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The method of micromagnetics is extended to the cases in which the magnitude of the magnetization
cannot be considered constant throughout a ferromagnetic body. The nonlinear equations, corresponding
to Brown’s equations in the standard treatment of micromagnetics, have been deduced with the proper
boundary conditions, as well as their linearized form suitable for evaluation of the nucleation field and mode.
Some relationships have been found between the nucleation field deduced in this way and the nucleation
field for constant magnitude, emphasizing that a detailed knowledge of the magnetic equation of state of
the material is needed for the determination of the true nucleation field. The case of a boundless plate with
an applied field normal to its boundary planes has been considered in detail, and the existence of one nuclea-
tion mode, termed as ‘“waving,” peculiar to this treatment, has been recognized; the conditions for this
mode of reversal have been deduced, with the result that it can be expected near the Curie temperature.

1. INTRODUCTION

HE purpose of micromagnetics'—3 is a description
of ferromagnetic bodies by means of a vector
field with constant magnitude and with direction vary-
ing continuously with position, this vector field repre-
senting the local magnetization. This description can
be easily accepted at temperatures significantly lower
than the Curie temperature, because in this range the
susceptibility X of the ferromagnetic material can be
disregarded in a first approximation, and consequently
the magnitude of the magnetization is determined only
by the temperature. However, when the temperature
is raised to a value near to the Curie point, the remanent
magnetization decreases and the susceptibility in-
creases, so that it becomes impossible to neglect the
change in magnitude of the local magnetization due to
the magnetic fields and to the exchange forces.

This paper extends the method of micromagnetics to
the case in which the magnetization is described by a
vector field M, whose both direction and magnitude
vary continuously with position. The other limitations
of micromagnetics—namely, the disregard of thermal
fluctuations, atomic structure, and magnetoelastic
effects—will affect also the results of this work. Prob-
ably thermal fluctuations can play a more relevant role
in the neighborhood of the Curie point than in the
range of validity of standard micromagnetics; neverthe-
less, the theory presented here can help in evaluating
their relevance, because it can be extended consistently
to the case of local disuniformities in temperature
distribution.

The new formulation of micromagnetics will be pre-
sented with particular emphasis on comparison with
the standard treatment.'~® In particular, a new form
of Brown’s equation will be deduced without restriction
on the magnitude of the magnetization; the theorems

1'W. F. Brown, Jr., Micromagnetics (John Wiley & Sons, Inc.,
New York, 1963).

2 S. Shtrikman and D. Treves, in Magnetism, edited by G. T.
Rado and H. Suhl (Academic Press Inc., New York, 1963),
Vol. I11, p. 395.

8 W. Déring, in Encyclopedia of Physics, edited by S. Fliigge
(Springer-Verlag, Berlin, 1966), Vol. XVIII/2, p. 341.

1

on overconstrained and underconstrained solutions will
be proved also for this new formulation; finally, a
complete treatment of the nucleation modes in a bound-
less plate with easy axis normal to its boundary planes
will be given.

2. EXTENDED BROWN’S EQUATIONS

As in standard micromagnetics, the fundamental
equations will be deduced by means of a variational
procedure, which minimizes the total energy; this total
energy will again be assumed to consist of four terms,
namely, (a) the exchange energy, (b) the self-magneto-
static energy, (c) the magnetocrystalline energy, and
(d) the energy of interaction with the external field. -

If we designate as dr the volume differential element
of our ferromagnetic body and we understand that all
integrals are extended to its whole volume unless other-
wise stated, it follows from the elementary treatment
of magnetostatics that the energy of interaction with
the external field H is

EH=—/M-Hd1- )

and the self-magnetostatic energy E,, is given (in CGS
system) by

1 1
Em=—E/M-H’d-r=——

H'%r,
8w

whole space

@

where H' is the magnetic field created by the free poles
of the magnetization.

