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Inelastic Light Scattering from Semiconductor Plasmas in a Magnetic Field*
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The cross section for the inelastic scattering of light from mobile carriers in semiconductors immersed
in a dc magnetic Geld So is calculated approximately in a manner sufBciently general to include directly
particle-particle Coulomb interactions (in the random-phase approximation) and energy-band structure of an
arbitrary nature. The eGect of Coulomb interactions on the momentum matrix elements occurring in the
calculation is neglected, but is kept in the evaluation of the correlation function of a generalized electron-
pair operator. The results encompass scattering from the various longitudinal magnetoplasma collective
modes, and single-particle excitations between Landau levels and spin states. Resonant enhancement
factors are automatically included, as are spin-orbit-induced eGects such as scattering from spin-density
Quctuations and spin waves. Low-temperature electrons in semiconductors of the indium antimonide type
are used as a speciGc example to illustrate general features of the scattering for the two major geometries:
tl J Be and q~(Bo, where q is the scattering wave vector. For q J Bee inter-Landau-level scattering is shown to
suGer signihcant screening due to Coulomb interactions. Also, in this geometry it is shown that the strength
of the scattering from the Bernstein modes is of the order of the strength for the associated inter-I-andau-
level excitation, contrary to the conclusions of previous authors.

I. INTRODUCTION

~CONSIDERABLE interest has developed in recent~ years concerning the use of the inelastic scattering
of light as a tool for studying the properties of mobile
carriers in semiconductor crystals. ' In particular, one
class of measurements involves studies of crystals
immersed in a magnetic field, the carriers in some
un6lled energy band constituting a magnetoplasma
whose properties one wishes to examine. ' ' Theoretical
calculations of cross sections for scattering from exci-
tations in such semiconductor magnetoplasmas have
fallen largely into two categories. First, there are calcu-
lations which begin with an effective-mass Hamiltonian
and include particle-particle Coulomb interactions
(which are treated in a self-consistent-field approxi-
mation). "The cross section resulting from such a
calculation is generally expressed in terms of a response
function which is proportional to the imaginary part
of the reciprocal of an effective dielectric constant.
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These theories have the virtue of treating collective
excitation phenomena (plasmons), but are inaccurate
for photon energies of the order of the band-gap energy,
and under conditions where effects such as energy-band
nonparabolicity and spin-orbit coupling become ixn-

portant. ' Indeed, effective-mass calculations overlook
totally some important coupling mechanisms. '' In a
second category fall calculations which neglect Coulomb
interactions altogether, but use a single-electron Hamil-
tonian which properly accounts for complex energy
band structure and spin-orbit effects. ' ' Band-structure
effects can play a crucial and essential role, giving rise
to scattering from excitations which would not be
experimentally observable in a free electron gas. ' "

It is desirable to bridge the gap between the two
categories described above, formulating a many-
electron theory which retains important solid-state
effects. The complexities of scattering from real semi-
conductor magnetoplasmas can only be dealt with in
a consistent and realistic manner by using results based
on such a formulation. The purpose of this article is to
complement and/or extend the eBorts made toward
this end by WolG, ' and McWhorter and Argyres. '
The cross section for the inelastic scattering of light
from mobile carriers in semiconductors ilrunersed in a
magnetic field Bs is calculated approximately in a
manner suKciently general to include Coulomb inter-
actions and arbitrary energy band structure. Sample
calculations yield results which differ considerably from
conclusions based on previous treatments and which
are important for the interpretation of experimental
data. For a low-temperature Fermi gas, the calculated
cross section encompasses scattering from the various
longitudinal magnetoplasma collective waves (including
spin waves) and single-particle excitations between
Landau levels and spin states.

McWhorter and Argyres~ have discussed scattering
from magnetoplasma waves in semiconductors with
arbitrary band structure. However, they did not
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consider scattering from single-particle excitations, a
subject of considerable interest in view of experimental
data. ' Wolff' also has made one step toward the treat-
ment of real semiconductors by performing a one-band
effective Hamiltonian calculation which includes energy-
band nonparabolicity effects and Coulomb interactions.
But Wolff's treatment is only valid for weak magnetic
fields and for incident photon energies small compared
to the band-gap energy of the semiconductor. This limit
is not appropriate for common experimental situations
and some important phenomena are discarded in taking
it. For example, in zero magnetic field, Wolff's theory
fails to predict the quasielastic scattering from spin-
density fluctuations as observed by Mooradian" and
explained by Hamilton and McWhorter. " The calcu-
lations of this paper extend the treatment of magneto-
plasma light scattering by adaptation of the Hamilton-
McWhorter approach. Following Hamilton and Mc-
Whorter, ' we neglect the effect of Coulomb interactions
on the momentum matrix elements occurring in the
calculation. Making this approximation, electro-optic
scattering mechanisms are neglected. Concentrating on
Inobile carriers, we generally ignore the effect of
phonons. However, a brief discussion of the coupling
of longitudinal phonons and magnetoplasma waves in
polar semiconductors is given.

