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Composite Ising Lattices. I. Bragg-Williams Approximation*
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The Bragg-Williams approximation for certain general classes of composite Ising lattices is worked out
and discussed in detail. Our results suggest that the proximity eBect may exist in composite ferromagnetic
insulators.

1. INTRODUC'TION

I
'HE phenomena of composite systems are very

interesting and useful for many practical applica-
tions. This is especially true for composite systems
which exhibit a phase transition. They are known as
proximity effects' in superconductors, and have been
studied extensively for temperatures near the critical
point. On the other hand, very little is known about
composite magnetic systems. In particular, we are not
aware of any theoretical study of composite Ising lat-
tices. The Ising lattice has been unique in that both an
exact solution and an effective-field approximation are
known. The exact solution provides tests for various
numerical approximation schemes, and improves our
general understandings of phase transitions in short-
range interaction systems. The approximate solution is
simple in calculation, easy to interpret, and gives
reasonably good descriptions of the magnetic behavior
near the transition region. In this article, we shall
discuss the Bragg-Williams approximation' for certain
general classes of composite Ising lattices. The general
formulation will be given in Sec. 2, upper and lower
bounds derived in Sec. 3, analytical solutions in Sec. 4,
and finally the connection of our results with the exact
solution and with experiments will be discussed in Sec. 5.

2. GENERAL FORMULATION

N
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(ij ) indicates summation over nearest neighbors.
Since E is in general degenerate, it is convenient to

reexpress E in terms of the following variables: Ea+,
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E3++, E3+, E3,E+, and E .E+ is the total number
of up spins in a given configuration. Ea+, is the total
number of up spins in component 1. Sa+ is the total
number of interacting pairs with one spin up and one
spin down, and both spins come from component I, etc.
These 15 variables are related by the following 13
equations:

fraction vq (v2) of component 1 (2) and the fraction of
interacting pairs 2uq (2us) whose spins come from com-
ponent 1 (2). Also, let 2us be the fraction of interacting
pairs where the two spins come from diGerent
components.

Our problem is to compute the partition function Q
as a function of the external magnetic Geld 8 and the
temperature T:

Q(B,T) =2 " 2 e ""*'.
Sj. SN

S; is either +1 or —1, P= 1/ktsT, and E is the energy
of the system for a given spin configuration {S;):

Let us 6rst consider an Ising lattice of two com-
ponents. Let y be the coordination number and S the
total number of lattice sites. We assuxne a nearest-
neighbor interaction with strength e,;, where e;; = es (e2)
if both spins of the interacting pair come from com-
ponent 1 (2), and ets=ee if they come from different
components. It is physically reasonable to assume that
63 lies in between ea and e2. We shall restrict ourselves
to cases where the lattice can be built up be repetition
of a 6nite unit cell; the distribution of components
inside the unit cell is, however, arbitrary. (Regularly
distributed impurities or holes are special cases of our
model. ) Some examples are shown in Fig. 1. Given the
structure of the unit cell, one can easily And the volume
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Equations (3)—(5) are merely definitions. Equations (6)
and (7) are generalizations of the Bragg-Williams
approximation to the multiple-components case. It says
that there is no short-range order apart from that which
follows from long-range order within each component.
Incidentally, 2iyN(N+/N)' is no longer equal to N++

(=—Ni+++N2+++1V8++), because of the existence of
diferent components. Since the total number of sites
is E, and the total number of nearest-neighbor pairs
is —,'yE, we also have

vi+v2= 1 i

ui+u2+ug= 2.

We use Li and L2—the long-range-order parameters
in components 1 and 2—as our independent variables.
They are de6ned by

Ni+/viN= (Li+-,'),
1V2+/v2iv= (L2+-,'), (9)

with iLi(, (L2( & —,'. The other variables, as well as L
(the magnetization per site), E and Q, can be expressed
in terms of L~ and L2'.

