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Antiferromagnetism in Narrow-Band Solids*
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The single-band Hubbard Hamiltonian is examined in the limit of bandwidth much less than intra-
atomic Coulomb interaction of electrons. We make use of the canonical transformation and "spectral
decomposition" of the electron creation operators proposed by Harris and Lange to write down a Green's
function which describes electrons in the lower of the split bands of Hubbard's solution. The equation of
motion is solved using the moment-conserving decoupling approximation of Tahir-Kheli and Jarrett. We
find within our approximation that it is impossible to have an antiferromagnetic state for other than one
electron per site. To remedy this defect of the single-band model, we investigate a simplified two-band
model in the limit of intra-atomic Coulomb and exchange interaction much greater than the bandwidth,
and find that antiferromagnetism is possible for the two nearly half-filled bands. We also discuss eGects of
the antiferromagnetic ordering on the conductivity in our simplified model and discuss applicability of
the theory to real transition metals and transition-metal oxides.

I. INTRODUCTION

' 'T is well known that the Hubbard Hamiltonian'

K =Q h,tc;, ct,+U Q rt; trt; t,
%$0'

(where rz, ,=c;,c;„and c,, is the annihilation operator
for a spin-o. electron in a Wannier function on site i)
with intra-atomic screened Coulomb interaction U&)
hopping term h;;, with one electron per lattice site, has
an antiferromagnetic ground site. ' In this paper we
consider Eq. (1) in the limit U))Iz;t with fewer than
one electron per site (the case of more tha, n one per site
is obtained by electron-hole equivalence). In this limit,
since the single narrow s band breaks up into two
bands separated by a gap, '' the model should be
applicable to semiconducting and insulating transition-
metal oxides. ' We look for the possibility of antiferro-
magnetic ordering of the electrons of the system
(necessarily in the lower band), using the canonical
transformation used by Harris and I.ange, ' and by
Kohn, ' and the moment-conserving decoupling proce-
dure suggested by Tahir-Kheli and Jarrett. ' We restrict
h;; to near neighbors. If we only keep those terms in our
decoupling corresponding to the decoupling used in
Hubbard I, it is found that Hubbard's approximation
predicts that antiferromagnetism does not occur for
any number of electrons less than one per atom in
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agreement with the results of Penn' in the infinite U
limit. Within our complete approximation, it is shown
that antiferromagnetic ordering does not occur in the
limit as the number of electrons approaches one per
atom. This is in agreement with the work of Nagaoka, '
which predicts ferromagnetism in this limit. We give
a physical picture for why there should be no antiferro-
magnetism for fewer than one electron per site. We also
discuss antiferromagnetism in a two-band generalization
of Eq. (1) introduced by Roth. ' In the limit of intra-
atomic Coulomb and exchange interactions much
larger than the hopping term, the system should be
antiferromagnetic for two electrons per lattice site.
We show by applying the methods used on Eq. (1) to
the Hamiltonian that for between one and two electrons
per site an antiferromagnetic ordering is also possible.
YVe also estimate the number density of electrons in the
system at which the antiferromagnetic state energy
becomes equal to the ferromagnetic-state energy and
thus the ferromagnetic state becomes the ground state.

The picture of motion of electrons in narrow bands
presented by the two-band model is much like that
presented in Hubbard II and IV, but the method of
approximation in this paper is different, and the model is
simpler. The simplicity of the model should permit
calculation of transport and other measurable phenom-
ena in narrow-band systems.

II. ANTIFERROMAGNETISM IN
NARROW 8 BANDS

To treat the U))lz, ; limit of Eq. (1) we apply the
canonical transformation of Eq. (4.42) in Harris and
Lange's papers to Eq. (1) to obtain their Eq. (4.43).
Keeping only zeroth-order terms in Iz,t/U (6/I in their
notation), the transformed Hamiltonian of their Eq.
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munication).' Y. Nagaoka, Phys. Rev. 147, 342 (1966).' L. Roth, Phys. Rev. 149, 306 (1966).
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(4.43) can be written in our notation as

30,«=P h;;(a;, a;,+b;,b;,)+U P n;tn, z, (2)

where
a;,= (1—n;, ,)c;,) b;,=n;, ,c;,

Here c; is understood to denote c; in Harris and Lange. '
The higher-order terms in i'z,;/U give rise to an effective
antiferromagnetic exchange interaction between elec-
trons, which is important for the case of one electron
per atom. For less than one electron per atom, the
hopping energy should dominate in the infinite-U limit.

