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Micromagnetics at High Temperature
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The method of micromagnetics is extended to the cases in which the magnitude of the magnetization
cannot be considered constant throughout a ferromagnetic body. The nonlinear equations, corresponding
to Brown's equations in the standard treatment of micromagnetics, have been deduced with the proper
boundary conditions, as well as their linearized form suitable for evaluation of the nucleation Geld and mode.
Some relationships have been found between the nucleation Geld deduced in this way and the nucleation
Geld for constant magnitude, emphasizing that a detailed knowledge of the magnetic equation of state of
the material is needed for the determination of the true nucleation Geld. The case of a boundless plate with
an applied Geld normal to its boundary planes has been considered in detail, and the existence of one nuclea-
tion mode, termed as "waving, " peculiar to this treatment, has been recognized; the conditions for this
mode of reversal have been deduced, with the result that it can be expected near the Curie temperature.

1. INTRODUCTION

HE purpose of micromagnetics' ' is a description
of ferromagnetic bodies by means of a vector

6eld with constant magnitude and with direction vary-
ing continuously with position, this vector field repre-
senting the local magnetization. This description can
be easily accepted at temperatures signi6cantly lower
than the Curie temperature, because in this range the
susceptibility X. of the ferromagnetic material can be
disregarded in a 6rst approximation, and consequently
the magnitude of the magnetization is determined only

by the temperature. However, when the temperature
is raised to a value near to the Curie point, the remanent
magnetization decreases and the susceptibility in-

creases, so that it becomes impossible to neglect the
change in magnitude of the local magnetization due to
the magnetic 6elds and to the exchange forces.

This paper extends the method of micromagnetics to
the case in which the magnetization is describedby a
vector Geld M, whose both direction and magnitude
vary continuously with position. The other limitations
of micromagnetics —namely, the disregard of thermal
Quctuations, atomic structure, and magnetoelastic
effects—will aGect also the results of this work. Prob-
ably thermal Quctuations can play a more relevant role
in the neighborhood of the Curie point than in the
range of validity of standard micrornagnetics; neverthe-
less, the theory presented here can help in evaluating
their relevance, because it can be extended consistently
to the case of local disuniformities in temperature
distribution.

The new formulation of micromagnetics will be pre-
sented with particular emphasis on comparison with
the standard treatment. ' 3 In particular, a new form
of Brown's equation will be deduced without restriction
on the magnitude of the magnetization; the theorems

' W. F. Brown, Jr., Micromagrtetics (John Wiley fair Sons, Inc. ,¹wYork, 1963).
~ S. Shtrikman and D. Treves, in 3fegnetism, edited by G. T.

Rado and H. Suhl (Academic Press Inc., New York, 1963),
Vol. III, p. 395.

W. Boring, in Erscyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1966), VoL XVIII/2, p. 341.

on overconstrained and underconstrained solutions will
be proved also for this new formulation; finally, a
complete treatment of the nucleation modes in a bound-
less plate with easy axis normal to its boundary planes
will be given.

2. EXTENDED BROWN'S EQUATIONS

As in standard micromagnetics, the fundamental
equations will be deduced by means of a variational
procedure, which minimizes the total energy; this total
energy will again be assumed to consist of four terms,
namely, (a) the exchange energy, (b) the self-magneto-
static energy, (c) the magnetocrystalline energy, and
(d) the energy of interaction with the external Geld.

If we designate as dv the volume differential element
of our ferromagnetic body and we understand that all
integrals are extended to its whole volume unless other-
wise stated, it follows from the elementary treatment
of magnetostatics that the energy of interaction with
the external Geld. H is

ZJr = — M. Hdr

and the self-magnetostatic energy E is given (in CGS
system) by

M H'dr= H"dr, (2)
Sx

where H' is the magnetic Geld created by the free poles
of the magnetization.