Nly+ =ul'yN(L1+g) i N2++ =u27li (L2+2) y N3++ =u37N(L1+g)(LS+2) y

Ni+ 2uiyN(~ —L—i'), 1V2+—=2u2&N(4 L2'), N—a+ =2u3&N(& L1L—2) j
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L =2(viI.i+v2L2),
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(14)
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As N ~~, the logarithm of Q approaches the
logarithm of the largest term in the summand. Using
Sterling's approximation for A'I, we 6nd that

A/N = —(1/PN) lnQ

=+4'r(eiuiLi + e2u2L2 +e3u3LiLg)

+ (1/2p) Lvi ln(-„' —I,i')+ v2 ln(-,' —I.,')], (16)

and L2 of Eq. (18) are monotonically increasing func-
tlolls of Ei E2 e3 p aild 7.

To prove this theorem, we first note that if f(x)
= (1/x) tanh 'x, then f(x) is a monotonically increasing
function of x in the doInain I&x&0. Next, we rewrite

U/N = 4y(eiuiLi'+ e—2u2L2'+ eauaLiLg) BL, —

where U is the internal energy and 3 is the free energy.

Lq and L2 are the values of Lj and L2 that maximize the
summand of Eq. (15). They satisfy

2Li= tanhD!8+4Peiy(ua/vi)Li+2Peay(u3/vi)L2], '
(18)

2L2 tanhP&+4Pe~——y(u2/v2)L2+ 2Pe3+(u3/v2)L1]

Without any danger of confusion, we shall remove the

bars from Lj and L2 from now on. We note that all our

equations reduce to those of the single-component case
in the proper limit. The generalization to composites

with more than two components is straightforward.

3. UPPER AND LOWER BOUNDS

Theorem. For a given cell structure (i.e., for fixed u's

and v's), and with a zero external magnetic field, Li

FIG. 1. Some examples of composite Ising
lattices: ~, component 1; 0, component 2.
(a} 7=2, ~1 ~2 2 N1 N2 2N3 8. (b) &=4,
Pl =82 = 2 p Nl =N2 = 2Q3 = 8. (C) P =wp &1= 4 p ~2 —4p
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Eq. (18) (with B=0) as

33233 Li /f(2Li)»1&1
L2& PV
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(19b)

used, because T, should change continuously with the
parameters of the system.

To be very specific, let us consider examples (a) and
(b) of Fig. 1, where 2/1 ——2/2=-2, , ui ——u2 ———,'N3 ——L and set
33= (3132)"'. For this case, we find that kiiT, =y
X2'(31+32). Thus the value of T, coincides with that
for the single-component case with 3=-'2(31+32). Li and
L2are nowdetermined in terms of F'= (+31)L1+ (+32)L2
by

2L1——tanh(pB+ py31 1/2I')

2L2 = tanh(pB+ py32'/2F)
(22)From the product of Eqs. (19a) and (19b), we see that

Li and L2 cannot both decrease as we increase ~3 or p
or y. Furthermore, if L& is increasing while L2 is de- and P satisfies
creasing, this would violate Eq. (19b). The reverse case
violates Eq. (19a). Hence both Li and L2 must increase
monotonically as we increase 33 or P or y.

+("1/&2) tanh(pB+p'rE'2 'F) . (23)

n3L2 Qy

33yP =f(2L,1) —2—P31y.
&1L1

(20a)

We also 6nd that

0/E= —',q I'2—BL,

So for fixed 31, 33, P, and y, if we increase Li (say, [by
changing 32), L2 must also increase. Next, we find
L2/Li by solving Eq. (20a), and substitute it into
Eq. (19b); we find that

E/Z= BL ',qy 2, — —
&1 +&2 / 31+32

& i'+.2'

2N2Py32
—= f(2L1A.(Li))—

33'yP2/3

A (Li)2/2 (20b)

- 1/2

X 3 1—— (T(T)
T.

A (Li) = LV1f(2I 1)—231231pyj/33233p~.

From Eq. (20b), it is clear that for fixed 3,, 33, P, and 7,
Li (hence L2) is a monotonically increasing function
of 22. Similar arguments imply that for fixed e2, e3, P,
and y, L2 (hence Li) is a monotonically increasing
function of ei. This completes our proof of the theorem.

