate this approach, consider the mean-field
approximation. Dombo' has shown that (4.5) and (4.6)
are valid with 6'= 1-,', P = —,', and

r.= —(D,/B, ')M, ', (4.45)
F*(ko)=ko '(-, —ko'). (4.54)

r,——0.0003+0.0002 (M, =0.75, sq) . (4.47)

Equation-of-State and Homogeneity Arguments

The low-temperature branch of the equation of state
has already been written down in (4.5) and (4.6). In
this theory'~ ' the phase boundary corresponds to
ko=koo, at which point F~(koo) =0, since here r=0 even
though M&0. Furthermore, (4.3) follows from (4.6)
with

Bp= COp (4.48)

Differentiating (4.5) with respect to M, one obtains

& '= (Br/BM)k= —(t—1)&'oP(dF*/dko), (4.49)

and since the susceptibility in the one-phase region is
non-negative, dF*/de must be negative. Thus, F*(QQ)
decreases monotonically from inanity to zero as cv

increases from zero to cop. Inside the two-phase region,
ko)QQQ and F*(ko)—=0.

The previous approach, using the results of Essam
and Hunter, is closely related to the analyticity of
F*(ko} at ko=koo. Specifically, the existence of a Taylor-

giving the value of r for a given value of M on the
spinodal curve, can be derived from (4.1), (4.2), and
(4.4). Substituting our estimates of B, and D, yields,
for example,

rg—0.026—Q, ohio (M, =0.65, bcc) (4.46)

Clearly, F*(ko) is infinite at ko= 0 and decreases monton-
ically to zero at co=cop ——3 '~. It exhibits a minimum
beyond koo at ko, =1, at which point F*(ko,)= ——,'. Thus,
(4.50)—(4.52) yield B,=1, D, =oo, and Bo/B, =3'" in

precise agreement with (4.13).
Finally, let us consider these ideas in the context of

the usual homogeneity arguments. In the one-phase
region close to the critical point, Stell" has discussed
the idea of a certain temperature change being equiv-
alent to a certain change in the magnetization in the
sense that it produces the same change in the suscepti-
bility X, for example. Writing @=1—t, we have

x=Cx r (M=O, x~0+),
where C is a constant amplitude, and

(4.55)

It follows that

g= —Pys 7 kg= const. (4.57)

(4 58)

X=8 'D 'M' ' (T=Tc, M~0+), (4.56)

which follows from (3.1). Thus, Cx & is equivalent to
5 'D '3P ' or s is equivalent to 8=—bM ~' ~7 where
br=lCD. Stell has shown that homogeneity of X(x,s)
yields Widom7s" form of homogeneity, which in turn
leads to the equation of state (4.5) and (4.6). By
considering X contours in the (s,x) plane and assuming
homogeneity, one can show that the phase boundary is
given by the straight line
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a well-known scaling law'24 which appears to hold for
the Ising model (see following section).

We will now assume that the one-phase X contours
can be analytically continued into the two-phase region
(lying between x= —kis and the negative x axis), and
that a limiting 7c= oo contour (or spinodal curve) exists.
In general, its asymptotic equation must be the straight
line

x= —k2s, constant k~&k~

from which immediately follows

(4.59)

However, it is conceivable that as the critical point is
approached the spiriodal curve becomes asymptotically
tangent to either the negative x axis or the phase
boundary. Stell reports" that by assuxning one-phase
homogeneity and analyticity along Tz, Fisher has ruled
out the first possibility (the only case to imply P,&P).
We have shown that the second possibility, which, as
Stell points out, can lead to inequalities like y &p, may
be ruled out by assuming one-phase homogeneity and
analyticity along the phase boundary. In Sec. 5, we
will demonstrate the validity of this analyticity assump-
tion. To conclude the present section, we will now
report some Pade-approximant calculations based upon
exact series expansions which teed to support the con-
jectured analyticity along the phase boundary.

Exact Series Exjpansions

Consider, first, the Pade approximants to the 8sr(&)
series. It is found that the simple pole at v~b(M) is
always followed by a zero, at which point the suscepti-
bility (BM/Br). =M/tr'8'(v) j di—verges to infinity. Since
the location of the zero is reasonably stable (at least for
the three-dimensional lattices), it should correspond to
the singuarity at s, (M) on the spinodal curve. Behind
the zero lies a pole-zero sequence indicating a branch-
point singularity at v, (M).