In Sec. II of this paper a general formulation of the
cross section calculation is given. Generality is main-
tained by expressing all results as sums, over appropriate
carrier quantum numbers, of factors involving matrix
elements, energies, and statistical occupation numbers
for single-particle eigenstates. The quantum numbers
include energy band index, orbital and spin labels in a
completely general way. One merely need use the correct
wave function from a one-electron band-theory calcu-
lation. The complexity of the wave functions for carriers
in real semiconductors in a magnetic field necessitates
such a general approach. Within the approximations
made, the resulting differential cross section formula
is valid both with and without a magnetic field, and
reduces, in general, to the results of previous authors.
Resonant enhancement factors are automatically in-

cluded, as are spin-orbit-induced effects such as scatter-
ing from spin-density fluctuations and spin waves.
Section III discusses briefly scattering from carriers in
a simple, idealized semiconductor. The semiconductor
is assumed to have mirror symmetry, parabolic energy
bands, and a direct energy gap. Spin-orbit coupling is
neglected. This simple semiconductor model is clearly
an oversimplification, considering the calculations given
in Sec. IV for semiconductors with a complex energy-
band structure. However, the discussion of the simple
case gives a valuable perspective on the treatment of
real semiconductors. In Sec. IV semiconductors of the
indium antimonide type are used as specific examples

"A. Mooradian, Phys. Rev. Letters 20, 1102 (1968).
~ D. C. Hamilton and A. L. McWhorter, in Ref. 1, p. 309.

to illustrate general features for the two major scatter-
ing geometries, q J Bp and q~~Bp, where q is the scattering
wave vector. For qJ $0 inter-Landau-level scattering
in a low-temperature Fermi plasma is shown to suffer
significant screening due to Coulomb interactions. This
screening is particularly dramatic for high magnetic
fields. Also, in this geometry it is shown that the
strength of the scattering from the Bernstein modes
is of the order of the strength for the associated inter-
Landau-level excitation, contrary to the conclusions of
previous authors. The number and variety of excitations
of the low-temperature Fermi gas, which may be ob-
served by light scattering and which are encompassed
by the theoretical treatment given here, is noteworthy.
The excitations include: quasi-elastic single-electron
excitations, acoustic plasmons, optical plasmons (in-
cluding Bernstein modes), inter-Landau-level excita. —

tions, spin-Qip excitations, and spin waves.

II. GENERAL FORMULATION

In this section we derive a general expression for the
cross section for inelastic scattering of light by many
electrons" in thermal equilibrium in a crystalline
semiconductor with the Hamiltonian,

e2

II=+ Hp+-', g —,

which includes Coulomb interactions, and where

( e
Hp=~ p Ap 2m+ V(r)

c

e
+ A y —-Ap (eXVV)
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4m'c'+ ,'gPn Bp (2)-

~3Throughout the text we refer to electrons as the mobile
carriers, having in mind doped e-type semiconductors. The
analysis easily generalizes to the case of holes in p-type materials.

is the Hamiltonian for one mobile electron in the semi-
conductor. Preserving complete generality Ho includes
the effect of the crystal periodic potential through the
electrostatic energy V(r) and the spin-orbit coupling
term. The static, uniform magnetic field 80 appears
in Ho through the associated vector potential Ao and the
magnetic dipole energy term, where g is the free-
electron g factor, P is the Bohr magneton, and e is the
Pauli-spin operator. One of the virtues of our treatment
is that we will deal with the problem at hand without
making specific approximation concerning the single-
particle eigenstates ~n): Hp~n)=E ~n). The symbol n
will merely be taken to denote all appropriate quantum
labels for the single-particle Hamiltonian Ho, including
band label, spin, and orbital quantum numbers. In
this way, we can use directly the complex wave func-
tions for electrons in a semiconductor in a magnetic
field, without resorting to special approximations. This
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where the angular brackets denotes a thermal equi-
librium average over initial states and co= (coz—nil).
This is the total cross section for scattering from all
the electrons in the volume illuminated by the incident
beam, not the cross section per particle. For simplicity,
this scattering volume is taken to be unity throughout.
The matrix element 3fI;I is given by

'4 See, for example, D. Pines and P. Nozieres, The Theory of
Quantum Liquids, I {W. A. Benjamin, Inc. , Nevr York, 1966),
p. 266.

"This cross section multiplied by the incident photon Aux
(photons per second per cm') yields the number of photons
scattered per second into the solid-angle increment LQ, zz+dQ)
and frequency range L~, o&+dcoj. The power scattering cross
section is obtained by multiplying the right-hand side of Kq. (3)
by (~~/~1).

approach is in direct contrast to effective-mass4 5 and
nonparabolicity' calculations which replace Eq. (2)
by an effective one-band Hamiltonian. The general
procedures for deriving the results from perturbation
theory follow closely the treatments of previous
authors. What is new and useful in this treatment is the
general form of the expressions for the cross section and
their ramifications for the semiconductor magneto-
plasma problem. Resonance-enhancement effects and
one-electron effects such as nonparabolicity and spin-
orbit coupling are automatically included. The expres-
sions reduce in appropriate limits to the less general
ones derived previously.