The exchange energy is de6ned of course for 6nite
distance between nearest atoms or ions, but it has been
already modi6ed to a form suitable for the continuum
approximation in the case of constant magnetization
magnitude. In Appendix A a new proof is given, with-
out any restriction on the constancy of the magnetiza-
tion amplitude, and it yields the result

Z, =
rsvp $(grad3E, )'+ (gradM'„)'+ (grad&, )')dr. (3)
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Constant4 n is equal to C/M' ' or to 2A/cV'' ' in the
standard formulation of micromagnetics, and it will be,
in a first approximation, dependent only upon the
material; in Appendix A the more general formula,
allowing for an explicit dependence of o. upon the mag-
netization and the position, is also deduced. The general
validity of the expression for E can however be stated
in other ways. '

The magnetocrystalline energy can be dered in
terms of an energy density depending only on M, as in

the standard treatment, and we can write

Eg, —— ai(M) dr.

Function ~, however, takes into account all contribu-
tions to the free energy depending by the local value of
M. For instance, in an isotropic Weiss ferromagnet with
spin gq

kT N.+M
(o(M)=co(M)= —(M, +HI)ln

2p~ JI/I,

M, —M kT, iV'
+(3II.—M) ln ———,(5)

~Is 2pg ~s

without any supplementary condition for M. It is easy
to 6nd' that M must satisfy the equation

807
nV'M ——+H+H' =0

BM
(7)

with the boundary condition

aM
——=0.
BtL

where 3f, is the saturation magnetization, T, is the
Curie temperature, and p,~ is the Bohr magneton.

Having in mind the expressions obtained for the
different contributions to the total energy, we determine
the equilibrium condition in the usual way, by equating
to zero the first variation with respect to M of the total
energy 8:

F-=&.+& +~s+&Jr,

Equations (7) and (8), which do not require any
restriction on the magnitude of M, are the replacement
for Brown's equations at high temperature.

3. NUCLEATION

In the present case the formulation of the nucleation
problem is slightly different from the standard way, be-
cause the magnetization is a function of the applied
6eld also before the actual nucleation. For sake of
simplicity let us restrict our considerations to an ellip-
soidal body in a 6eld parallel to one axis, and let this
axis be parallel to one of the magnetocrystalline sym-
metry axes at all values of M. In this case, Eqs. (7) and
(8) are satisfied by all uniform vector fields parallel to
this axis, say s, which satisfy the condition

(9)

QV lll —gladM(IB gradMQ))+h =0
& (10)

where gradM has to be evaluated at Mo, h' is the field
produced by the poles of I, and

=0

where X, is the demagnetization factor in s direction.
Equation (9) will generally allow only one solution for
T&~Tc, one or three solutions (one is unstable) for
T& T&,. if H, is large enough, only one solution is possi-
ble. Then we will define our problem in this way: We
choose our ellipsoid with so large a (positive) value of
H„ that only one solution to Eq. (9) exists, and this is
the only stable solution of Eqs. (7) and (8); and there-
after we decrease H, until this solution becomes un-
stable; the value of H, at which this happens will be
defined as the nucleation field H„. It is superRuous to
recall to mind that: Eq. (9) is exactly the one met in the
elementary theory of uniformly magnetized bodies.

A necessary condition for the onset of instability is
the existence of another solution of the fundamental
equation, presenting a small deviation I (function of
the position) from the uniform magnetization Mo(H, )
parallel to the positive s axis and satisfying Eq. (9)
This small deviation must solve the differential form of
Eqs. (7) and (8), namely,

In (7) B~/BM is a vector whose components are
Bio/831„Bio/831„, and Boo/83II, respectively; in (P)
8/BII denotes differentiation along the outward normal
of the surface of the body.

L. Landau and K. Lifshitz, Physik Z. Sowjetunion 8, 153
(1935).' C. Herring and C. Kittel, Phys. Rev. 81, 8N (1951).

'L. Landau and E. Lifshitz, E/ectrodyrlcmics of Contielols
3/Xedja (Pergamon Press, Ltd. , London, 1960), p. 159.' R.. Brout, in Ref. 2, Vol. Il A, p. 43.