As implied above, the location of the leading zero is
less stable for the two-dimensional lattices. A possible
explanation is obtained by reinterpreting the whole
structure as a pole-zero sequence beginning at v~b(M).
This would imply a branch-point or (possibly) essential
singularity at v»(M). On the other hand, hv is expected
to be very small for the two-dimensional lattices, so
that the uncertainty in the location of the first zero
could be attributed to poor convergence. As we will

now show, a study of the re(n) series makes the latter
explanation seem more plausible.

We saw in the last section that the Pade approximants
to the r~(u) series have a zero at w~b(M). If this point
were a branch point or essential singularity as discussed
above, we might expect this zero to be followed by a
pole, then another zero, and so on. In fact, we invariably

2 L. P. Kadanoff, W. Gotze, D. HaInblen, R. Hecht, E. A. S.
Lewis, V. V. Palciauskas, M. Rayl, J. Swift, D. Aspnes, and J.
Kane, Rev. Mod. Phys. 39, 395 (1967).

find that the zero at v~b(M) is followed by a second
zero, with no intervening pole.

Assuming the existence of a spinodal curve, we have
estimated v~b and e, from the location of the first pole
and first zero, respectively, of the pole-zero sequence for
the Pade approximants to the 8M(w) series. For example,
when 3f=0.7, we find

v~b= 0.173+0.001, v, =0.199&0.015 (bcc), (4.61)

so that
Av = 0.026&0.016 (M =0.7, bcc), (4.62)

in reasonable agreement with (4.43). To calculate r, we
have evaluated the approximants to the rsr(v) series
at v= ~,. In this way we find, for example,

—0.07 o.os+ (M= 0.65, bcc), (4.63)

again in reasonable agreement with (4.46). For the bcc
lattice, results comparable in accuracy to (4.62) and
(4.63) are found for other values of M. Unfortunately,
the uncertainties in the estimates of v, for the two-
dimensional lattices are so large that the error associated
with dv and 7, are larger than the values themselves.
However, as explained earlier, such poor convergence is
to be expected when the spinodal curve lies very close
to the phase boundary.

We have also studied the exact high-field expansions

(4.64)

where
u= exp( —4J/kaT) = (1—v)'/(1+v)s (4.65)

and
p, = exp( —2m&/ks T)= (1—r)/(1+ r) . (4.66)

Mi(u) are polynomials in u which are available through
orders 3=13 (d, sq), k=11 (sc,bcc), 1=8 (t), and l=7
(fcc). We have studied the Pade approximants to
the M (ii) series obtained by evaluating the poly-
nomials at fixed values of T (i.e., u) below T,. Again the
results are consistent with the existence of a spinodal
curve, for although the covergence of the Pade-
approximant table is not particularly good, the closest
singularity appears to be in the two-phase region p&1.
For example, when T/To= s, we find a singularity in
the range p= 2—3 for the bcc lattice, and in the range
p, =1.—2 for the sq lattice. " These values of p, are in
rough agreement with the values of p, calculated from
the asymptotic formula (4.2) using (4.4), (4.31), and
(4.33).

$. RELATIONS BETWEEN CRITICAL EXPONENTS
PROVIDED BY RIGOROUS RESULTS AND

ANALYTICITY HYPOTHESIS

In this section we examine what consequences follow
from those properties which can be rigorously proved
about the analytic structure of free energy. One
"G. A. Baker, Jr., J. Appl. Phys. 39, 616 (1968).
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important rigorous result for the ferromagnetic Ising
model was proved by Yang and Lee. ' They showed
that all the singularities of the logarithm of the partition
function are on the circle

~
p ~

=1. A representation of
the free energy in terms of r can be given on the basis
of Yang and Lee's result as'

1+co
=-', inL-,' (1—r')j+ ln d q (tp), (5.1)

p 1+r pp

sidered as a function of temperature alone, the suscept-
ibility for zero magnetic field is analytic to within 2.2%
of the best estimate of the critical point for the sc lattice.
In the two-dimensional case, Onsager's" exact zero-field
result proves analyticity right up to the critical point.
These results make, we feel this assumption very
plausible. The same assumption was also made by
Abe. ' It is in the spirit of the analysis of the Ising
model to data to assume the existence of critical
exponents. %e assume, in particular, that

where d p (tp) &0 and
R(T)=XL(T Tc)/—Tc] " (5.5)

dp (~) =s. (5 2)
If we differentiate (5.1) with respect to the magnetic

field, we get the magnetization per spin as

The measure function y depends on the temperature,
but not on the magnetic Geld. Lebowitz and Penrose'
have proved (among other things) that for the Ising
ferromagnet (leaving aside the first term, which is a
known function in any event), F is an analytic function
of both T and r for Re(r) ~0 and for real finite tempera-
tures. That is to say that Ii is analytic in the neighbor-
hood of all points on the positive-temperature axis
(T& po) and r in the right half-plane. In addition,
Gallavotti, Miracle-Sole, and Robinson" have shown
that we have analyticity in the neighborhood of r=0,
provided the absolute value of the complex temperature
is large enough. This result, together with that of
Lebowitz and Penrose, has the consequence that the
free energy is an analytic function of temperature and
r' in the cut r' plane