The exchange energy is defined of course for finite
distance between nearest atoms or ions, but it has been
already modified to a form suitable for the continuum
approximation in the case of constant magnetization
magnitude.’ In Appendix A a new proof is given, with-
out any restriction on the constancy of the magnetiza-
tion amplitude, and it yields the result

E,=1a / [(gradM ,)?+ (grad M )2+ (gradM )% ]dr. (3)
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Constant?® « is equal to C/M?! or to 24/M?*%3 in the
standard formulation of micromagnetics, and it will be,
in a first approximation, dependent only upon the
material; in Appendix A the more general formula,
allowing for an explicit dependence of & upon the mag-
netization and the position, is also deduced. The general
validity of the expression for E. can however be stated
in other ways.%®

The magnetocrystalline energy can be defined in
terms of an energy density depending only on M, as in
the standard treatment, and we can write

Function w, however, takes into account all contribu-

tions to the free energy depending by the local value of

M. For instance, in an isotropic Weiss ferromagnet with
N

spin 3,

8

kT
o(M)=w(M)= ——((MS+M) In
2#3

s

kT, M?

— )
2#8 Ms

M—M
(M= M) In )

L s

where M, is the saturation magnetization, 7', is the
Curie temperature, and up is the Bohr magneton.
Having in mind the expressions obtained for the
different contributions to the total energy, we determine
the equilibrium condition in the usual way, by equating
to zero the first variation with respect to M of the total

energy E:
E=E;+Em+Ek+EH ) (6)

without any supplementary condition for M. It is easy
to find® that M must satisfy the equation

, |
VM — —— + HAH =0 %
T oM

with the boundary condition

oM
— =0. (8)
on

In (7) dw/0M is a vector whose components are
dw/OM,, dw/dM,, and dw/OM. respectively; in (8)
d/9n denotes differentiation along the outward normal
of the surface of the body.

41. Landau and E. Lifshitz, Physik Z. Sowjetunion 8, 153
1935).
( 5 C.) Herring and C. Kittel, Phys. Rev. 81, 869 (1951).
6 L. Landau and E. Lifshitz, Electrodynamics of Continuous
Media (Pergamon Press, Ltd., London, 1960), p. 159.
7 R. Brout, in Ref. 2, Vol. IT A, p. 43.
8 L. E. Elsgolc, Calculus of Variations (Pergamon Press, Ltd.,
Oxford, 1961).
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Equations (7) and (8), which do not require any
restriction on the magnitude of M, are the replacement
for Brown’s equations at high temperature.

3. NUCLEATION

In the present case the formulation of the nucleation
problem is slightly different from the standard way, be-
cause the magnetization is a function of the applied
field also before the actual nucleation. For sake of
simplicity let us restrict our considerations to an ellip-
soidal body in a field parallel to one axis, and let this
axis be parallel to one of the magnetocrystalline sym-
metry axes at all values of M. In this case, Egs. (7) and
(8) are satisfied by all uniform vector fields parallel to
this axis, say 2, which satisfy the condition

ow
(—-—) =H,—N.M,, )
OM 2/ ppmtry=0

where N, is the demagnetization factor in z direction.
Equation (9) will generally allow only one solution for
T2Te¢, one or three solutions (one is unstable) for
T<Te¢;if H, is large enough, only one solution is possi-
ble. Then we will define our problem in this way: We
choose our ellipsoid with so large a (positive) value of
H., that only one solution to Eq. (9) exists, and this is
the only stable solution of Egs. (7) and (8); and there-
after we decrease H, until this solution becomes un-
stable; the value of H, at which this happens will be
defined as the nucleation field H,. It is superfluous to
recall to mind that Eq. (9) is exactly the one met in the
elementary theory of uniformly magnetized bodies.

A necessary condition for the onset of instability is
the existence of another solution of the fundamental
equation, presenting a small deviation m (function of
the position) from the uniform magnetization Mo(H.)
parallel to the positive z axis and satisfying Eq. (9)
This small deviation must solve the differential form of
Egs. (7) and (8), namely,

aVm—gradp(m- gradmew)+h' =0, (10)

where grady has to be evaluated at My, h’ is the field
produced by the poles of m, and

om
— =0
o

(11)

at the boundary.