To discuss antiferromagnetism for less than one elec-
tron per atom, we consider the one-electron Zhubarev
Green's function~

(3)

where 0(t) is a step function of time, ( . ) denotes an
anticommutator, and ( ) denotes a thermal average.
Thus, we are only looking at the lower band. 2 Using
Eq. (2), we find that the equation of motion for this
Green's function is

l9

z—((a'. ; a .'&)
Bt

=Pi Iz;i((L(1—n;, .)a„+a, ,c;, ,'c;.j; a,.t»

+3(t)S,,&P..(1—n. . .)+3.., .c,.tc;, .$&. (4)

We now use the moment-conserving decoupling proce-
dure of Tahir-Kheli and Jarrett' to decouple the Green's
function on the right-hand side. To accomplish this, we
approximate Eq. (4) by

8
z—((a'. ; a.')&=Xi ~'z((«. a.'))
at

+6(~)3;;(P...(1 n. . .)+3—;, .c;, .c,.t j&. (5)

We choose M;~ such that the zeroth and first moments of
the spectral function of Eq. (3) are given correctly.
Moment-conserving decoupling makes sense in this
problem because the Green's function in Eq. (3) only
describes the lower band. Hence, there should be only
one peak in the spectral function, and therefore the
first moment of the spectral function (i.e., the average
energy of the peak) can be taken to be the one-electron
energy. For simplicity we take g=o-'. Then we obtain
by setting the zeroth moment of the right-hand side of
Eq. (4) equal to that of the right-hand side of Eq. (5):

With this approximation, our resulting spectral function
gives the same zeroth and first moments as obtained by
Harris and Lange to zeroth order in the ratio of band-
width to U.

We neglect the spin-spin correlation function Lsecond
term on right-hand side of Eq. (6)). This should be a
good approximation away from a magnetic phase
transition for close to one electron per site. ' We also
replace the correlation function in the last term on the
right-hand side of Eq. (6) by

cl', -zrc;,

This is justified because the probability of having two
electrons on a site is of higher order in h,;/U. We also
make the approximation

((1—n'.—.)(1—nz.—.))—((1—n'.—.)&&(1—nz.—.)&, (7)

which should be a good approximation away from the
region of a magnetic phase transition, for close to one
electron per site."

We assume a two-sublattice antiferromagnetic order-

ing, which restricts us to simple-cubic- and body-
centered lattices. We also restrict h,; to near neighbors.
We assume that on the up-spin, sublattice, (n, t& is ni
and (n;z& is nz, where ni)ns. On the down-spin sub-
lattice, the reverse is true. Applyi'ng the approximations
of the previous paragraph to Eq. (6), substituting in

Eq. (5), and Fourier transforming, we obtain

(~—e( )3((a~-; a"))—~(k+Q)(&a~+el.. a'.'&)

= (2zr) (1—n)8g, g~+ (2zr) o'szn6y, g~ q, (8)

where

e(k) = (1—n,)e(k)+—Q e(k')L(1 —n)(cg, ,ca, ot&
gf

+ozn(cg .cg+ q .'&) (9a)
(1—ni) (1—ns)

J (k) =o.zne(k)+ —P e(k') L(1—n)&cg. . .cr +o, )
gr

+(Tzn&c's~, —peg~, g )j (9b)
(1—ni) (1—ns)

where c(k) is the Fourier transform of h;;, Q is a wave
vector such that e,'@'a'=+1 on an, up-spin sublattice
site and —1 on a down-spin sublattice site, and

(1 ni, )M—;i,
n=-', (nt+nz), zn= ,'(n, nz)-—

=&;i((1—n;, .)(1—n, .))—h;((ci.'cz, .c;, .tc;.&
Solving Eq. (8) and using the methods of Ref. 9, we