—po &r'&LR(T) j ', R(T)&0 for T)Tg, (5.3)

for some Tg.
The idea behind the result of Lebowitz and Penrose

can be seen from (5.1). Penrose" has shown that for

~ p ~
& {$1+q(e4»"er—1)jesP»»r+'} i (5.4)—

there is a convergent expansion of P in terms of p, .
Sykes, Essam, and Gaunt" have shown that all of

the coefficients of p are analytic functions (polynomials
in e ' 1»r), and hence by standard theorems from
complex-variable theory, F is also an analytic function
of T for the same region in r as defined by (5.4).
However, by (5.1) we can irrirnediately extend the
region, by noting that the coefficient of d p is bounded
between 0 and r for all real r, and, similarly, bounds
may be gotten for r complex. Hence, if the integral
(5.1) is convergent for r near unity (dip is positive real
for T real and so this result will continue to hold near
T real), it will also be convergent for any r&0 and
more generally in the cut r2 plane —~ &r2&0.

The first additional assumption we shall make is
that Tg of (5.3) is in fact coincident with the critical
temperature T~. Fisher27 has shown that, when con-

"O.Penrose, J. Math. Phys. 4, 1312 (1963)."M. E. Fisher, Phys. Rev. 162, 480 (1967).

"2r (1—r')ppd pp(pp)
M=r+

1+r pp

(5.6)

It will be convenient to consider the related function

3E—r
G(r) =-

r(1—r')

Sir) @,(~)
)

p 1+r tp
(5.7)

'"' L1—r'(3+ (1+r')~)j4 (~)
(1—r')

(1+ 'pp)rs

and, for T& Tz, the zero-Geld susceptibility by

(5.8)

=1+G(0)=1+~pL(T —To)/Toj ' (5 9)

where we here assume the existence of the critical
index y. Now

v=0 0
&R"(T)G(0) (5.10)

gives an upper bound on the coefiicients of G(r),T)Tg. If we define

G r =A 511

using (5.5), (5.9), and (5.10), then using the result that

A„~id„ i)A„' or A„+i/A„&A„/A„ t, (5.12)

which follows from the Cauchy-Schwartz inequality

L. Onsager, Phys. Rev. 65, 11/ {1944).~ R. Abe, Progr. Theoret. Phys. {Kyoto) 38, 72 {1967).

where dP(cp) = 2pp dy(pp) &0. /Equation (5.7) is identical
to (3.18).) For T)Te, R(T) is finite, and for T&To,
R(T) is infinite. The reduced magnetic susceptibility is
given by
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and d'Alembert's ratio test for the radius of convergence

hm lg-+i/s-I =&(T) (5.13)

where the g are the power-series coeKcients in the
expansion of G in powers of g', we conclude that the A „
are a mell-defined sequence of numbers. Consequently,
if in the defining equations (5.10) and (5.11),

f
B(T) )T T —r 2nll

(u "d))t ((o) =2„l, (5.14)
T,

we make the change of variables

w = &(T Tc)/T—c]+"~,
d+ (w) = D T To)/T—cl'd)/'(~)

then we have

(5.15)

w"dO(w) =2 (5.16)

Consequently,

T—Tg & T—Tg —'~—
lim dP — w =d%(w) (5 17)

T~Tg+ T

defines a limiting measure function for the critical
isotherm, at least for large co. We now see that if
M~ r'I~ on the critical isotherm, (5.7) implies

4"( ) i- ( )
—

i=i(-)
5

+gl ~ ~ ~ (5.26)

Let us now turn our attention to the region T& Tq.
First we note that by (5.7) we may express df(co) in
terms of G(r),"

1 1
f'((u) = —lim Im G — —. (5.24)

(—(o+ie)'I' a)