Equations (10) and (11) are written in a simple form,
but it is easier to discuss them after reducing Eq. (10)
to a form more directly comparable with standard
Brown’s equation. With this goal, let us decompose w
into two fractions, namely,

(M) =wi(M)+w:r(M), (12)

where wo is isotropic; of course, this decomposition is
not unique, and we can impose the supplementary
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condition

wi(M)=0 for MXM,=0. (13)

Remember that M is always parallel to the z axis due
to the previous assumptions. Then the differential form
of Eq. (7) takes the form

MOX(mXMo) dwo (mMo)Mo d?wo

—gradm(m- gradmw))+h'=0. (14)

This equation can be split into two more significant
equations, by considering separately its components
normal and parallel to Mo; in accomplishing this separa-
tion we will take advantage of two consequences of
Egs. (12) and (13), i.e.,

Mo dwo

— — =H+4+H’ (15)
ModM

and
M- gradm(m- gradmws) =0 (16)
independently of m. We obtain the set of equations

M, X[aV?m—gradm(m- gradmw:)+h']

+mXxH+H)=0, (17)
d2w0
My|avm—m i |0, (9
amM?
om '
— =0 at the boundary. (19)

on

In Eq. (17) one can immediately recognize the differ-
ential form of Brown’s equation; Eq. (18) reduces to

My-m=0, ie, M=const (20)

at the limit d%we/dM?—c, which is equivalent to
X — 0. The equivalence of the present formulation with
the standard one in the case of vanishing susceptibility
has been definitely established, as well as the need for a
more general treatment when the susceptibility cannot
be neglected.

At this point it is interesting to look for some relation-
ship between the nucleation field deduced by the stan-
dard form of Brown’s equations and the form presented
here. For this purpose it is convenient to assess the
validity of the theorems about overconstrained and
underconstrained solutions; the proofs run exactly
parallel to the standard treatment, and the extension to
the present case is written down in Appendix B. As
in the standard treatment, the theorem about the over-
constrained solutions states that, if we try to determine
H, after subjecting m to some additional constraint, we
will find a value not larger (algebraically) than the true
H,; the theorem about the underconstrained solutions
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states that, if we try to determine H, after dropping
a non-negative contribution from the expression for
the total energy, we will find a value not smaller
(algebraically) than the true H,.

Then let us consider the constraint

Equation (19) reduces to

This restriction is always satisfied by coherent rotation
and curling. Therefore, we can infer that the highest
instability field arising from coherent rotation and
curling in standard Brown’s equations is surely a lower
boundary to the true nucleation field. An obvious
corollary is: If the nucleation mode deduced through
Brown’s equations is either coherent rotation or curling,
then the corresponding nucleation field is (algebraically)
not larger than the true nucleation field.

Then let us drop from the expression of E the non-
negative term

1
e

&r space

then Eq. (17) remains unchanged and Eq. (18) becomes

d?

V2(m. M) — ~d—;<m-Mo) ~0. 23)

Note that M, is a monotonic increasing function of
H,; d?wo/dM? is 1/X and will be an increasing function
of M, because it generally becomes more difficult to
change the amplitude M when this amplitude is larger.
Therefore the highest value of d%wo/dM? satisfying Eq.
(23) is the one corresponding to the highest Mo and con-
sequently to H,. However Eq. (23) will be certainly
satisfied if

m-M,=0; (24)

for this reason we can conclude that the nucleation
field deduced by Brown’s equations is an upper bound-
ary to the true nucleation field, if it corresponds to a
value of (1/a)d?wo/dM?, higher than the highest eigen-
value of Eq. (23) for our ellipsoid. On the other hand,
all these eigenvalues are negative, and we can establish
the corollary: If the nucleation field deduced through
Brown’s equations corresponds to a non-negative value
of d2wo/dM?, then it is (algebraically) not lower than
the true nucleation field.

From these two statements we reach immediately
the conclusion: If the nucleation mode deduced through
Brown’s equations is either coherent rotation or curling
and the associated nucleation field corresponds to a
positive value of d%wo/dM?2, then this field is the true
nucleation field, and the found mode is the true nuclea-
tion mode.
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As a last particular case, let us impose the constraint
mXM,=0, m, const. (25)
This mode is a coherent inversion, and it occurs when
d*wo

am?

=—N..

(26)

Therefore we can infer that the nucleation field is
(algebraically) not lower than the field for which Eq.
(26) is satisfied. Of course this holds only when —N,
is in the field of variation of d%we/dM?2.