"D. M. Esterling and R. V. Lange, Rev. Mod. Phys. 40, 796
D. N. Zhubarev, Usp. Fiz. Nauk. 71, 71 (1960) LEnglish (1968); Phys. Rev. (to be published); and (private communica-

transl. :Soviet Phys. —Usp. 3, 320 (1960)j. tion).
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obtain for the infinite-U limit

yg= —P~(g~,tag, ) =—Pg Au[A (k)b(a) —(u (k))
E

+A~(k)8(co —a&+(k))] —, (10a)
gP(~y)+1

1
m=~—P~(g~, a~~Q &)= P& d~[B (k)&(~—~ (k))E Ã

where
+&+(k)~(~—~+(k))7 (1oh)

gP (~ y)+—1

~~(k) =2[~(k)+~(k+Q))+[(2(~(k)—~(k+Q)')

+J(k+Q)J(k)]"', (11a)

(1—e)[e(k+Q) —ra~ (k)]—mJ(k+Q)

co (k) —(u+(k)

m[~(k) —co~(k)) —(1—n)J (k)
Bp(k) =a

a) (k) —(u~(k)

(11b)

(11c)

If we neglect all except the first term on the right-hand
side of Eq. (6) and make the approximation of Eq. (7)
[which leaves us with the first terms in Eqs. (9a) and
(9b)], we obtain the approximation of Hubbard I to
lowest order in h;;/U. [This is equivalent to decoupling
Eq. (4) in the way suggested by Hubbard']. Making
this approximation we obtain from Eq. (10), using
Eqs. (9) and (11),

where

n/(1 —m) = —,'(C++C ),
m= [-,'(C++C-)]m,

(12a)

(12b)

1
C+= —P~

1+exp{&
~
~(k) [ [(1—'Ii) (1—'ii2)) —w"')

Since C+(1, we find from Eq. (12) that we can only
find an antiferromagnetic solution for one electron per
atom"[i.e., when C+=1, as is seen from Eq. (12a)).
In fact, Hubbard. 's approximation does not even give a
magnetic band splitting, as is seen from Eq. (11a).

Let us now include the last term in Eq. (6), which

results in the rest of the terms in Eq. (9). These terms
result in the band shift discussed by Harris and Lange'
for the paramagnetic and ferromagnetic states. The
problem now reduces to a self-consistency problem in
that the correlation functions as well as e and m

appearing in Eq. (9) can be calculated from Green's
function of Eq. (3), which is a solution to Eq. (8), using
the methods of Ref. 9.The problem is fairly difficult but
it simplifies in two cases, for m(&1 and for close to one
electron per site. If the sublattice magnetization m is
assumed to be (&1, we find from Eqs. (9)—(11) that the
splittmg of the bands due to the antiferromagnetic

ordering (i.e., due to the reduced translational sym-
metry) occurs in the middle of the lower band and is
much smaller than the bandwidth. Then Eq. (10)
reduces to

m =m[1 —2 (1—2e)+ (1—2e)']+ (0)m' (13a)

1
n= (1—I)—pg + (0)m', (13b)

Ã 1+expP[~ (k) —p]

for 2
—e((2. Thus, again we see that, unless there is

close to one electron per site (i.e. , n= 2) or unless e is
=0, there is no weak antiferromagnetism in the ap-
proximation of this paper. This agrees with the results
of Penn. '

We now look for an antiferromagnetic solution for
close to one electron per site for arbitrary m. For close
to one electron per site, the correlation functions in
Eq. (9b) are expected to be small since very little
hopping is possible in this limit. Therefore, the second
term in Eq. (9b) contributes significantly in this limit
only if the sublattice magnetism is close to saturation
since in that limit e2=1—m~=0. In this limit from
Eq. (9b), we may write

J(k) =me(k)+g ~(k)

X (14)
1+exp(P[&u (k) —p]) 1—e,

This equation is obtained by taking
~
J (k) ~)) the band-

width, which from Eq. (10b) is a necessary condition for
saturation magnetization since m is an increasing func-
tion of ~J(k)~. For nearly one electron per site at
temperature much less than U, the second term in
Eq. (14) gives a value = e .„, the maximum value of
e(k), using the fact that (1—e~) 1/cV. Thus, since
J(k) is not much greater than the bandwidth, an
antiferromagnetic self-consistent solution is not possible.