Thus the known analytic properties of G as detailed
previously become available in the study of P'((0). It
follows from the series expansion available' that the
coefficient of every power of r may be represented in a
forrnal expansion in u=exp( —4J/ksT) for T&To. We
shall assum- with good evidence, we feel'~that these
formal series define finite coeflicients for every order of
7 for real T&Tg. We will further assume, as the series
represent a rearrangement of all the terms of the (con-
vergent) t( series which defines the function that there
are no additional parts of G(r) which have a Taylor
series with all derivatives zero in the Re(r) &0 at r =0
The consequence of this is that we may write

G(r) =g i/7+jo+ jir+jar'+ (5.25)

for all T( Tc. By virtue of (5.24) we must then have

G (r)~r (i ())/5— (5 18)

" (t)-&d+(w)
(5.19)

where now t= (T—To)/To. In order for (5.19) to be
true for all rWO (r small, rt ~ large), we must have

d%'(w) 0-.w- ('+') I"dw (5.20)

for m small. The temperature behavior of the coefficient
of r&' '»'is

t
—y+5 (8—j.') /8~ (1—6)/6 (5.21)

in the limit as t —+ 0+. Hence, we conclude that

—y+ A(h —1)/t) &0. (5.22)

We cannot conclude strict equality because it is
perfectly possible that other singularities in G(r) besides
the one which moves most quickly to z=0 as t ~ 0 also
contribute to the behavior along the critical isotherm.
We differ with Abe" at this point. We will give an
example later to clarify it. A convenient way to rewrite
inequality (5.22) is

(5.23)

We may summarize by saying that if p, 8, and 6 exist
in the sense we have defined them for the ferromagnetic
Ising model, then they must satisfy (5.23).

as r goes to zero. Rewriting (5.7) and (5.18) with
(5.15), we find

where the coefficients must behave as follows:

g- "(—t)', go"( t) ', —(527)

by the definition of the low-temperature critical
exponents.

We are now in a position to examine the combined
effects of (i) the existence of the low-temperature
field derivatives, (ii) the integral representation (5.7),
(iii) analyticity, and (iv) the existence of various critical
exponents. We focus on the behavior of P'(cv) near
1/co=0 for t~0+. There must be a closest branch
point which approaches the origin of the 1/g(0 plane
like t~ to account for the region of zero measure which,
as we have seen, shrinks to zero at that rate. There
could perhaps be another branch point close behind it
at which the measure again becomes zero. It will
suffice to consider the leading pair as )l'&0 and the
contribution from others will add to the total result—
that is, no cancellation can occur. Consequently, in
this vicinity we must have

P'(co) ~ lim (u
—"'{L—o)

—'+E(t+ie)' ]"
e~o

—
L
—(u '+E(t —ie)'~)"}{L'a& '—E(t+ie)'~/

(1+(t+ie)s)$'2 —L(o '—E(t—ie)'~/

~ See Eq. I'II.51) of Ref. 3.
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where hi+8s=1/2h. This form is fixed by taking the
limit as t —+ 0 from (5.20), and the expression in terms
of co ' comes from (5.26). To see that 5r+Bs ——1/28 we

merely repeat the analysis of (5.15)—(5.20) on form

(5.28) and at once obtain this restriction. We remark
that Suzuki" worked out the asymptotic form of P'(co)
as co —+~ for mean-field theory and gets exact agree-
ment with form (5.28), except the last factor is replaced

by unity, i.e., there is no confiuence of singularities.
He finds 2A =3 and 8& = ~~, as they should be. Although
the coefficient of the right-hand side of (5.28) must go
to a function regular in co '~', 0&or & ~ when t goes to
zero, there can remain, for example, a Axed singularity
at co '=0. The ro '~' factor in (5.28) is an example of

such a singularity which produces a fixed square-root
branch point (as a function of r') which suddenly

appears at the critical point. This branch point may be
thought of as having been on a different Riemann sheet
and being revealed by the motion of the critical point
singularity. If the coefficient of the right-hand side of
(5.28) contains an additive term like exp( —oi), for
example, there would remain an essential singularity
on the line r =0, T& T,. %e will assume however that
the index 6' exist. More than that, we will further as-
sume that the A„' Lanalogus to (5.11) but for T(T,]
obey a condition similar to (5.13). That is, that the
ratio A ~r'/A „' tends to a finite limit. This assumption is
well supported by the numerical evidence' as pointed
out in the previous section. It also serves to eliminate
an essential singularity on the line r =0, T&T,. The
factor of 1+(/+is)s is to take account of the possible
confluence of the singularities (E)0). If ZWO, then
this measure leads to a value of y(A(8 —1)/8 in ac-
cordance with (5.22). We know, however, that P'(&o) is

analytic in t in a neighborhood of t real, even at t=0
as G(r) is, Rer())0. Thus, we may analytically con-
tinue (5.28) around the apparent singularity at 3=0
through complex values of t to t&0 and real. This
analytic continuation must therefore extend (5.28) to
t&0 and validates the limiting-process definition given.
Hence, we find that the contribution from this singu-
larity yields, using (5.27) and (5.28),