At this point let us go more deeply into a specific
case, namely the case of a shape for which the nuclea-
tion mode calculated at constant M is either coherent
rotation or curling. This case, however, is not very
restricted, because it is well known?® that this is the
situation occurring for all oblate spheroids. If the nuclea-
tion takes place at room temperature through a mode
with
@7

we must expect that this will be the case also at higher
T, unless d%wo/dM?* becomes negative for the deduced
H,. Now we will assume a power dependence of the
remanent magnetization upon 7T¢—7 and a power
dependence of the anisotropy constant K upon M ; then
we deduce for the calculated (negative) H, an expres-
sion proportional to (7¢—7)%; we can consistently as-
sume for the (negative) field corresponding to

d2w0

=0
am?

m.=0,

(28)

an expression proportional to (T¢—7)% Then, if ¢>b
the nucleation will remain the same till the Curie point,
but if 5<ae we must expect a transition to another
nucleation mode at some temperature. This will be
actually the case for materials with K « M? and with
equation of state according to Weiss’s model: In fact,
in this case exponent ¢ turns out to be 3 and exponent &
turns out to be §; this quadratic dependence of K cor-
responds to an anisotropy due mainly to shape factors
at microscopic level.

4. BOUNDLESS PLATE

The determination of all possible modes of instability
for the uniform magnetization in a boundless plate sub-
jected to an external field normal to its boundary planes
has been performed for the standard form of Brown’s
equations,’® with the resulting conclusion that the
nucleation mode is coherent rotation. This conclusion
could be reached by means of the simple remark that
coherent rotation is an actual solution, and it is also

9 A, Aharoni, Phys. Status Solidi 16, 3 (1966).

© F, Forlani, N. Minnaja and G. Sacchi, IEEE Trans. Mag-
netics 4, 70 (1968).
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with the same applied field the underconstrainted solu-
tion after dropping the exchange and self-magnetostatic
terms. Nevertheless, determining the nucleation field
in our more general case requires a complete discussion
of the fundamental equations, Egs. (10) and (11), and
moreover a knowledge of the equation of state for the
material under consideration.

We consider a boundless plate, limited by planes
z=l and z=—I, with magnetocrystalline symmetry
axis parallel to z axis, namely,

w1 =R(Mx2+My2) ) (29)

with R, defined as K/M? in the usual notation, possibly
dependent on M. By indicating as U the magnetostatic
potential, the set of equations to be solved is

oU
aM0V2mz-—[(2R-—41r)Mo=Hz]mx—‘Mo‘ =0 ’
dx

aU
onoV2my~—[(2R—-41r)Mo—I—Hz]m,,~M0—— =O,
dy
2w oU
m,——— =0,
M*? 9z
ome Omy Om,
=+ + >=0 )
ox dy Jdz

for

oaVim,—

V2U—47r(

—I<g<l
for z<—I and 3z>I

(30)

VU =0, (1)

om, Om, Om,

9z 0z 0z

=0

b

U is continuous,
aU oU
() ()
9z out 62 in
at z=—0 and z=l. (32)
Let us define the dimensionless quantities

E=x(dmr/a)?, n=y(4m/a)!?,
C=z(4r/a)V?, S=l(4r/a)'?,
R—2x H,

+ )
2T 4w M,

1 dzw()

k= ,
4 dM?

(33)

h= (34)

(35)

and to replace the magnetostatic potential by
u=(4wa) " 2(U+4xM ),
u=(dwa)"Y2(U—4rM3),
u=(4wa)"2(U—4xM ),

for z<—!
for —I1<3<!l

for z>1. (36)
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Introducing the operator V2 defined as

a2 0? 9?2
V2= —f — f — 37)
652 an2 ag-?
Egs. (30)-(32) are rewritten as follows:
ou
V2my—hmy— — =0,
ou
V' 2my,—hm,— — =0,
an
du
Vm,—km,— — =0,
a
omy; Om, Om,
vy,
0¢ I a¢
for —S<¢<S  (38)
V=0, for |¢|>S, (39)

My am;, om,
o or

% is continuous,

<6u) (614)
—) ={—] —m..
af‘ out ag‘ in

From the statements of Sec. 3 we can deduce that
coherent rotation will certainly be the nucleation mode
and H, will be equal to (4m—2R)Mif it results in

k>0 for h=0.

el

’

at (=4S (40)

(1)

We can also infer that the nucleation mode will cer-
tainly be different from coherent rotation and H, will
be larger than (4r—2R)M, if it results in

k<—1 for h=0. (42)

The complete discussion of the set of Eqs. (38)-(40)
will confirm these first conclusions.