We conclude that there probably is no antiferro-
magnetism in the strong interaction limit as the number
of electrons approaches one per site, unless there is
exactly one electron per site. The physical reason for
this is illustrated in Fig. 1.If we annihilate one electron
in a previously antiferromagnetic system with one
electron per site, that hole can move among sites
having electrons of either spin, causing the spins to
become disordered. It is reasonable to expect that this
physical picture persists for any number of electrons in
the system. We have left out of our calculation the
width of the one-electron states caused by electron-
electron scattering, which can be a sizeable fraction of
the bandwidth. "We do not expect, however, that
electron-electron scattering tends to make the system
more likely to be antiferromagnetic. We cannot conclude
from the calculations in this paper that the antiferro-
magnetic state is the ground state for precisely one
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electron per atom because, as is well known, we must
include terms of order h'/U in the transformed Hamil-
tonian in Eq. (2) to make the antiferromagnetic state
have lower energy than the paramagnetic and ferro-
magnetic states for one electron per atom. %e can only
say that it is a possible eigenstate. Qur result appears to
agree with Penn's result to zeroth order in b;;/U, but to
higher order there probably will be differences. ' lf we
include first-order terms in h;,/U, we conclude that
since they give a small effective electron-electron inter-
action, when we have fewer than one electron per atom,
an effective 6eld or Hartree-Fock approximation should
be good. Then, these terms have the effect of renormal-

izing the one-electron energies in Eqs. (10) and (11)
slightly and of adding a term of order mh/U to the
right-hand side of Eq. (13a). This term could make
antiferrornagnetism possible only if Ii/U) 1—2n. The
main point that we illustrate in this section is that there
is an essential difference between one electron per atom
and slightly less than one electron per atom. Once the
electrons are able to hop, the effects due to hopping
dominate over the effective-exchange interaction. Since
there is no reason to expect the omitted terms in Eq. (6)
to favor antiferromagnetism, we expect our conclusion
about the nonexistence of antiferromagnetism to be
valid over a large range of electron densities away from
one electron per atom.

III. ANTIFERROMAGNETISM IN A SIMPLE
TWO-BAND MODEL

Since most transition-metal oxides are antiferro-
magnetic, a in this section we propose to show that
although there probably cannot be antiferromagnetism
in a single less-than-half-filled band, antiferromagnetism
is possible in a simplifi. ed two-band model of a transition
metal considered by Roths to discuss ferromagnetism
for less-than-half-ulled bands. The Hamiltonian for

0 SPIN OUT OF PAPER
X SPIN INTO PAPE R

UNOCCUPIED SITE (i,e, HQI E)

FxG. i. Motion of a hole in an otherwise perfect two-dimensional
antiferromagnetic lattice is shown. Time progresses from g to c.

Following Roth, there are assumed to be two orbitals of
each spin per atom, and there is hopping only from one
orbital into the same orbital on a different site, i.e., we
neglect hopping between orbitals i and 2. Qnly intra-
atomic Coulomb and exchange interaction U and J
are included in Eq. (15). Roth argued that for one
electron per atom or less, the system should be ferro-
magnetic, whereas for two electrons per site it should
be antiferromagnetic, at least for U and J large com-
pared to h;;. 1A'e look for.antiferromagnetism in the case
of between 1 and 2 electrons per atom in the limit of
U))J)&ih;;I, which should apply to transition-metal
oxides. 3

The ground state will be a linear combination of
Slater determinants of atomic orbitals containing one or
two electrons as these wave functions will minimize the
Coulomb and exchange energy. Following Sec. II we
introduce a canonical transformation that removes those
hopping terms in Eq. (15) which increase the Coulomb
energy of the system. These are terms which result in
the formation of atoms containing three electrons.
If

i n), i P) denote Slater determinants of atomic
orbitals on all sites and if we make the proposed canoni-
cal transformation

c-'xc'=x,+x,'y Lx„sf+x,+ (16)