This theorem also implies that I.(T) is bounded by
the magnetization curves of pure e~ and pure e2 cases.
In particular, T, is bounded by T,& and T,2. For the
special case of vi=@2, Ii=232, Eq. (19) implies that if
ei&e2, then Ly&L2. Ke expect this result to hold for
arbitrary I's and e's.

4. ANALYTlCAL SOLUTIONS

For arbitrary temperatures, Eq. (18) can be solved
only by numerical methods. However, analytical solu-
tions exist in various limits. If T& T, and 8=0, we have
Li=L2 ——0, hence U= L= C=-O, A/cV= (1/2P) in'. The
transition temperature T, can easily be solved explicitly
fr om

(33233Py) '—(23iuiPy —2/1) (232N2Py —V2) =0. (21)

3 1/2+. 3 1/2

—1I —exp
T 31+32

(25)

C 3 (31+32)2 3
(T=T.) (26)

Xk/1 2 2(~1'+322)

BL
(.,'/'-. »2)2

l~B a-o 4(T T.) 4u~T—
(T& T,)

(T(T,) (27)

If both solutions are positive, the larger one should be (T=T., B-+0). (28)
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All our results reduce to the single-component case for
the limit e~= e2. Ke also note that in our model, the
specific-heat jump is no longer a constant. The same is
true for the ratio L/L3(1 —T/T, )g'~' and the coeKcient
of the Curie-Weiss law PEq. (27)j.

In the Bragg-Williams approximation for the single-
component case, free energy can be expanded in terms
of the order parameter L:

A Ao ev ~aT( L'")
+ I-'—

I z
N N 2 2 E~=& Nl

Ap AT
ln~.

X 2

(29)

(For multiple-components cases, it is more convenient
to expand A in terms of both I.t and I.s.) In terms of
critical indices, ' our above results give P=-,', 8=3,
y= y'= 7, and a=n'= 0. All these are in agreement with
the prediction of I.andau's theory of second-order phase
transition. This is not surprising, since both the Bragg-
Williams approximation and Landau's theory are ex-

pected to work well in the presence of very long-range
forces. 4 We speculate that Baker's proof4 still goes
through for composite systems.

All the above conclusions still hold for the more
general cases of arbitrary e's and u's, although the
corresponding formulas are too clumsy to write down.

s L. P. Kadanoff et a/. , Rev. Mod. Phys. 39, 395 (1967).
4 G. A. Baker, Jr., Phys. Rev. 130, 1406 (1963).

S. DISCUSSION

The Bragg-Williams approximation is useful because

Inany times it simulates the behavior of the exact solu-

tion. The transition temperature obtained by the Bragg-
Williams approximation is an upper bound of the exact

T,. This is probably still true for composite lattices.
Applying a recent theorem of GrifEths, ' we easily see
that T, of the exact solution of a composite lattice is
also bounded by T, of the exact solution of correspond-
ing single-component systems. There is some doubt
about whether the Griffiths theorem can be generalized
to the Heisenberg model, ~ although we expect from
physical grounds that the same kind of upper and lower
bounds still hold true. This means that, for composite
ferromagnetic insulators (for which the Heisenberg
model works), the whole system will undergo a mag-
netic phase transition at T,2&T,&T,~. This effect
should be observable even in composite thin 6lms
(i.e., proximity effects exist). Experiments to search
for such an effect in metallic ferromagnetic composites
have not been successful, although factors like inter-
facial structures, domain walls, etc., may have inQuenced
the outcome.

From previous sections, other features that we expect
to see from experiments are the possibility of structures
(various shapes and slopes) in L(T), C(T) curves.
Furthermore, since there is no definite correlation be-
tween the magnitude of the magnetic moment and the
magnitude of the exchange integral, a rough caIculation
based on the Bragg-Williams approximation suggests
the following interesting possibility: If one component
has a high saturation magnetization and a low T„and
the other has a low saturation magnetization and a high

T„ then the composite may, in a certain temperature
range, have a magnetization higher than those of its
components.
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