The solution of Egs. (38) and (39) is a linear com-
bination of expressions such as

Me= Xetnétipntat ,
My= Yeing‘l"ipﬂ'f'llf ,

mz=Ze’i"E+iPﬂ+Q§ ,

u=Weinktionta = for |¢|<S (43)
u=Wenttiorm  for <S§ (44)
u=W_enktiort  for < —S. (45)

In Eqgs. (43)-(45) » and p are real, ¢ is given by
1= (- p)1, (46)

HIGH TEMPERATURE 1155

and #, ¢, ¢ are mutually related by the secular equation

(=2 =m[(P—r—h)(P—1—k)(g—)
HH@P— 1 —k) =g (g —*—h) ]=0.

Therefore, for fixed values of # and p, we find eight
linearly independent solutions of Egs. (38), and we
must determine whether one linear combination of them
satisfies all boundary conditions (40). Fortunately, we
reduce the difficulty of this problem, because it is easy
to verify that Eqgs. (40) can be satisfied separately by
linear combinations of the two solutions with g satisfying

(48)

(47)

¢*—t*—h=0

and by linear combinations of the six solutions with ¢
satisfying

(@P—=P=n) (=2 —k) (@~ 1)+ (> —1—F)
—¢g——h)=0. (49)
The proof of this statement can be deduced in a straight-
forward way from the case with m,=0.1
Let us consider first the case of ¢ satisfying Eq. (48);
all the instability modes have
(50)

m,=0, u=0,

and the boundary conditions for m, and m, can be
satisfied only if
P2+h=—rr2/4S5?

(7"_‘07 172)"')' (51)

It is obvious that the highest instability field of these
modes corresponds to

h=0, (52)
and the resulting mode turns out to be coherent
rotation.0
Then we go to the other case, namely, to ¢ given by
Eq. (49). A common feature to all these solutions is that
M N=1My'P, (53)
and therefore we can always perform a rotation around
the z axis in order to reduce p and m, to 0. The system
derived from Egs. (38)—(40) after performing this rota-
tion is very similar to the one solved approxmately
by Muller!! and numerically by Brown!? for the case of
a boundless plate with an applied field parallel to its
boundary planes. After performing carefully the alge-
braic changes due to different coordinates and normali-
zation, it is easy to recognize that the only difference
lies in the fact, that in those papers p is not necessarily
0; however this difference is not significant, because it is
also proved in the same papers that in the nucleation
mode p takes value 0. Therefore we can take advantage
of the work already performed and reach the following

1 M. W. Muller, Phys. Rev. 122, 1485 (1961).
2 W. F. Brown, Jr., Phys. Rev. 124, 1348 (1961).
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TasiE I. Values of / and —% at nucleation for different S, and the corresponding values of 7.