(where X~' is the part of the hopping term not removed
by the transformation and X& is the part that is
removed), then by demanding that the last two terms
in Eq. (16) vanish, we obtain to lowest order, for
example)

(~ I
s IP)= —av/(Uy J),

if in) has site i triply occupied and site j singly occupied
and iP) has i and. j doubly occupied with parallel spin
electrons on each site. If n) has site i triply occupied
and site junoccupied and P) has site i doubly occupied
and j singly occupied,

(nisiP)=--,'h;;/U

to lowest order. After performing this transformation,
Eq. (15) still has hopping terms which can increase the
energy of system by J'. For J)&i&;;I, we may perform
another transformation e 'X'.e

'
which eliminates these

terms to lowest order in h;,/J. If
I P) has site i occupied

by two electrons of the same spin, site j contains one
electron of spin opposite the spin of site i, and in in)
there are two opposite-spin electrons on site j 'and one
electron site i:

(~is'IP)= —I „/J.

this model can be written as

X=+ h;;c;..c;.,+Upfii, ; t'ai; i++ n, g.e...j
Oo'

JP cila ci1a'cima' ci2a ~ (15)
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After performing these canonical transformations, the
remaining hopping terms do not increase the intra-
atomic Coulomb or exchange energy of the system.

If we consider only zeroth-order terms in h;;/J and
h,;/U in the transformed Hamiltonian, we are left with

H=e "e 'Xe'e*'= U Q e;,n;e; JQ—c;g,"cgg,
2uPOO' O O'

becomes

8——(U —J) (( '- .'))

+S.,S,,S(~)&P;..&. (22)

)&c,2. tc,s.+ P h;;a;,ta;, (17) As in the one-band model, we assume a simple-cubic
or body lattice and a two-sublattice antiferromagnetic
ordering, which is the ground state in the case of two
electrons per atom. We also assume h;; to extend to
near neighbors only. Then we take (P; t)=P& and
(P; g) =P2 on the spin t sublattice and the reverse on
the spin J, sublattice, independent of u, where Pq3 P2.
+le now Fourier transform Eq. (22) in space and time
and solve using the above assumptions to obtain

2$cxo

plus terms that act only on excited states of excitation
energy J or U, where

&iaa =&iaaI iaa
and where

P'-= (1—~-e)&'e. II&(1—&'7,—.) ~

The operators c;, denote the transformed operators.
The operator a; only annihilates an electron in state i,
e, 0- if the other orbital of spin 0- on site i is occupied and
the two orbitals of spin —0- are empty. We consider the
Green's function

1 P(u —(P' P')—e(k+Q)
((ak- ak-')) =—,(23a)

2~ La& —M~ (k) jL'cv —(u (k)j
I 07

(&a.+o,-, a.-'))=- (23b)
2m t cu —(u+. (k)$tcu —(u (k)$

(19)«a'-; a e"'&).

P=5(P~+P~) P=l(P~ —P2)
Differentiating Kq. (19) with respect to time, using where
Kq. (17), we obtain

e(k) Q eik ~ (R;—Rg)h

E

=Z~ 7'~((P''-ai-+ (1 &-7)c'-a'. 'a~&.—l; a e.'&& cup(k) =+
[ e(k) (

LP' —P'g"'=W
j e(k) [(PuP )"'

+(U —J)((a'-; a e.'&)+~(~)~' ~- By the definitions of a;, and P; „we find at zero

X(L~-eP'-+(1 &.e)c'-a'—e."3) (20)

Applying moment-conserving decoupling and assuming
close to two electrons per atom, we find

m= —gP(P, g&
—(P; g&j=2(P,—P,) =4P, (24a)

g ie

1
hm= —PP(a;.ga; g') —(a;.ga;.gt&j,

g iCX

(24b)

=Z ~'~:"'&(«'.; a~e"))+~(&)4~-

where

M;i. 7'=5;h, i(P, ,Pg7,)/(Pg„). (21b)

e= —Q(P;,)=4P,
g iae

Ae= —P(a;..a;..)=4P,/ 20'

(24c)