In order to calculate the scattering cross section we
must consider the coupling of the electromagnetic
radiation field to the electron system. We will ignore
the small magnetic dipole coupling and replace the
momentum y in Eq. (2) by Ly —(e/c)A„], where A„ is
the vector potential of the electromagnetic field at
the point r. We take the semiconductor to be transparent
to the incident and scattered radiation. We ignore, for
the time being, coupling to phonons. This matter will be
discussed at the end of this section. Treating A„as a
perturbation, the transition probability for the scatter-
ing of a photon from state (coz,kz, sz) to state (co F,k~,eF)
and the concomitant transition of the many-electron
system from the state IS) to the state IF) is given by
matrix elements of operators of the form A„' and
er A„, where ei=y+(hsXcLV)/(4mc') is the mo-
mentum including spin-orbit contribution. Here, the
symbols (oo,k, e) denote, respectively, the frequency,
wave vector, and polarization of a photon. Treatment
of the A„2 term by first order perturbation theory is
straightforward and "exact," leading to cross sections
expressed in terms of a dynamic form factor4 ' or
dielectric constant. It is the handling of the (er A„)
term in second order which is approximate in what
follows. The general expression for the differential
scattering cross section" is given by"

~2
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' A. Mooradian and A. I,. McWhorter, in Ref. 1, p. 297.
"It is assumed that there is only one partially filled energy

band.

5So~r= A 8 ~ A

The states
I s), I F), and Ii& are many electron eigen-

states of H, C t, and Cp are single-particle creation and
destruction operations for the single-particle state ln),
and q is the difference between the incident and
scattered wave vectors q=—(kz —k&). The quantity m p

is the single-particle matrix element associated with
density fluctuations. The first part (proportional to
ez ee) of Mpz derives from the A ' term treated in 6rst
order, while the second part derives from the er A„
term in second order. Equations (3) and (4) are exact
as they stand within the framework of perturbation
theory. However, further calculation as things stand is
a formidable problem.

Following Hamilton and McWhorter" we approxi-
mate M~~. At this point we concentrate our attention
on scattering transitions such that the states IS) and

IF) differ only by excitation of electrons within a
given band of the semiconductor, e.g., the conduction
band. The effect of Coulomb interactions on the mo-
mentum matrix elements and energy denominators
appearing in Eq. (4) will be neglected. It is assumed
that the intermediate many-particle state differs from
the initial and final states only by a single particle
excitation. Making these approximations, we discard
electro-optic contributions to the scattering cross
section. ""Considering first scattering from one-band
single-particle excitations, one finds'~

cv„=p &.p(F Ic.tcpls&,

where

(-I ~.l~'&(~'I ~.l»
'y~p = mopsz'Kp'+

mc' m p' Fp Fp +ftioz—
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for evaluation of scattering from collective modes,
where the sum over P' includes only states outside the
band of interest. Note that the single-particle excitation
form of y LEq. (6)) becomes that given in Eq. (7) if
we apply the approximations made for the collective-
mode scattering. When the two forms of scattering are
mixed (the collective modes are not well defined), the
latter form for y l Eq. (7)) should be used. The fact
that there are two forms for y does not affect the rest
of the calculation which proceeds using y merely as a
parameter. It is interesting to note that y is exactly the
matrix element which is calculated in single-electron
scattering theories. '' '" It is particularly significant
that this one-electron matrix element appears as a
parameter in the results given here; the results of the
previous calculations which include complicated band-
structure effects can be incorporated directly.

Proceeding with the calculation, we express the cross
section in terms of the Fourier transform of a corre-
lation function for the generalized pair operator E,
(&=—Z. ,p v-p(:-'(=p)

'dt e'"(E (t)A (0))-
Assuming the electrons are in thermal equilibrium, we
use the fluctuation dissipation theorem' to find

dso' to p (tt„+1)
——Im

dOdko col
dt e'"'

—ig(t) u'"(t) 8'(0))), (~)
's D. N. Zubarev, Usp. Fis. Nauk 71, 71 (1NO) LEnglish transl, :

Soviet Phys. —Usp. 3, 320 (1960)g.

Using closure, we have eliminated the intermediate
many-particle state from the expressions. The matrix
element is now much simpler in form and involves the
electron pair operator C ~Cp. Note that this result is
exact for noninteracting particles. We keep the particle
interactions only through evaluation of a correlation
function for the pair operator.

Considering next scattering from one-band plasma
collective modes, we find Eq. (5) for %sr subject,
however, to the following restrictions: Ke replace the
energy denominators in Eq. (6) by (Eo&htor) for
interband intermediate-state contributions to y and
neglect the intraband intermediate-state contributions
to y which are usually smalp '2 compared to interband
terms. These replacements and the resulting expressions
are appropriate only if the characteristic single-particle
and collective-mode energies are small compared to
(E, Ator), and—only if ltol((~r. Thus, we use the
expression

(-I ~.l~')(~'I ~.l~)
moper ' ep+ —P

mc m p Eo+AMr

where n = Lexp(hto/AT) —1) ' is the Einstein-Bose
occupation factor. Defining G(t) —=—io(t)(LE"(t),X(0)))
and g p by

then writing the equation of motion for g p in the
random-phase approximation (RPA) yields