& =~/o, 7'= ((~—1)/~]A (5 29)

Furthermore, translating back to G from P'(co) by means
of (5.24), and selecting the proper square root of r'to-
throw the singularities into the left half 7- plane, we
find that singularity is preceding like ~t~~. However,
there may be singularities in the coeS.cient of the
right-hand side of (5.28) from another Riemann sheet
which are proceeding more slowly. Hence

(5.30)

We have now, however, established the results necessary
to obtain the low-temperature analog of (5.23). Hence

we conclude that
8& 6'/(6' —y'), (5.31)

since other singularities might contribute a larger value
of 5, but cannot cancel the one contributed by this
singularity.

From (5.1) we obtain for the zero-field free energy

F/kT = —ln2+ ln(1+iv)dq (~) . (5.32)

If we use the asymptotic values (5.14)—(5.19) for the
measure function, we may compute the free energy to
leading order. The specific-heat critical exponent
contributed by each singularity is found to be

rr= 2+y —2A. (5.33)

We note that if d p tends smoothly to zero as ~ tends to
R(T), the logarithmic factor in (5.32) does not carry
over to the specific-heat singularity. However, in a case
like (5.28), where there can be a narrow peak of measure
moving to co equals infinity and y'&y, then the logarith-
mic factor is carried over to the specific-heat singularity.
The case a=0 is special and a logarithm may or may
not occur there. For the low-temperature side, asymp-
totic evaluation leads to the conclusion

n'= 2+y' —2h', (5.34)

for each singularity. The extra logarithmic factor does
not seem to carry over to the specific-heat singularity
here, except of course u'=0 may or may not corre-
spond to a logarithm. All of these remarks are not to
say that logarithmic factors cannot occur, but that if
they do occur, they will occur in the various critic a
exponents in a consistent manner.

We will now give an example which shows that the
room to extend our results (as distinguished from
proving our hypotheses) is rather limited. Consider an
Ising model made up of two noninteracting subsystems,
each of which has the same critical temperature. It then
follows easily that the susceptibility with the larger
critical exponent will dominate and y will be the
maximum of y~ and y2. The same will be true of all
the other exponents. For example, if we have relations

~l ~1 /(+i Vl )1 82= ~s /(+s Ys ) ) (5 36)
then

maxL+1 /(~1 'yl ) +2 /(+2 |2 )]
&maxLA'/(6' —yr'), 6'/(6' —ys')]

= ~'/(~' —v') (5 36)
where

A'=max[Dr', A' s], y'=maxLyr', ys'], (5.37)

so that even though both subsystems satisfy the
Widom32 relation, the combined system need not.
Certainly one would not expect the scaling hypotheses

"M. Suzuki, Progr. Theoret. Phys. (Kyoto) 38, 1225 (1967). 3~ B. Widom, J. Chem. Phys. 41, 1633 (1964).
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n&n',

~'/P& ~& ~'/(~' v') & ~/(—~ v), —
n'+ 2P+y'& 2, n'+P(1+6) & 2.

(5.39)

We have assumed that the various exponents required
exist and that the free energy is analytic for real T
and H in the neighborhood of H=O, T&T~, an exten-
sion of the proved result" (T&TG&To). We also
assumed the existence of all derivatives with respect to
magnetic ield on the phase boundary, and a condition
on their magnitude.

In addition, our results imply (at least in the neigh-
borhood of To) that on the magnetic phase boundary
for T(Tz the free energy is analytic in T and H.
This property is contrary to that of the droplet model.
Fisher" ' ~ has shown that, for this model, the line
H=0 is an essential singularity 0(T(~.The droplet
model is not a counterexample to our result since it
fails to have the analyticity property proved by
Gallavotti et al. for Ising models. Plainly this property
is essential to our results.

Kssam and Hunter' have made a detailed analysis
of the exact series expansions for the three-dimensional
Ising model and estimate

6= 1.563&0.003.
~'= &.60 a0.05.

(5.40)

Baker and Gaunt~ have carefully studied the series
expansions below Tg and estimate

P=0 312 +"" (5.41)

"M. H. Coopcrsmith, Phys. Rcv. 172, 230 (1968).

to be valid for such a system. Coopersmith" has shown
that analyticity by itself does not preclude asymmetry
in the critical exponents, although his example does not
satisfy the conditions of the Yang-Lee theorem' [it
violates (5.23), for example].