(24d)

In obtaining Eq. (21b) we have neglected in 3f;~, &'

complicated correlation functions which involve transfer
of electrons between orbitals, as those should be small
for close to two electron per atom. Following Sec. II,
we make the approximation

(P'-.P~v"& =&P'-&&P~'.&,
I

as I'; is analogous to the operator 1—m;, , Operator
I';, has eigenvalue 1 if the orbital of spin 0- other than
n is occupied and all spin —o- states are unoccupied.
Carrying through the above approximations Eq. (21)

where
m= e= 2/(1+C), (25a)

C= —Q- (25b)
1V k exppt —e(k) (PgP, )'~' —pal+1

where m is the sublattice magnetization per site,
6m= 2—m, e is the number of electrons per site, and
Ae= 2—e.

Applying the methods of Ref. 9 to Eq. (23) and using
Eq. (24), we obtain
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for close to saturated sublattice magnetization. Hence,
we see that an antiferromagnetic solution can be found
in the two-band model for the bands nearly half-filled.
Since C(1, we find from Eq. (25a) the expected trivial
result that the sublattice magnetization is -equal to
the number of electrons in the system, which is between

and 2 per atom. The oneelectron energy is
e(k)(P&P2)'", which for a totally antiferromagnetic
state (i.e., P2=0) is zero as Harris and Lange showed
would be true for the one-band model in the totally
antiferrornagnetic state. For close to two electrons per
atom, we expect the lifetime of the one-electron states
to be long for the following reason: For close to two
electrons per site a missing electron (i.e., a hole) in
orbital n of spin cr on site i will be able to hop into
orbital n of the same spin on a,ny near-neighbor site if
there is some probability of the spin of that site being
parallel to that of site i. Since the probability of it
colliding with another hole is small, the major damping
mechanism should be spin-disorder scattering, which is
negligible away from a magnetic phase transition. A
calculation of the second moment indicates that the
second moment is zero for nearly two electrons per
site (since correlation functions involving transfer of
electrons are negligible). As the bands empty we get
the same scattering as in the single-band model; i.e.,
a hole in orbital n on site i does not hop onto neighboring
sites that do not contain an electron in orbital P, which
leads to disorder scattering. In fact, if we consider the
completely ferromagnetic state for one electron per
site, we find, as R.oth did, a spatial ordering with
all near-neighbor sites of an electron in orbital 1 having
an electron in orbital 2, because for one electron per
site Eq. (15) becomes the same as Eq. (1) with orbital
index replacing spin index. For fewer than one electron
per site the results of the Sec. II show that such ordering
does not occur.

%e now estimate the critical electron density at
which the antiferromagnetic state is no longer the
ground state of this model. For close to two electrons per
atom, we may use the approximations discussed in this
section. Then the mean hole hopping or kinetic energy
is obtained by calculating the density of states p(~)
by taking the imaginary part of Eq. (23a) and summing
over k and n. From p(&a) the zero-temperature average
kinetic energy of holes is found to be

Eg; = —N a p(a&)(ka

= —Z~ 2~(k)(PiP2)"'0(~(k)(PiP2)"' —p) ~

where 0 is a step function. In the completely antiferro-
magnetic state the factor (PiP,)'" is zero; in the
completely ferromagnetic sta, te it is seen to be replaced
by the magnetization, by solving Eq. (22) for the
uniform ferromagnetic sta, te. Then for the ferromagnetic

state,
&kin ~ ~+&max ~ (26)

+crit = 4

1+4m ./zU

The critical density becomes closer to two electrons per
site as U becomes larger compa, red with the bandwidth,
and as U becomes smaller, the critical density becomes
smaller. Such behavior should be seen in real transition
metals and oxides (as impurities are added). As we
move away from the large-U limit, the critical density
becomes closer to one per atom, at which point com-
plicated many-body effects characteristic of the
single-band model set in and Eq. (28) is no longer valid.
The above tendency to ferromagnetism for lower
electron densities is in line with the ideas of Zener. "