(0 +zp s)—
4m.e2 ep —e

m. p P m, ,"g... (10)
q' Aoi+Ep E—

where e is the thermal-equilibrium occupation number
for the state ln). We neglect relaxation eGects. A phe-
nomenological collision time can be included when

necessary. Solving the integral equation for g p gives"

d'o. to p (tt„+1) 4ze' J.gL, g
— =A—— Im Ls+, (11)

dQdco (dI 'r

tt p
—it~

Ls=Elv.pf'I
kA +op —s )

Sp S~I i —Q t~pm(gp
n, p Ato+Ep E~—(13)

ep —st~
I-i= E V-p*m-p—

~, p Aoi+Ep EJ—(14)

4me' Sp S~
(~,q) =1-

q' ~,p Aoo+Ep E—
In the above equations, e(&o,q) is the longitudinal
dielectric constant of the valence electron gas, including
ittterbuttd contributions to the sum over (n,P). These
interband terms occur naturally in the solution of Kq.
(10) and are important, since they yield the optical
dielectric constant e„of the semiconductor. "

Although detailed evaluation of the cross section as

given by Eqs. (11)—(15) can be rather involved and

complex in practice, there are several rather general

and important features of these equations. If we neglect
Coulomb interactions (4sres/q') ~ 0, we find.

(os (st„+1) ( ttp —tt
=A—— —Im Ply.pl'l-gr, s Vi +op —s,)

with ~ p given by Eq. (6). This eqiiatioil is a coiii-

pletely general and correct expression for noninter-

"The derivation of the cross section given here neglects
coupling to transverse current Buctuations (see Ref. 4) and
therefore treats the collective modes of the plasma in the longi-
tudinal wave approximation.

~ D. Pines, Etetstentury Ettoitotions il Solids (W. A. Benjainin,
Inc., New York, 1N4), p. 174.
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acting electrons, including a simple generalization to
include imterbaed scattering processes. The second term
in the brackets in Eq. (11) results from Coulomb
interactions and gives rise to two significant effects.
First, scattering from certain types of single-particle
excitations as embodied in Im(L2), are screened by the
Coulomb term. Second, the Coulomb term introduces
scattering from collective modes which occur at the
zeros of the dielectric constant «(to,q)=0. Equations
(11)—(15) have formal similarity to those given origin-
ally by Wolff' in considering nonparabolicity induced
scattering phenomena. Their general form is note-
worthy, and it is particularly significant that matrix
elements involving the exact eigenstates of the general
one-electron Hamiltonian appear in these equations.

The general expressions given above reduce to the
less general ones derived by previous authors in ap-
propriate limits. For plane-wave Bloch states (zero
magnetic field), Eqs. (11)—(15) reduce to those given
by Hamilton and Mc%horter. " Taking the limit of
zero incident and scattered light frequencies (photon
energies small compared to the band-gap energy), and
considering states near the band edge of a semicon-
ductor, one finds the result of calculations which use a
one-band eGective-mass Hamiltonian. 4' For weakly
nonparabolic bands the cross-section expressions reduce
to those derived by Wolff. ' For finite light frequency
(hoir&E, ) and small frequency shifts (co«&or), the
interband terms in y have enhancement' factors of the
approximate form $Z,/(E, Aoir)], whe—re E, is the
semiconductor band-gap energy. The cross sections for
all scattering processes (single particle and collective
mode) tend to show this resonant enhancement as
Ace~ approaches E,.

Finally, we mention briefly the effect of lattice
vibrations on the spectra of scattered light. For many
common semiconductors one expects first-order in-
elastic scattering from zone-center phonon modes.
Infrared-active longitudinal-optical phonons will be
coupled to the longitudinal plasma waves. This coupling
to longitudinal plasma waves (So=0) has been observed
and studied in detail in GaAs. ""Being consistent with
our neglect of electro-optic-induced scattering phe-
nomena, one can approximately account" for the e6ect
of the phonons in polar semiconductors by adding to
Eq. (15) for e,

electron energies, i.e., we assume co„~,/co~. The result
for the problem being considered here will be coupled
phonon-magnetoplasma modes. '4 However, we will

generally neglect this coupling in what follows since it
can be included in a straightforward manner when
necessary, It must be emphasized that this procedure
is sufficient only for scattering geometries for which
electro-optic mechanisms are negligible. Direct phonon
scattering processes are not included; all scattering
strengths go to zero as the mobile electron density goes
to zero.

III. SIMPLE SEMICONDUCTORS

Before giving detailed examples of the usefulness for
complex semiconductors of the expressions derived in
Sec. II, we consider brieRy scattering from electrons in a
simple idealized semiconductor. We define a simple
semiconductor to be one in which the energy bands are
parabolic and spherically symmetric, and in which
spin-orbit coupling is unimportant. Only two energy
bands are considered of importance (a conduction band
and a valence band). These two bands are assumed to
have a direct energy gap E, at the zone center and
eA'ective masses of magnitude m* Lwe assume (E~/E, )
«1].For spherical bands, this model is one step beyond
the one-band effective-mass calculations. 4 ' The matters
discussed here give good contrast to the results for more
complex semiconductors discussed in later sections.
Some important properties not previously pointed out
will be discussed.