'L. E. Elsgolc, Calculls of Varialioris {Pergainon Press, Ltd. ,
Oxford, 1961},

at the boundary.
Equations (10) and (11) a,re written in a simple form,

but it is easier to discuss them after reducing Eq. (10)
to a form more directly comparable with standard
Brown's equation. With this goal, let us decompose co

into two fractions, namely,

e&(M) =a~a(M)+a)i(M),

where co0 is isotropic; of course, this decomposition is
not unique, and we can impose the supplementary
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condition
ioi(M) =0 for MXMo=0. (13)

Remember that Mo is always parallel to the s axis due
to the previous assumptions. Then the differential form
of Eq. (7) takes the form

states that, if we try to determine H„after dropping
a non-negative contribution from the expression for
the total energy, we will hnd a value not smaller
(algebraically) than the true II„.

Then let us consider the constraint

MpX(mXMp) drop (m Mp)Mp d'~oo
o.V'm—

JIp' dM'

—gradM(m gradM~oi)+h' =0. (14)

m Mp ——0.

Equation (19) reduces to

Mp h'=0.

(21)

(22)

and

Mo d~o
=H+H'

~p d~

Mp ' gladM(m' gl adMG)i) =0 (16)

This equation can be split into two more signihcant
equations, by considering separately its components
normal and parallel to Mp, in accomplishing this separa-
tion we will take advantage of two consequences of
Eqs. (12) and (13), i.e.,

This restriction is always satisfied by coherent rotation
and curling. Therefore, we can infer that the highest
instability field arising from coherent rotation and
curling in standard Brown's equations is surely a lower
boundary to the true nucleation field. An obvious
corollary is: If the nucleation mode deduced through
Brown's equations is either coherent rotation or curling,
then the corresponding nucleation field is (algebraically)
not larger than the true nucleation held.

Then let us drop from the expression of B the non-
negative term

independently of m. We obtain the set of equations

MoX[n|7'm —gradM(m gradMooi)+h'$ Hat' Spy, t,g

IE,"de"

+mX(H+H') =0, (17) then Eq. (17) remains unchanged and Kq. (18) becomes

d Gop

Mp nV'm —m +h' =0,
dM'

1 dGop
V'(m Mo) —— (m Mo)=0

n dM'
(23)

8m
=0 at the boundary.

In Eq. (17) one can immediately recognize the differ-
ential form of Brown's equation; Kq. (18) reduces to

Mp m=0, i.e., M=const

at the limit d'cop/dM'~~, which is equivalent to
X —& 0. The equivalence of the present formulation with
the standard one in the case of vanishing susceptibility
has been dehnitely established, as well as the need for a
more general treatment when the susceptibility cannot
be neglected.

At this point it is interesting to look for some relation-
ship between the nucleation field deduced by the stan-
dard form of Brown's equations and the form presented
here. For this purpose it is convenient to assess the
validity of the theorems about overconstrained and
underconstrained solutions; the proofs run exactly
parallel to the standard treatment, and the extension to
the present case is written down in Appendix B. As
in the standard treatment, the theorem about the over-
constrained solutions states that, if we try to determine

after subjecting m to some additiona, l constraint, we
will 6nd a value not larger (algebraically) than the true
H„; the theorem about the underconstrained solutions

Note that Mp is a monotonic increasing function of
II, ; d'iop/dM' is 1/X and will be an increasing function
of M, because it generally becomes more dificult to
change the amplitude M when this amplitude is larger.
Therefore the highest value of d'~op/dM' satisfying Kq.
(23) is the one corresponding to the highest Mo and con-
sequently to H„. However Kq. (23) will be certainly
satisfied if

m Mp ——0; (24)

for this reason we can conclude that the nucleation
field deduced by Brown's equations is an upper bound-
ary to the true nucleation Geld, if it corresponds to a
value of (1/n)d'pop/dM', higher than the highest eigen-
value of Eq. (23) for our ellipsoid. On the other hand,
all these eigenvalues are negative, and we can establish
the corollary: If the nucleation field deduced through
Brown's equations corresponds to a non-negative value
of d'cop/dMP, then it is (algebraically) not lower than
the true nucleation held.