Let us now summarize the restriction on the possible
values which the critical exponents can attain. The
result can be gotten by thinking of the contribution
from a set of singularities S;. Each singularity will

contribute the exponent set

(5;:6;,"o,,h )6,, y, '= (5;—1)h,'/5, ,

n,'= 2+y, '—2A, ', n;= 2+y, —2A;,
—P,= —6,'/6, }. (5.38)

Singularities on the other sheet do not contribute to the
high-temperature indices. Then any critical exponent I'
will be the maximum over the singularities S; of E;.
(Note that we use —P as the magnetization exponent,
since the smallest P dominates the larger ones. ) From
this construction we can derive various relations. For
example,

In addition, we have the estimate4 of

q=1.250a0.003.

Substituting these estimates into (5.39),

(5.42)

yields
5.13 o.is+"'& &&4 99-o.os+"', (5 43)

so that 8 can diGer from 5.15 by at most 0.25, which
encompasses most previous estimates.
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APPENDIX: Q POLYNOMIALS

sq Lattice
Pg = —4+4M'

Ps = 4—24M'+ 20M4

Ps = —4+68M' —168M4+ 104M',

f4= 12—168M'+ 760M4 —1160Ms+ 556M",

Ps ———20+436M' —2776M'+ 7192M'
—7880M'+ 3048M",

Ps =44—1128M'+ 9356M' —34 592M'

+62 176M' —52 928M"+ 17 072M"

p7 ———84+ 2868Ms —30 064M'+ 145 840M"

—371 240M'+508 232M"—352 880M"

+97 328M",

ps= 188—7256M'+ 93 176M4—566 968M'

+ 1 889 0323IIs 3 631 0643II' +4 001 592M's

—2 341 752M'4+563 052M",

fo = —372+ 18 164M' —280 272M4+ 2 078 864M'

—8 660 120M'+ 21 699 832M"—33 341 968M"

+30 685 008M"—15 497 080M"+3 297 944M"

P, o = 788—44 392M'+817 0923II'—7 259 168M'

+36 754 592M' —114 841 440M"+229 164 816M"
—292 475 392M'4+ 230 756 064M"

—102 397 840M"+ 19 524 880M'"

Pu = —1604+107 460M' —2 316 072M'+24 277 480M'

—146 498 200M"+554 665 848M"
—1 376 525 280M"+ 2 274 300 512M'4

—2 478 205 704M"+ 1 709 581 544M"
—676 063 264Mso+ 116 677 280M",
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/is = 3444—258 504Ms+6 427 864M4 —78 299 560M'

+553 952 980Ms —2 489 181 632M'o

+7 463 499 392M"—15 296 652 096M'4

+21 518 331 408M"—20 435 567 088M"

+12 516 708 496Mso 4 461 912 368Mss

+702 947 664M'4,

/is = —/204+620 356M' —17 554 072M'

+245 188 312M' —2 004 706 240M'

+10513 555 648M"—37 283 928 480M"

+92 073 363 232M"—160 287 439 384M"

+196 044 178 488M"—164 870 758 432M"

+90 765 662 624M' —29 443 477 952Ms4

+4 265 303 104M"

Pg4= 15 660—1 483 368M'+47 311 260M'
—749 341 664M +6 994 337 296Ms

—42 218 17'/ 936M"+174 126 684 064M"
—507 121 822 400M"+ 1 061 173 789 936M"'

1 602 697 933 600M&s+1 732 19g P74 416Mso

—1 306 491 196 576M"+652 984 363 120M'4

—194 286 909 008M"+26 042 288 800M"

Ps 138—330M'+36 336M' —158 704M'

3 283 900Ms+ 29 975 580M'o —93 928 536M

+137649 576M s—96314812M +26024652M&s

/go ——546—3168M'—15 642M'+ 740 640M'

+279 384M' —62 865 168M"+369 200 976M's

—914 667 840M'4+ 1 141 580 244M"
—708 376 992M"+174 127 020M"

6 Lattice

Py= —4+4M',

Ps 4 24——Ms—+20M4,

Ps = —4+ 68M' —168M4+ 104M'

4—136M'+ 712M' —1128Ms+ 5483IIs

fs = —4+228M' —2104M4+ 6264M'

—7288M +2904M'o,

28 488Ms+ 5340M4 24 608Ms+ 50 160Ms

—45 888M"+15 456M",

Pz= —52+ 1300M'—14 048M4+ 82 144Ms

—246 376M'+ 378 504M"—284 128M"