For small. incident photon energies (hoir(E, ), small
frequency shifts (~o~~&&oir), and small effective mass
L(m*/m)«1], the matrix element y s can be shown
to be given by

The scattering cross section [Eq. (11)] then becomes

to p Eg' ' (I„+1)
oir Eg —(Amor) il

Im —
) 16

coq2 —oP

where a&i(oui) is the zone-center longitudinal (transverse)
optical-phonon frequency. This replacement is ap-
propriate for the III-V compound semiconductors at
which much of the discussion is aimed. Using this
procedure, we neglect polaron effects" on the one-

"A. Mooradian and G. 3. Wright, Phys. Rev. Letters 16, 999
(1966);A. Mooradian and A. L. McWhorter, ~bid. 19, 849 (1967).

2' B.B.Varga, Phys. Rev. 137, A1896 (1965).
"See, for example, E.J. Johnson and D. M. Larsen, Phys. Rev.

Letters 16, 655 (1966); D. M. Larsen and E. J. Johnson, J. Phys.
Soc. Japan Snppj 21, 433 (1966).

and shows the resonant enhancement mentioned in
Sec. II. Equation (16) is general and valid or without
a magnetic field. Apart from the resonant enhancement
factor, Eq. (16) has the form expected for a free-
electron gas with a mass m*. Note that all scattering
processes have the polarization selection rule ar ap and
involve charge density Ructuations. The effect of the
magnetic field is buried in the longitudinal dielectric

See, for example, S. Iwasa, in Physics of Solids in Intense
31ugnetic Fields, edited by E. D. Haidemenakis (Plenum Press,
Inc., New York, 1969), p. 126.
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Fre. 1. Schematic display showing qualitative features of the
long-wavelength scattering from a low-temperature Fermi plasma
in the model semiconductor discussed in Sec. III. For (a) and
(b), co~)gpss. For (c), co~&~..

constant which has been calculated for both Fermi"
and MaxwelP' gases. The two vectors q and Bp lead to
two characteristic observational geometries: (a) tl~~Bp

and (b) qJ Bp.
For q~jBp, the cross section will exhibit Lsee Figs.

1(a) and 1(b)) scattering peaks in the range 0(~
q~ ~

vg, where v~ is the Fermi velocity (thermal
velocity for a Maxwellian electron plasma) correspond-

ing to a Fermi energy Ep, and at the electron plasma fre-

quency co .4 ' "'2 Here, the long-wavelength limit

(q~ ~
vp/pp„)&&1 is assumed. These two characteristic peaks

have been observed (Bp ——0).""For Aa&,«Es
&
aT the so-

called quasielastic scattering in the range 0( q~ ~vp is a
broad smooth peak covering this entire range. LThe
symbol ~, denotes the electron cyclotron frequency
(eBp/m*o). ) It results from the scattering of single
electrons from inside to outside the Fermi surface.
For a simple semiconductor plasma the quasielastic
scattering strength is very small. ' {omplex band-
structure effects can increase this strength to an
observable level. ' "'2 For a Fermi plasma with a well-

defined Fermi surface (Es))aT) and with Ace, =0(Es),
the quasielastic scattering spectrum will begin to split
into a series of separated peaks as shown in Fig. 1(b).
There is one peak for each distinct energy level lying
below the Fermi surface. Assuming that q((k~, where

kr (2maEs)'"/h, the ——peaks are centered at qv~„, where
vs„=$2/m*)r"LEs —rheo, J" is the velocity along Bp
of an electron at the Fermi surface in the nth distinct
Landau energy level. The nth peak in Fig. 1(b) results
from the scattering of a single electron on one Landau

~I'N. D. Mermin and K. panel, Ann. Phys. (N. Y.) 25, 247
(1964); M. I. Stephen, Phys. Rev. 129, 997 (1963).IL B.Bernstein, Phys. Rev. 109, 10 (1958).

level from inside to outside the Fermi surface. Under
these conditions there are also collective modes in the
frequency range (O,qvs). These modes are acoustic
plasma oscillations'~ which result from motion of the
carriers on the various Landau levels in such a way
as to preserve charge neutrality. In the long-wavelength
limit, these acoustic modes occur at frequencies between
the single-particle excitation peaks Lsee Fig. 1(b)).
In effect, electrons in diferent Landau levels act as a
different kind of carriers as is the case with classical
ion-acoustic modes.