From these two statements we reach immediately
the conclusion: If the nucleation mode deduced through
Brown s equations is either coherent rotation or curling
and the associated nucleation Geld corresponds to a,

positive value of d'oop/dM', then this 6eld is the true
nucleation Geld, and the found mode is the true nuclea-
tion mode.
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As a last particular case, let us impose the constraint

IXMp ——0, m, const. (25)

This mode is a coherent inversion, and it occurs when

d G)p
PTC' (26)

Therefore we can infer that the nucleation Geld is
(algebraically) not lower than the Geld for which Eq.
(26) is satisGed. Of course this holds only when —1V,
is in the Geld of variation of d' happ/d M'

At this point let us go more deeply into a speciGc
case, namely the case of a shape for which the nuclea-
tion mode calculated at constant 3f is either coherent
rotation or curling. This case, however, is not very
restricted, because it is well known9 that this is the
situation occurring for all oblate spheroids. If the nuclea-
tion takes place at room temperature through a mode
with

m, =0, (27)

we must expect that this will be the case also at higher
T, unless d'rap/dM' becomes negative for the deduced
H„. Now we will assume a power dependence of the
remanent magnetization upon Tg —T and a power
dependence of the anisotropy constant E upon 3f; then
we deduce for the calculated (negative) II„an expres-
sion proportional to (Te T)', we can con—sistently a,s-

sume for the (negative) Geld corresponding to

d Mp

=0
deaf'

with the same applied field the underconstrainted solu-
tion after dropping the exchange and self-magnetostatic
terms. Nevertheless, determining the nucleation Geld
in our more general case requires a complete discussion
of the fundamental equations, Eqs. (10) and (11), and
moreover a knowledge of the equation of state for the
material under consideration.

We consider a boundless plate, limited by planes
s=l and s= —/, with magnetocrystalline symmetry
axis parallel to s axis, namely,

ppi =R(3II '+M„'), (29)

nM pV'm„—L(2R —4s)Mp+II. ]m„—Mp

BUd Q)p

nV~m, —

=0,

Bm& Bm„&m,
V'U —4m- + + =0,

8$ Bg Bs

for —l(s( l (30)

7'U =0, for s( —l and s) l (31)

~me ~my ~mz-=0
7

with R, defined as E/M' in the usual notation, possibly
dependent on 3E. By indicating as U the magnetostatic
potential, the set of equations to be solved is

BU
nM pV'm, —E(2R —4n)Mp =II,hm, —Mp ——0,

0$

an expression proportional to (Ta—T)P. Then, if a) b

the nucleation will remain the same till the Curie point,
but if b(g we must expect a transition to another
nucleation mode at some temperature. This will be
actually the case for materials with E~3f' and with
equation of state according to Keiss's model: In fact,
in this case exponent a turns out to be —', and exponent b

turns out to be ~~; this quadratic dependence of E cor-
responds to an anisotropy due mainly to shape factors
at microscopic level.

U is continuous,

Mp m

&
=x(4s/n) 'i', g =y(4n-/n) "',

i =s(47r/n) 't', S= l(47r/n) "', (33)

at s = —l and s =l. (32)

Let us deGne the dimensionless quantities

4. BOUNDLESS PLATE

The determination of all possible modes of instability
for the uniform magnetization in a boundless plate sub-
jected to an external Geld normal to its boundary planes
has been performed for the standard form of Brown's
equations, " with the resulting conclusion that the
nucleation mode is coherent rotation. This conclusion
could be reached by means of the simple remark that
coherent rotation is an actual solution, and it is also

9 A. Aharoni, Phys. Status Solidi 16, 3 (1966).I F. Forlani, N. Minnaja and G. Sacchi, IEEE Trans. Mag-
netics 4, 70 (1968).

R—2' a.
2x 4x3Ep

d COp

4x deaf'

and to replace the magnetostatic potential by

N=(4s.n) ' 'I( U+m4—Mpl), for s~& —l

N=(&n) ' '(U —4irMps), for l&s&l-
N=(4nn) —'IP(Lr —4rrMpl), for s~&l.