52 h —k n N h —k n
1 0.16595 0.83405 0.3369 400 0.016474 0.033526 6.10625
1.16411 0.83589 0.3345
9.16072 0.83928 0.3296 500 0.000606 0.019394 0.07173
19.15995 0.84005 0.3290 0.058836 0.041164 0.1274
99.15927 0.84073 0.3275 0.145052 0.054948 0.1521
0 0.8409 0.3272
600 0.022542 0.027458 0.1000
2 0 >0.5
0.26304 0.73696 0.3795 1000 0.000207 0.009793 0.05050
4.24915 0.75085 0.3711 0.006245 0.013755 0.06748
9.24636 0.75364 0.3694 0.028660 0.021340 0.09155
49.24390 0.75610 0.3667 0.070720 0.029280 0.1112
0 0.75675 0.3661 0.935448 0.064552 0.1711
) 0.085826 0.1944
10 0 >0.2
0.07304 0.42696 0.3564 1500 0.008748 0.011252 0.06341
0.53474 0.46526 0.3762
1.50972 0.49028 0.3832 2000 0.000076 0.004924 0.03560
9.48656 0.51344 0.3839 0.003059 0.006941 0.04776
© 0.51964 0.3835 0.034857 0.015143 0.08007
0.95369 0.04631 0.1465
20 0.17698 0.32302 0.3246 o 0.06193 0.1673
0.63733 0.36267 0.3502
4.59321 0.40679 0.3644 2500 0.011268 0.008734 0.05844
9.58677 0.41323 0.3654
© 0.41985 0.3659 3000 0.004326 0.005674 0.04515
40 0.25913 0.24067 0.2884 4000 0.001512 0.003488 0.03377
50 0.034434 0.165566 0.2275 5000 0.0000226 0.0019774 0.02244
0.005599 0.004401 0.04145
60 0.20838 0.20162 0.2733 0.013813 0.006187 0.05111
100 0.009661 0.090339 0.1627 6000 0.002150 0.002850 0.03196
. 2 .1191 .
82?8?87 8.16(9)2;3 8%23; 10 000 0.0000096 0.0009904 0.01585
0.81299 0.18701 0.2726 0.0006002 0.0013998 0.02136
9.77381 0.22619 0.2963 0.002790 0.002210 0.02936
0 0.23200 0.2986 0.006884 0.003116 0.03627
150 0.101769 0.098231 0.1912 15 000 0.0008564 0.0011436 0.02022
2 0 0.0002991 .0007009 0.0151
200 0.002812 0.047188 0.1144 000 0882422 8.081564 0.82568
0.035598 0.064402 0.1487
0.38369 0.11631 0.2192
0.86205 0.13705 0.2303 25 000 0.011136 0.000864 0.01858
9.8309 0.1691 0.2632
- 017401 02659 30 000 0.0004275 0.0005725 0.01430
50 000 0.0005564 0.0004436 0.01314
250 0.123129 0.076871 0.1743 0.0013730 0.0006270 0.0163
300 0.047152 0.052848 0.1395 100 000 0.0006862 0.0003138 0.01150
conclusions: (b) Without any restriction on S,!2 a numerical calcu-

(a) If S>>1,1 nucleation different from coherent ro-
tation happens, if % and % are related approximately by

wf b \'?
k=— —(——) (54)
S \h+41
with £>0; the corresponding value of # is
T 1/2 h 1/4
n= (~—-> (—ﬁ) . (55)
28 41

lation yields pairs (#,k) corresponding to nucleation.
All pairs deduced by the previous calculations® are
listed in Table I with the associated value of #. It is
immediately seen that —£% is an increasing function of
h for given S and a decreasing function of S for given #,
bounded between 0 (for S—») and —1 (for S— 0),
as was expected from the general results of Sec. 3.

(c) The nucleation mode is periodic along z axis,
and the period is (wa)'/?/n. For a given x the maximum
of m, is reached for =0, where m, vanishes linearly.
For giving a qualitative idea of the behavior, we have
evaluated an approximate solution at the limit 2 —o,
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S—oo;

o\21r w{
mx:(—-) —l:— e s sinh§“+sin-]
2S5/  HWLS 28
12
()"
28
T 1l"§ T 1/2
mz=|:— —8 cosh§+cos—~:| sin[(——) E:l,
S 28 285
- ,”_g- T 1/2
u=|:— ¢S sinh{ +sin———:| sin[(~> £:|- '
S 28 28

This mode can be indicated as “waving.”

(56)

The determination of the nucleation field requires
also a knowledge of the dependence of w on M and on 7,
or, according to our assumptions, of wy and R on M
and on 7. If this dependence is known, we can easily
deduce an equation of state relating 4 and %, because

R 1 8wo

b=t () (57)
2r  4xM\OM/r
1 6%0

k=~< ) . (58)
4xr\oM?/ ¢

Then it is possible to plot in the same (k,k) plane, the
curves deduced from the numerical calculations for
various S and the curves given for the chosen material
by Egs. (57) and (58) for various temperatures: The
intersections give the nucleation fields for the different
values of .S and of 7.