The other characteristic geometry tie Bp also has
interesting features. For this configuration (and this
level of approximation) when q,r, &1 the plasma will

exhibit scattering only from collective modes, the hybrid
(magnetoplasma wave) mode near (co,'+tp~)'I', and
the Bernstein modes near 'Vcr, (E)2) )see Fig. 1(c)).
Here, r, is an appropriate characteristic cyclotron
radius. This is true for both Maxwell' and Fermi gases.
There is no scattering intensity due to single-particle
excitations. For example, for the low-temperature
Fermi plasma there is no inter-Landau-level scattering.
In this regime, the single-particle scattering is cod/etefy
screened by the Coulomb interactions. This screening
is apparently a general feature of the RPA treatment
of Coulomb interactions and will be discussed further
in the sections on III-V semiconductors. In the long-
wavelength limit q&r,((1, the scattering from the
Bernstein modes is weak L~ (qpr, s)~) compared to
that from hybrid mode except for ranges of parameters
where the two types of modes are strongly coupled. '
This result does not necessarily follow for more compli-
cated semiconductors (see Sec. IV). For q,r, —+po, the
scattering goes over smoothly to a set of peaks at
co=co„2'„3'„etc.The electrons now scatter as if
they were a set of independent particles. '

For tl oblique to Bp and cu, )q~,vp, Kq. (16) does
predict inter-Landau-level scattering centered at
co= Ecv,. However, the cross section is weak in the long-
wavelength limit, going to zero both as q~

—& 0 and as

qadi

—+ 0.

IV. COMPLEX SEMICONDUCTORS

In this section we will illustrate the usefulness of
Kqs. (11)—(15) by example calculations for electrons
in complex semiconductors. Spin-orbit coupling and
other energy band complexities will not be discarded.
Light scattering in such real semiconductors couples
to a considerably greater variety of excitations than
scattering for the ideal semiconductor of Sec. III.
Detailed and/or quantitative computations will n.ot

"A. L. McWhorter and W. G. May, IBM J. Res. Develop. 8,
285 (1965); S. I. Ginzburg, O. V. Konstantinov, and V. I. Perel,
Fiz. Tverd. Tela 9, 2139 (1967) LEnglish transl. : Soviet Phys. —
Solid State 9, 1684 (1968)j; O. V. Konstantinov and V. I. Perel,
Zh. Eksperim i. Teor. Fiz. 53, 2034 (1967) [English transl. :Soviet
Phys. —JETP 26, 1151 (1968)g; G. Benford and D. Book, Phys.
Rev. Letters 21, 898 (1968).
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be made. The cross-section expressions given in Sec. II
are complicated; direct computation for a given
material and experimental geometry can be quite
tedious. The evaluation for given materials of the
parameter y alone has been the subject of a number
of authors. ''' However, we will find it possible to
discern some important and rather general features.
We generally have in mind in the following discussion
scattering from conduction electrons in a nonde-
generate spherical bands and will use the band models
for the III-V semiconductor compounds of the InSb
type for specific points, We will also consider a low-
temperature (xT(&Ez, k&e,.), degenerate gas unless other-
wise stated. The nature of the scattering and the
excitations involved will be discussed for the two
geometries, q perpendicular and q parallel to Bo.

Before going on to the discussion of the two charac-
teristic geometries, it is useful to And more explicit
expressions for the variables appearing in the cross-
section expressions given in Sec. II. Ke assume that
the energy bands of the material being considered have
at least cylindrical symmetry about the direction of the
magnetic field. Then the wave functions can be written"
as a linear combination of products of functions of
the form [n)=gq gz(zr)ft~(r), where the Ng have the
periodicity of the crystal (typically, the I& are band

edge functions) and the f~ are Landau level wave
functions of the form

f~ ~ecjtlgeeckyw@ (x x )

Here, C, is the one-dimensional harmonic-oscillator
wave function, k, is the quantum number giving the
electron momentum along the magnetic field Bo=Bo2,
and k„ is the quantum number giving the electron-orbit
center xe ——(Izk„c/eBe). Under these conditions, the
energies E are independent of k„, as is the case for a
free electron. The plane-wave nature of the fg in the y
and s directions allows one to perform directly some of
the matrix element integrations and then some of the
quantum-number sums of k„ in Eqs. (11)—(15). For
m p we find

m p=8(k, kp. —q,)b(—k „kp„——q„)e '&*'Pe~—'
X(2 )'(; x-g, le' * Ip;*), (17)

where
~
n, x—g„) denotes

AgricP zest(r)fl.
' x—

eBO

where f~' is f~ with k„=0=k,. Then assuming that the
largest terms in y p result from the sum over interband
matrix elements of Lzz —(e/c)Aoj, z9 yields

e2

p„p —— m per. eF+(2zr) 8(k,—kp, —q, )8(k „—kp„—q„)
mc'

(n;x g„~e&—ye '~i;x —k„,)(i;x—k»~e, pe" '~p;x)
x

~

~

Ep E'(k p.+kr.)—+&~r

(Q;x—g„~er pe'"'~i;x+tz „)(i;xytz „~ pe "r''~p;x))
(18)

E, E;(kp, kp, ) A~r— — —

It has been assumed that the wavelength of the light
is long enough that factors of the form e'~' are slowly
varying over a unit cell, and that p operates only on
cell periodic functions.