(34)

(35)

(36)
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Introducing the operator V" defined as

82 l92 a2

+ +
8$' r) g' r)1"'

Eqs. (30)—(32) are rewritten as follows:

BQ
V'2m. —hm. ——=0,

8(

l9Q
V'2m„—am„——=0,

Bg

BQ
V'2m. —km, ——=0,

8

Bm Bm„Bm,
+V"I=0,

8$ Br1 Bf
for 5(i—(5

V"u=0, for )f'))5,
~me ~my ~wz

—=0
81" r)t Bi

Q is continuous,

(37)

(38)

(39)

and e, t, q are mutually related by the secular equation

(q' —t' —h) P(q' —P —h) (q' —1'—k) (q' —1')

+1'(q' —t' —k) q'—(q' t'—Is—)j=0 (.47)

Therefore, for fixed values of e and p, we 6nd eight
linearly independent solutions of Eqs. (38), and we
must determine whether one linear combination of them
satisfies all boundary conditions (40). Fortunately, we
reduce the difficulty of this problem, because it is easy
to verify that Eqs. (40) can be satisfied separa. tely by
linear combinations of the two solutions with q satisfying

q' —t' —IE =0 (48)

and by linear combinations of the six solutions with q
satisfying

(qs ]2 ~) (q2 [2 $) (q2 12)+[2(q2 P Q)
—q'(q' —t' —h) =0. (49)

The proof of this statement can be deduced in a straight-
forward way from the case with m, =0.'

Let us consider first the case of q satisfying Eq. (48);
all the instability modes have

m, =0, Q=0, (50)

and the boundary conditions for m, and m„can be
satisfied only if

at f=&5 (40) t'+&= —r'rr'/45' (r=0 1 2 ). (51)

From the statements of Sec. 3 we can deduce that
coherent rotation will certainly be the nucleation mode
and H„ilwl be equal to (4s —2E)Ms if it results in

k) 0 for h =0. {41)

We can also infer that the nucleation mode will cer-
tainly be different from coherent rotation and H„will
be larger than (4x —2R)Ms if it results in

A, =O, (52)

and the resulting mode turns out to be coherent
rotation. "

Then we go to the other case, namely, to q given by
Eq. (49). A common feature to all these solutions is that

It is obvious that the highest instability Geld of these
modes corresponds to

for A;=0. {42) rn, :e=m„:p, (53)

Q =0'ein&+i»+« for
7

gT ein$+iyrf —tf for+

Q =W ei"&+''P"f+'& for

l~ l(5 (43)

(44)

{45)

In Eqs. (43)-(45) ri and p are real, 1 is given by

(+2+p2) 1(2 (46)

The complete discussion of the set of Eqs. (38)—(40)
will conGrm these first conclusions.

The solution of Eqs. (38) and (39) is a linear com-
bination of expressions such as

Xein f+iy q+ qt

m = Fe'"&+i&&+«

gein$+i Prf+q f8

and therefore we can always perform a rotation around.
the s axis in order to reduce p and m„ to 0. The system.
derived from Eqs. (38)—(40) after performing this rota-
tion is very similar to the one solved approxmately
by Muller" and numerically by Brown" for the case of
a boundless plate with an applied Geld parallel to its
boundary planes. After performing carefully the alge-
braic changes due to different coordinates and normali-
zation, it is easy to recognize that the only difference
lies in the fact, that in those papers p is not necessarily
0; however this difference is not signiGcant, because it is
also proved in the same papers that in the nucleation
mode p takes value 0. Therefore we can take advantage
of the work. already performed and reach the following

"M. W. Muller, Phys. Rev. 122, 1485 (1961).
"W. P. Brown, Jr., Phys. Rev. 124, 1348 (1961).
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TAaLE I. Values of h and —k at nucleation for diferent S, and the corresponding values of e.