For sake of clearness, let us sketch one simple ex-
ample choosing we according to Weiss’s model with spin
$.7If Nw is the Weiss constant, we can write

R NwlFM.T [MAM
A +—[ ln( )—1], (59)

h 2r 4w

QMT, \M.—M
Nw TM,*
k=—-~(1——~—~——). (60)
4r T (M2—M?)

It is immediately seen that the term in brackets in the
right-hand side of Eq. (59) is negative if 2 given by
Eq. (60) is negative; therefore, £ can be positive only
if the term in R predominates. On the other hand R
is generally significantly smaller than Nw, and this
means that / can be positive only if M KM ;,T¢—T<KT ¢.
Then we can expand % and % as series of (M/M,)?; if
we assune also that R is independent of M (anisotropy

AT HIGH TEMPERATURE
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05~

025

F16. 1. Solid lines plot the relationship between % and —#% for
several thicknesses, as given by the present treatment; they are
labeled with the value of S2. The dashed lines plot the relationship
between /s and —k for several temperatures, as given by the equa-
tion of state in Weiss’s model. The cross points of the two families
correspond to nucleation according to the waving mode; the cross-
ing points of the dashed lines with the dot-dashed line correspond
to nucleation according to coherent inversion.

energy proportional to M?2) we can write

e~ — — —

R Ny (
2r  Ow

T
- —)+%k, (61)
Te

i.e., the relationship between % and % is linear, with the

restriction
Nw T
k> — -< 1— ——) .

(62)
4 Te

In Fig. 1 some curves deduced by the data of Table
I have been plotted together with some straight lines
deduced by Egs. (61) and (62) for the case R=2m,
which corresponds to a shape anisotropy due to acicular
particles at microscopic level. Inspection to Fig. 1 leads
to the following conclusions:

(a) Nucleation is always due to coherent rotation if

T<To(1—3R/Nw). (63)
(b) For temperatures in the range
Tc¢(1=3R/Nw)<T<T¢(1—2R/Nw)  (64)

nucleation takes place by waving for temperatures and
thicknesses yielding intersections, otherwise by co-
herent rotation.

(c) For temperatures in the range

Tc¢(1—2R/Nw)<T<T¢ (65)

nucleation takes place by waving for temperatures and
thicknesses yielding intersections, otherwise by co-
herent inversion.
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5. CONCLUSION

The extension of the well-known Brown’s equations
to cases, in which a constant magnitude of the magneti-
zation is questionable, has been deduced by the varia-
tional method. Some simple relationships between the
nucleation field deduced through the standard form and
the one deduced through the new form have been briefly
discussed. By means of one simple example, the possi-
bility of nucleation modes with nonconstant magnetiza-
tion magnitude has been proved. The interest of this
treatment for high temperatures (near the Curie point)
has been emphasized.

APPENDIX A

Consistently with the continuum approximation,
peculiar of micromagnetics, let us consider our ferro-
magnetic body as divided in many cubic cells with edge
a, and to restrict the exchange interaction between the
cell labeled with 7 and the cell labeled with % to the form

Eziny=—2BunMwu -Mw), (A1)
where M ;) and M () are the average magnetizations of
cell 7 and of cell %, respectively.? If we assume also that
By vanishes if the cells have no common face and is a
constant B(a) for nearest neighboring cells, the total
exchange energy is

E,== > B@My-My. (A2)

7 k,adj.to?

The Cartesian coordinates of the centers of cells 7 and
k are x(7) and x(%); if ¢ is small enough for the validity
of Taylor expansion we have

oM
B(a)M,)- {Mu)-l-(*—)
@

axz

E.=—3 X

i k,adj. tos

M

x[xz<k>—xz<i>1+3( ) L) =]
2 0]

X10%m

x[xmw)—xmwj} . (A3)

where the sum symbol for  and  has been suppressed,
! and m varying between 1 and 3. Performing the sum
on index %, for instance under the assumption of a
cubic body with edge multiple of @, we obtain, after
suppression of the irrelevant term M ()2,

oM
E,= Z B(d)M(i)'<—~—) a
@)

Z, surface 7
B(a)M;)- (VM) @ya?,

- X (A4)