IV. APPLICATION TO TRANSITION METALS
AND TRANSITION-METAL OXIDES

For real transition metals, the number of "polar
states" (i.e., negatively charged atoms) occupied in
the ground state compared with that given by the
Hartree-Fock approximation has been estimated by
Herring to be about 3 or 4."In our theory, this would
imply that the ratio bandwidth/U is of the order of
0.7." Our perturbation expansion in Ii,,/U, however,
may still give reasonable results for some transition
metals. Electrical conduction is predicted to occur in
transition metals in our model because of the s-d
band overlap. The d bands conduct because they do not
contain an integral number of electrons per lattice site,
not because of polar-state admixture into the ground
state. Since this paper applies in a limit opposite that
of band theory (i.e., opposite the small-U limit), and
since real transition metals lie in the middle, the Large-U
results should complement the results of band theory.
Ke will, in future publications, using our model, look
for possible experimentally observable effects of electron
correlations in transition metals.

We expect the method presented in this paper to be
most applicable to the theory of electrical conduction
in narrow-band transition-metal oxides. Many of these
compounds are either semiconductors or insulators;
ordinary band theory, however, predicts that they are
conductors. ' It was suggested by Adler' that something

"C. Zener, Phys. Rev. 82, 403 (1951)."C.Herring, in Magnetis777, , edited by G. T. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. IV, p. 201.

For close to two electrons per site the eRective exchange
interaction energy by which the Keel state is below
the ferromagnetic state is

E, = 2(—hg'/U)see, (27)

where s is the number of near-neighbor sites. It follows
that for large U the critical density is found by equating
(26) and (27) to be
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analogous to the Hubbard theory' of narrow bands
might be appropriate to these materials.

Our one- and two-band models give such a split-band
picture. When there is exactly an integral number of
electrons, the electrons cannot hop, and consequently,
might behave like localized electrons (at least as far as
their magnetic properties are concerned). If we consider
the lower bands in our models to be nearly filled for a
doped sample, since there are few sites for an electron
to hop to, we expect to see both electrical conduction
and localized properties, indicating that the rnultiband
models considered should predict nearly the same
optical spectrum as if we had localized atomic d

states. We plan to examine this point further in future
publications.

One drawback of applying the approximation of
this paper to electrical conduction in transition-metal
oxides is that near the Neel temperature it probably
would predict spin-disorder scattering of electrons
which would show up in the electrical conductivity, as
found by deGennes and Friedel for a model of electrons
interacting with localized spins. '3 Such an effect is
observed for nickel oxide but not for cobalt oxide. '
This tends to favor for cobalt oxide the method of
conduction in oxygen P bands proposed by Adler,
over conduction in the d bands themselves. ' Another
drawback is that for nonnmtallic systems, the Coulomb
interaction should be long range. If, however, the
valence band is nearly full, we do not expect the results
to be quantitatively different from those predicted by
this paper, since the effect of a long-range interaction

"P. G. de Gennes and J. I'riedel, Phys. Chem. Solids 9, 71
(1958).

in the narrow-band system is simply to keep electrons
apart. If we have nearly an integral number of electrons
per site, the electrons in the ground-state manifold are
always spread apart as much as possible.

For the completely saturated antiferromagnetic
state of the two-band model, we saw that electrons
cannot hop onto neighboring sites because the large
Coulomb interaction of the opposite-spin electrons on
those sites makes such hopping highly improbable.
Thus, our two-band model predicts that a hole created
in the d states of a half-ulled narrow multiband system
by doping is trapped in a tmo sublattice antiferro-
magnetic state, but it is free to hop in the paramagnetic
state. This would be a type of conductor-to-insulator
transition. Most transition-metal oxides, however, are
antiferromagnets for which not all near-neighbor sites
of a given site have spin opposite the spin of that site,
and thus this eBect would not be a complete conducting-
to—nonconducting-state transition at the Xeel tempera-
ture, but rather simply a possible change in the conduc-
tivity in the antiferromagnetic state. In future publica-
tions we mill investigate conductivity and other
transport properties in the two-band model of this
paper to see how they might be affected. by magnetic
ordering. Another problem that we will consider is
antiferromagnetism in the single-band model taking
into account the nonzero width of the one-electron
states.
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