10

20

40

50

60

100

150

200

250

300

0.16595
1.16411
9.16072

19.15995
99.15927

0
0.26304
4.24915
9.24636

49.24390

0
0.07304
0.53474
1.50972
9.48656

0.17698
0.63733
4.59321
9.58677

0.25913

0.034434

0.29838

0.009661
0.080827
0.33978
0.81299
9.77381

0.101769

0.002812
0.035598
0.38369
0.86295
9.8309

0.123129

0.047152

0.83405
0.83589
0.83928
0.84005
0.84073
0.8409

&0.5
0.73696
0.75085
0.75364
0.7561.0
0.75675

&0.2
0.42696
0.46526
0.49028
0.51344
0.51964

0.32302
0,36267
0.40679
0.41323
0.41985

0.24067

0.165566

0.20162

0.090339
0.119173
0.16022
0.18701
0.22619
0.23200

0.098231

0.047188
0.064402
0.11631
0.13705
0.1691
0.17401

0.076871

0.052848

0.3369
0.3345
0.3296
0.3290
0.3275
0.3272

0.3795
0.3711
0.3694
0.3667
0.3661

0.3564
0.3762
0.3832
0.3839
0.3835

0.3246
0.3502
0.3644
0.3654
0.3659

0.2884

0.2275

0.2733

0.1627
0.2047
0.2499
0.2726
0.2963
0.2986

0.1912

0.1144
0.1487
0.2192
0.2393
0.2632
0.2659

0.1743

0.1395

S2

400

500

600

1000

1500

2000

2500

3000

4000

5000

6000

10 000

15 000

20 000

25 000

30 000

50 000

100 000

h

0.016474

0.000606
0.058836
0.145052

0.022542

0.000207
0.006245
0.028660
0.070720
0.935448

0.008748

0.000076
0.003059
0.034857
0.95369

0.011268

0.004326

0.001512

0.0000226
0.005599
0.013813

0.002150

0.0000096
0.0006002
0.002790
0.006884

0.0008564

0.0002991
0.003436

0.011136

0.0004275

0.0005564
0.0013730

0.0006862

0.033526

0.019394
0.041164
0.054948

0.027458

0.009793
0.013755
0.021340
0.029280
0.064552
0.085826

0.011252

0.004924
0.006941
0.015143
0.04631
0.06193

0.008734

0.005674

0.003488

0.0019774
0.004401
0.006187

0.002850

0.0009904
0.0013998
0.002210
0.003116

0.0011436

0.0007009
0.001564

0.000864

0.0005725

0.0004436
0.0006270

0.0003138

0.10625

0.07173
0.1274
0.1521

0.1000

0.05050
0.06748
0.09155
0.1112
0.1711
0.1944

0.06341

0.03560
0.04776
0.08007
0.1465
0.1673

0.05844

0.04515

0.03377

0.02244
0.04145
0.05111

0.03196

0.01585
0.02136
0.02936
0.03627

0,02022

0.01510
0.02569

0.01858

0.01430

0.01314
0.0163

0.01150

conclusions:

(a) H S))1,"nucleation different from coherent ro-
tation happens, if h and k are related approximately by

with h&0; the corresponding value of n is

(55)

(b) Without any restriction on S,"a numerical calcu-
lation yields pairs (h, k) corresponding to nucleation.
All pairs deduced by the previous calculations' are
listed in Table I with the associated value of e. It is
immediately seen that —k is an increasing function of
h for given S and a decreasing function of S for given h,
bounded between 0 (for S-+~) and —1 (for S-+ 0),
as was expected from the general results of Sec. 3.