+82 656M'4,

Ps = 100—3336M'+ 39 720M —263 464M'

+1 015 608Ms 2 235 56PMio+2 742 568Mls

—1 /40 040M'4+444 404M"

Po = —148+ /508M' 110 784M4+—840 768M'

3 858 072Ms+ 10 947 960M'o —18 947 200M

+19293 952M"—10 576 632M"+ 2 402 648M"

g g
———6+6M'

ps 6 48M'+42M——4, —
fs = 6+130Ms 424M4+ 288—M',

6—144M +1752M' 3552Ms+1938Ms

Ps =6+18M'—3888M4+ 19 464Mo

2g 54gMs+12 948M'o

Pii= —1252+48 420M' —814 808M'+7 964 376M'

48 733 992Ms+ 196 697 288MM

—535 450 560M"+980 841 408M"
—1 183 038 200M"+895 925 336M"

384 748 656Mso+ 71 310 640MiP s= 18+32Msy4630M4 —62 368M'+ 194 480M'
—223 312M++86 520M's, P„=3148—130 920Ms+2 323 048M4 —24 326 024Mo

+165 545 772M —764 053 632M'

+2 448 202 368M"—5 480 864 640M'4

+8 494 895 904M"—8 884 620 848M"

+5 958 449 264M" —2 306 397 616M"

+390 974 176Ms4,

p7 66—18M —1728M4+ 123 840M' —gp2 788M'

+ 1 814 628M"—1 /13 384M"+579 384M'4

lps —78+ 1488M —9864M —120 912M'+ 2 142 960Ms
—9 070 896MM+ 16 110408M"—12 937 392M"

+3 884 130M",

ij|s=—33 316+3540 484M' —126 088 560M4

+2 243 537 840M' —23 661 453 648M'

+162 471 081 872M"—768 760 181 168M"

+2 596 569 460 464M'4 —6 392 150 025 848M"

+11 579 571 149 976M"—15 424 214 072 912M"

+14 922 957 259 280M"—10 199 134 928 144M"

+4 666 432 232 912M"—1 282 076 329 040M"
+159 874 849 808M" lit is=580—18 184M'+297 780M' —2 617 632M'

+13 984 752Ms —4g p9g pgpM&o+ ip7 318 592Mgst Lattice —152 6/6 0963P'+ 132 683 872M"
—63 934 256M' +13 058 672M"
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' is= —5860+330 628M' —6 646 920M'+ 75 256 712M'

5g 151 376Ms+2 873 14g 112M'o

—10 532 341 184M"+27 775 023 552M"
—52 589 440 600M"+70 509 348 472M"

65 042 506 832Mro+39 123 143 824M

—13 777 878 896Ms4+ 2 150 720 368M"

/ i4= 18 700—844 776M'+18 563 644M'

—231 464 096M'+1 873 779 312M'
—10 606 817 072M"+43 515 616 352M"
—131 415 004 736M"+293 063 673 264M"
—479 387 394 016M"+565 476 850 352M"
—466 224 610 656M"+254 105 136 752M'4

—82 051 191 664M"+11 863 688 640M"

/is —40 340——+2 194 740Ms —51 210 064Ms

+698 158 992Ms —6 200 038 528Ms

+38 512 552 QQQM" —174 733 436 432M"

+592 425 233 744M's —]. 514 5g5 19Q 984Mis

+2 917 028 903 464Mi' —4 191 791 943 gggM o

+4 408 714 825 744M"—3 283 529 402 464M"

+ 1 635 230 364 192M"—487 317 529 552M"

+65 596 559 376M",

/is= 113 /80 —5 886 872Ms+142 720 360M'

—2 080 285 816M'+ 20 115 514 872Ms

—136 900 632 /92M'o+ 683 603 876 712Mis

—2 572 648 458 552M'4+ 7 4Q2 922 305 992Mis

—16 362 146 743 576M"+27 674 931, 59Q 9g4Mso

—35 410 433 388 536M"+33 569 953 95P 264Ms4

—22 '/83 917 643 992M"+10 440 608 476 SOSM»

—2 887 603 419 064M"+363 457 9Q9 428Mss .

sc Lattice

Pi ———6+6M',

Ps ——6—48M'+ 42M',

Ps ———6+ 166Ms 460M'+ 300M-',
Ps= 30—456M'+ 2544M' —4296M'+ 2178M'

ps= 54+ 1350M —1Q 596M. +32—196M —3g 916Ms

+16020Mio

Ps= 318—5248M'+42 946Ms —181 216M'+369428Ms

345 32gM'o+ 119100Mn

pi= —726+19 782Ms —184 584Ms+ 927 528M'
—2 616 948M'+3 983 172M"—3 021 720M"