Within the framework of usual semiconductor band-
structure-calculation wave functions, Eqs. (17) and
(18) are general. These two expressions can then be
used with Eqs. (11)—(15) to calculate the scattering
cross section. However, it is instructive to specialize
the notation slightly for further calculations. We are
interested in scattering from one-band excitations.
Generally, even when effects such as spin-orbit coupling
and nonparabolicity are strong, we can label2' the states
~a) in a meaningful way by the set of free-electron
quantum numbers (n,k„,k„o), where o. denotes spin
component along the magnetic field. This labeling
scheme is particularly appropriate for conduction elec-
trons in the III-V semiconductors. "For low electron

"Y.Yafet, in Solid State Physics, edited by F. Seitz and D.
Turnbull {Academic Press Inc. , New York, 1963), Vol. 14, p. 1.

density and magnetic field these quantum numbers are
just those of the effective-mass (and effective g-factor)
states. Equations (12)—(15) become

dk,
~p(zz, k„o.; n', k, +q„o') ~'

2'

p(n, k„o.)—p(zz', k.+q., o')xi, (19)
&Ace+E(n, k,) —E(n', k.+q„o')

y(n, k„o;n', k,+q„o')m„.
2'

X
p(n, k,o) —p(n', k,+q„o')

(20)
A.ce+E(n, k„o) E(n', k,+q„o')—

"As a practical matter it is usually a good approximation to
replace Pzr —(e/c)Aej by p in calculating interband matrix ele-
ments. See, C. Kittel, QNantzcm Theory of Solids (John Wiley Bz

Sons, Inc., New York, 1964), p. 281.
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dk,—y*(n, k„o., n', k,+q„o')m „„.
2'

(
p(n, k.,o) —p(n', k,+q„o')

AM+E(n, k.,o) —E(n', k,+q„a')

where

p(n, k.,or) —p(n', k,+q., a')
(22)

Aei+E(n, k„a) E(n', —k.+q„a')

is the number of electrons with quantum numbers

(n,k„o). These equations are now in a relatively work-
able form, for example, calculations. Similar equations
derived by Wol6' for nonparabolicity-induced scatter-
ing are a special case of the more general Eqs. (19)—(22).
We have immediately features which differentiate
scattering from complex semiconductors from the free-
electron case and special cases such as those considered
by Wolff and others. 3 5 The spin variables 0. in Eqs.
(19)—(22) cannot be summed over in the usual direct
manner. Due to spin-orbit coupling, the matrix ele-
ments y and m are not necessarily diagonal in 0.. The
excitation light and the Coulomb interactions can Rip
an electron's spin. Inelastic scattering due to single-
electron spin-Rip excitations is a strong and well-known
process. ' " The importance of Coulomb spin-Qip
excitations has only been recently pointed out" and will

be discussed below.

A. Scattering Parallel to Magnetic Field (q~~ Bo)

When the scattering wave vector is parallel to the
magnetic field, the matrix element ns p conserves
I.andau level and spin quantum numbers, m ~ ~ 6„„b
However, this is not true in general for y. In fact,

~ is nonzero in the III-V semiconductors for
De&2, 60-=0 and he=0, ho. =i even in the dipole
approximation (q= 0). This means that there are
inter-Landau-level (ra= drub, ) scattering contributions
to Lo which are (to a Erst approximation) independent
of q. This is to be contrasted with the free-electron gas
which exhibits no inter-Landau scattering for q~~Bo and
no spin-Rip scattering in any geometry. The second
term on the right-hand side of Eq. (11) makes no
contribution to the Landau level or spin-Rip scattering.
Thus, the strength can be calculated using the results
of one-electron calculations, '3 merely adding statistical
weighting factors. Also, in this geometry when ~„&Ipse
one expects plasmon (co=co~) scattering, which results
from a zero of e in the second term on the right-hand

"F. A. Blum, Phys. Rev. Letters 23, 73 (1969).

side of Eq. (11),do ~ Im(1/e). The first term (L&) gives
no contribution. Thus, for the cases considered above
the first and the second terms give separate and
independent contributions to the pertinent type of
scattering: single-particle inter-Landau level and spin-
Rip scattering, on the one hand, and collective mode
(plasmon) scattering, on the other. This is also true
for scattering from the acoustic plasmons (see Sec. II)
which derives from a zero of e. This is not true for the
quasielastic single-particle scattering; both terms in
Eq. (11) contribute. The second term can screen the
first, i.e., it reduces the strength of the scattering which
one would calculate in the absence of Coulomb inter-
actions. For wavelengths long compared to the screen-
ing length (Bo——0), the reduction in charge density
fluctuation scattering is very large for a free-electron
gas. ' " Solid state effects contained in y can enhance
this scattering to an observable level in semiconduc-
tors. ' ""Note that, in general, the quasielastic scatter-
ing spectra for the real semiconductor Fermi magneto-
plasma will differ considerably from the simple semi-
conductor plasma spectra described in Sec. III. First,
it will have both charge density and spin density
fluctuation contributions" (for co,((qvv). Also, in high
magnetic fields its peaks will be near yves where
vr, = f2/m*g'l LE@—(n+is)hei, ——'akei g'~' and ei, is the
electron spin-Qip frequency.