(c) The nucleation mode is periodic along x axis,
and the period is (~n)'12/I For a give. n x the maximum
of m, is reached for s=0, where ns vanishes linearly.
For giving a qualitative idea of the behavior, we have
evaluated an approximate solution at the limit h ~~,
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g —+00:

~ ~
"'1-s. vrg-

nz = —
~

——e e sinhi+sin—
2SP h S 2S

—(~ i/2—
Xcos I—

i2S
(56)

'125-

075-

21 10 $1810 20 10

22tT

m. = —e ecoshf+cos sin ~—
5 2S 2S

1/2

I,= —e e sinhf+sin —sin
5 2S 2g

05--

025-- 7 I 37@C

~7r--

This mode can be indicated as "wavi g."
0

The determination of the nucleation field requires

or, according to our assumptions, of ~0 and E on M
and on T. If this dependence is known, we can easi y
deduce an equation of state relating h and k, because

5

Pro. 1. Solid lines plot the relationship between h and —k for
several thicknesses, as given by the present treatment; they are
labeled wit t e va ue oh h 1 f S'. The dashed lines plot the relationship
between h and —k for several temperatures, as given y e eq

f t t 'n Weiss'smodel. Thecrosspointsof t etwofamiies
avin mode; the cross-correspond to nucleation according to the waving mo

ing points o t e as e if h d h d 1'nes with the dot-dashed line correspon
to nucleation according to coherent inversion.

R 1 / 8(do)
~= —+

2~ 4s M iBM) r
(57)

energy proportion. al to M') we can write

R Xg T
h —— 1 — +-',&~,

2x 6m. Tg
(61)

4m 83f' y
i.e., the relationship between h and k is 1inear& with the
restriction

Then it is possible to plot in the same (h, k) plane, the
curves deduced from the numerical calculations for
various S and the curves given for the chosen materia
b E s. (57) and (58) for various temperatures: The
intersections give the nucleation 6e
by qs. an

6 lds for the different
values of 5 and of T.

For sake of clearness, let us sketch one simple ex-
ample choosing ~0 according to %eiss's model with spin
~ ~ If E~ is the gneiss constant, we can write'Q ~

(62)

In Fig. 1 some curves deduced by the data of Table
I have been plotted together with some straight lines
deduced by Eqs. (61) and (62) for the case R=2m,
which corresponds to a shape anisotropy due to acicular
particles at microscopic level. Inspection to Fig. ea s
to the following conclusions:

R Nrr M T M+M
2m 4x 2'T, M, —3E

(59) T& T c(1 3R/N w) . —

(b) For temperatures in the range

(63)

~ ~

(a) Nucleation is always due to coherent rotation if

Eg TM, '1—
4 T,(hf. ' iV'))— (64)(60) Te(1 3R/N g ) & T& T—e(1 2R/N s)—

nucleation takes place by waving for temperatures and
thicknesses yielding intersections, otherwise by co-
herent rotation.

(c) For temperatures in the range

It is immediately seen that the term in brackets in the

E . (60) is negative; therefore, h can. be positive on y
if the term in R predominates. On the ot er an
is generally significantly smaller than Ã~, and this
means that h can be positive only if M&&M„Tq—T((Tq.

we assume also that R is independent of M (anisotropy

Te(1 2R/N s ) & T& Te— (65)

nucleation takes place by waving for temperatures and
thicknesses yielding intersections, otherwise by co-
herent inversion.
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S. CONCLUSION

The extension of the well-known Brown's equations
to cases, in which a constant magnitude of the magneti-
zation is questionable, has been deduced by the varia-
tion@1 method. Some simple relationships between the
nucleation Geld deduced through the standard form and
the one deduced through the new form have been brieRy
discussed. By means of one simple example, the possi-
bility of nucleation modes with nonconstant magnetiza-
tion magnitude has been proved. The interest of this
treatment for high temperatures (near the Curie point)
has been emphasized.

where the 6rst sum is applied only to the cells at the
surface of the body and the second to all other cells.
Let us go to the limit a —+ 0, keeping at a Gnite value
—,n the limit of the ratio B(a)/a; we obtain, if do is the
elementary surface element:

8
E,= —',nM —do — M V'Mdr

t3s y

=~n I (gradcV, ) '+ (gradM „)'+(gradiV, ) 'jdr,

(A5)

APPENDIX A

Consistently with the continuum approximation,
peculiar of micromagnetics, let us consider our ferro-
magnetic body as divided in many cubic cells with edge
a, and to restrict the exchange interaction between the
cell labeled with i and the cell labeled with k to the form

under the assumption that o. is independent of M and
of the position', if this is not true, the last equality of
Eq. (A5) does not hold, and must be replaced as follows:

E,= ~ /grad(nM, ) grad3I, +grad(n3I„) grad(M „
E (;g) = —2B('y)M(;) 'M(y), (A1) +grad(nM, ) grad3f,

(dr�.