+893 496M"

its= 3/26 —80 280M'+818 040M' —4 678 008M'

+16 233 120Ms—33 998 232Mio+41 11g 840Mu

—26 171 640M"+6 754 434M"

fo = —9718j313 462M' —3 652 248M'+ 23 582 584M'
—95 235 036M'+ 248 261 580M"—410 841 928M's

+411 094 696M'4 —224 902 468Mis

+51 389 076M"

g'xo = 49 974—1 29/ 728M'+16 324 842M'
—118033 824M +542 96"/ 612Ms

—1 669 027 632Mio+3 455 4P9 5ggMis

—4 709 249 4/2M"+ 4 010 484 '/SOM"

—1 920 738 528M"+393 110 388M"

Pii =—139 974+5 198 310M'—73 026 276M'

+585 585 444M' —3 028 136 556M'

+10 677 478 428M"—26 256 889 632M"

+44 863 474 848Mi4 51 848 181 972Mio

+38 375 893 092M"—16 322 543 160M"

+3 021 287 448M"

/is ——728 022—21 952 200M'+327 269 360M'
—2 879 498 504M'+16 559 709 770Ms

65 892 382 464Mio+ 186 837 761 024M
—380 796 817 024M"+552 180 243 236M"

553 009 884 688Mis+361 531 476 512Mso

—138 152 293 968M"+23 315 640 924M"

bcc Lattice

g i———8+8M',

fs 8 SQM'+ 72M——', —
fs = —8+328M' —976M4+ 656M'

f4= 104—1136M'+6640M' —11 696M'+ 6088M'

ps = —200+4616M' —34 544M4+ 108 592M'
—135 728M'+57 264M'

its = 1880—26 320M'+ 186 712M4—767 488M'

+1 600 768M' —1 539 104M"+543 552M",

i/7 ——5288+ 132 392Ms —1 1Q6 240M4+5' 135 936M'

14 274 960Ms+22 099 472Mio 17 178 176Mis

+5 196 864M'4
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fo = —143 560+4 145 352Ms 42 —281 728M4

+243 122 432M' —900 699 312M

+2 242 834 736M"—3 673 093 248M"

+3 713 856 384M'4 —2 071 075 0243Ps

+483 333 968M",

fcc Lattice
—12——+12M',

fs 12——1—68M'+156M',

fs=36+764Ms 2792—M4+ 1992M'

f4= 180—1464M'+ 20 808M' —44 952M'+ 25 428M'

fs 948 2——484M—' 7S 192—M4+ 444 696M'
—692 952M'+ 324 984M",

fgo ——1 165 704—24 644 304Ms+ 264 493 800M4

—1 684 554 752M'+6 997 557 824M'

20 002 116448M'o+ 39 826 568 OOOMn

—53 724 506 368M'4+46 125 717 664M"
—22 473 207 392M"+4 693 526 272M",

fs = 5556 13 432M—'+ 126 292M4 —2 426 656M'

+8 510 960M' —10 355 296M"+4 152 576M"

$7= 36 132—75 204M' —47 856M'+ 7 877 040Ms

61 407 096Ms+ 152 077 272Mio

—151 515 216M"+53 054 928M'4,

Pi i = —4 144 200+ 136 480 392M' —1 659 001 872M4

+11639 673 296M' —53 730 081 296Ms

+173 043 357 584Mio 399 332 355 136M

+658 948 695 872M"—753 636 008 624M"

+561 275 110960M"—242 430 982 208M"

fs 256 452———579 624M'+288 552M' —13 755 144M'

+282 680 664Ms —1 351 689 960M'o

+2 586 921 768M"—2 182 086 792384

+677 964 084M" .+45 749 255 232M",

Ps=-44 072—771 632M'+6 807 856M4 —35 037 360M' gas=33 266 904—822 723 600Ms+10 432 080 336M'

+114 817 808Ms —237 744 112M'o —79 866 919 568M'+406 862 380 696M'

+291 377 712M's —189 484 400M'4 —1 461 077 755 840M"+3 819 172 893 504M"

+49 990 056M" —7 352 468 491 584M'4+10 324 354 362 976M"
—10 228 962 320 512M' +6 717 611 029 696M

—2 602 671 071 808M"+447 403 268 800M'4 .