%, volume

NICOLA MINNAJA 1

where the first sum is applied only to the cells at the
surface of the body and the second to all other cells.
Let us go to the limit ¢ — 0, keeping at a finite value
3a the limit of the ratio B(a)/a; we obtain, if do is the
elementary surface element:

oM
.Ex=f %aM--——d¢r—/ M- v:Mdr
s on v

= %a/ [(gradM )+ (grad M )2+ (grad M ,)*]dr,
v
(A5)
under the assumption that « is independent of M and

of the position; if this is not true, the last equality of
Eq. (A5) does not hold, and must be replaced as follows:

E,=1 / [grad(aM,)- gradM ., +grad(al ) - grad M,
14

+grad(adl,) - gradM ,Jdr. (A6)

APPENDIX B

The uniform magnetization Mo(H) parallel to g axis
and therefore parallel or antiparallel to H is certainly
one solution of Egs. (7) and (8) under the conditions
listed in Sec. 3 and provided that

dw
(——) =H,+H'=H,—N.M,. (Bl)
OM o/ M= rry=0

Mz=Mo

The second variation of the total energy in respect to an
infinitesimal change m of the magnetization is given by

NE= / [%a[ (gradm.)?®+(gradm, )2+ (gradm,)?]

m,>

17 9% 0% 92w
+

- ma:2+ my2+
2\oM ;2 M > oM ;2
0%w

My~ 2———mym,
OM ,OM,

0%
22—y
oM oM,
0%w

+2——“Eszz) —im-W } dr. (B2)
OM ,0M ..

If we split w into the isotropic term wo(M ) and the aniso-
tropic one wi(M) as specified in Sec. 3, we can take ad-
vantage of the following relations, valid for the deriva-
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tives at M=M,:

92w 92w 1 dwg
M2 M2 MoydM
0% d*w
Lo, (B4)
M2 dM?
92wo 9% 9%wq
= = = (B5)
oM.oM, oM, oM, OM.OM.
62(.01 (92(.01 32601
oM 0M, OM, M, JOM,?

and we obtain the formula

PE= / {%a[(gradmz) 24 (gradm,) 2+ (gradm.)?]

Ird.+H d*w 2w1
+ “l: (mzz+mu2) + mz2+ o
2L M, 6M o

02wy 0%wy
+2——————mgm,+ m,ﬂ]——%m- h'}dr. (B7)
oM ,oM, oM,

The uniform magnetization My satisfying Eq. (B1) is
a stable solution if §2E is positive for each vector field
m (not identically vanishing); remark that this is al-
ways true if H, is positive and large enough, because of
the presence of terms

H,
— / (m24-m,2)dr
2M,

1 [ d%ws
- / m2dr.
2J dMm?

Then consider one definite vector field m and begin with
H, large enough to insure stability; if H, is now de-
creased it will eventually reach a value H” at which,
for the given vector field m, §°E vanishes. This value of

and
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H" must satisfy the relation

— (H"‘l_Hzl)

=M, {a / [(gradm.,)?+ (gradm,)?+(gradm.)? |dr
(92(»1

d*wo %1
+ f < m2* M2
aM 2 6M 2 oM .0M

w
+— >d7-+ / h’2dr} /
oM 2 4 space

Y

MMy

f (mo2+m,2)dr, (B8)

if at least one of the components m. and m, does not
vanish everywhere; otherwise it must be true that

SRy
Q0 raam;)“aT— — mzar
A 2 d?

1
+— | Kur=0,

space

(B9)

where the dependence on H, is implicit in function
wo. The highest value reached by H' among all values
corresponding to the different vector fields m is the
nucleation field.

At this point the proof of the theorems on overcon-
strained and underconstrained solutions is straight-
forward. If we impose to the vector-field m some addi-
tional constraint, the highest value reached by H" for
m belonging to the set defined by this constraint cannot
exceed the true upper boundary of H” for m completely
free; a solution determined in this way is called over-
constrained. On the other hand, let us drop from the
expression of §2F some non-negative term: The resulting
value of this reduced functional is not higher than the
true value of 82E for the same field m, and therefore it
can happen that this functional takes on the value 0 for
some nontrivial field at some value of H,, at which the
true 82E is positive for each nontrivial m; a solution
determined in this way is called underconstrained.