(A6)

E = —g P B(g)M( ) 'M(y) .
i k, edj. to i

(A2)

The Cartesian coordinates of the centers of cells i and
k are x(i) and x(k); if a is small enough for the validity
of Taylor expansion we have

BM
E,= —P P B(a)M(;) M(;)+-

i k, adj. toi

where M(;) and M&q) are the average magnetizations of
cell i and of cell k, respectively. ' lf we assume also that
$(,1,~ vanishes if the cells have no common face and is a
constant B(g) for nearest neighboring cells, the total
exchange energy is

APPENDIX B

The uniform magnetization Mo(H) parallel to s axis
and therefore parallel or antiparallel to H is certa, inly
one solution of Eqs. (7) and (8) under the conditions
listed in Sec. 3 and provided that

(
BGO

=II.+II,' =H, —A,MO. (81)
~~z Mz ——My=0

3IIz= M p

The second variation of the total energy in respect to an
in6nitesimal change I of the magnetization is given by

1 (&'M )
&& Px)(k) x)(i)]+——

)
Px)(k) —x)(i)j

2 ax)ax )(;)
-,'nP(gradm, )'+ (gradm„) '+ (gradm, )']

(tII M 8 Go 8 co

+— m, '+ m„'+ m, '

where the sum symbol for l and m has been suppressed,
I and m varying between 1 and 3. Performing the sum
on index k, for instance under the assumption of a
cubic body with edge multiple of a, we obtain, after
suppression of the irrelevant term M(i)',

8M
E,= Q B(a)M(;) —a

i, surface 8Ã (;)

+2 m, m„+2 m„m,
835 BiVy BMyBM,

(& (o

+2— m,m,
~

—', m h' dr (82).
(&M,BM,

i, volume
B(a)M(;) ~ (V'M) (;)a',

If we split (o into the isotropic term (oo(M) and the aniso-

(A4) tropic one (o((M) as specified in Sec. 3, we can take ad-
vantage of the following relations, valid for the deriva-



s at M=Mo: Ip' ~ust satisfy the relat o

(a"+&')

M pERAT UIXTICS AT HIGHMIC

g2MQ ~ MQ

g2MQ d MQ

()M '

8 MQ

dMQ

MQ dM
(a3)

(a4)

(as)

)2+(gradmz) jL-( dm 2 gra, my

8 M18 M1
2+2- m, mymz+

2gM~

mg+
Q M]. g My

=0,
( 2+ 2)d, , (ag)gM'Q~yB&z

we obtain the formula
m does»tt]east ""e of t . '

st be truetherwise i™vanish everyw ere', o
radm-'u gradm ) '+ (gradm„) '+ (gradmggl a m~

d MQ
-'-n (gradm, )'dr+—gQ m. 'd7.

H' d2MQ
m2

1 II,+II,
mg mg

83I,

8 My

h"dr =0, (89)

m ' —-m
2

E9 My

+2 m ~my+ my
83EI 835„B

23'Q

d MQ

mz dT ~

2 dM2

2 MQ dM

ce on H, is implicit in funcce on H, is in1 nctionh edp o, i ncw ere
e g st vRueMp. e

h d fferent vec orQ $ js corresponding tote i
1 io fi ld.ot eo

f rm magnetiza o

P

f/

d 1 e en.ough, because os true if H, is po
' '

tlonal constl aintio
' t the hig es va

ways
h resence of terms

m belonging to tm e set de6ne y . c
of H" for m con1p y

tee pres

pp e bou yo(m '+m„')dr

Rnd
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'
H, large enoug
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