B. Scattering PeryendicuIar to
Magnetic Field (qJ Bo)

We restrict our attention in this geometry to the
regime (q,r,)& 1. In the free-electron case this geometry
yields only scattering from the collective modes. This
may no longer be true for the semiconductor plasma.
There is scattering from the collective modes /do.
~ Im(1/e) jwhich derives from the second term on the
right-hand side of Eq. (11). However, there are also
single-electron scattering contributions in both terms
on the right-hand side of Eq. (11). For the simple
semiconductor plasma y p ~ m p and the single-particle,
contributions completely cancel, yielding zero. This
result does not necessarily follow for complex semi-
conductors.

In what follows, the usefulness of the derived
expressions will be illustrated by example calculations
of the strengths of the cross section for scattering from
inter-Landau-level single-electron excitations and Bern-
stein magnetoplasma waves. In some cases, the results
diRer considerably from the conclusions of previous
authors, illustrating the importance of Coulomb inter-
actions and proper treatment of complex semiconductor
effects. For convenience, a parabolic approximation for
the electron energies will be taken:

E(n,k.,o-) =k'k, '/2m*+ (n+-', )Are. +-,'a Aro, .

This is a reasonable approximation for the phenomena
considered below. We are just neglecting terms of order
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[(hen, )'/E, 7, [(Ep)2/E, 7, etc. , in the energy denomi-
nators of Eqs. (19)—(22). For perpendicular scattering
(q, =0) both y and m conserve k„ i.e., they are propor-
tional to 5(k,—kp,). Thus, the energy denominators
appearing in Eq. (19)—(22) are rather simple and
independent of k„having the form $~+(JVco,&Ere,)7,
where Ã is a positive integer and E=0, 1. This result
reduces the complexity of these equations considerably
and facilitates the calculations given below.

a constant for the simple semiconductor case. For a
complex semiconductor plasma, these equalities do not
necessarily hold. The screening will be only partial. For
illustration, consider the case where the magnetic field
is so large that only the lowest Landau orbital level
(n=0) is occupied. This situation has been considered
in several one electron calculations. ' The cross section
then has the particularly simple form

Siogle-Parti cle Excitatioes
~&(X~,)— dk, p ~y, ,~ ~'

Scattering peaks due to single-particle excitations
occur at the frequencies, co„co„co,~co „2~„2',~~„
3'„3',~co„.. .. Neglecting for the moment the spin-
Qip contributions to m p, all peaks at frequencies
involving co, derive from L2. These are the spin-Qip
transition (cu =co,) and combination transitions (cu

=iV&u, War, ). Their strengths are given by conventional
one-electron results' for ~y~' weighted by the ap-
propriate statistical occupation factors. The remaining
peaks are the so-called Landau-Raman' ' 8 ones occur-
ring at co =3~co, and correspond to excitation of electrons
b etween Landau levels with the same spin quantum
number.

The cross section for Landau-Raman scattering is
screened by the Coulomb interactions. The importance
of this screening is shown by the following example:
Following Wolff' and isolating our attention on the
behavior of der at co =Eco„we note that the functions
L; have the form

Then the cross section for scattering at co =Eco, is
given by

(
0 CO@ /i(X)/i(X)= —(ii +1)Q /2(A')—

echo /o (iV)

)&6 (a) —X(v,), (23)

where /0 is defined by e =—[1—(47re'/q')1. 07. Equation
(23) has some striking features. The second term on
the right-hand side which screens the one-electron
contribution /~ is not proportional to (4~e'/q'). That is,
the strength of the screening is not proportional to the
self-consistent field "coupling constant" (4~e'/q'). This
is in direct contrast to the Bo——0 case where screening
in the long-wavelength limit reduces the single-electron
quasielastic scattering strength by a factor = (q/q, )'
(q, is the appropriate screening wave vector). This
feature of Eq. (23) results from the RPA and leads to
total screening for a free-electron gas and for electrons
in our model semiconductor (see Sec. III), for which
we have p ~ m. This proportionality yields l.=E.'lo and
(/1 /1) =R/o, so that the right-hand side of Eq. (23) is
zero. Here& R (E '/=[E 2—(k~+)~7}(e2/~+&2)(er ~ e&) is

dk, pyp, ~ dk,p . (24)

It is appropriate to use for yo, ~ expressions calculated
in one-electron theories. 3 The E= 2 Landau-Raman
process in III-V semiconductors has a significant cross
section even in the band-edge (k, =0) approximation,
which is commonly made. ' The cross section per
particle, given by the noninteracting electrons result,
is (for cur((E, )

0 2.,——0[0-r*(Ii(0,/E, )'7, (25)

where 0~*= (e'/m*c')' is an effective Thomson cross
section and E, is the energy band gap. However,
examination of Eq. (24) shows that if yo, ~ is taken
independent of k„ the right-hand side is sero. Again, we
have the phenomena of total screening. It should be
noted that nonparabolicity effects which make
depend on k„can modify this screening effect. If the
k, dependence of p is accounted for by inclusion of the
k,-dependent terms in the energy denominators of Eq.
(18), we find for interacting electrons

a2„,——0[(2/15)op*(Ep/E, )'7, (26)

where we assume kr, k~((k (Fermi) and Ei is the Fermi
energy measured with respect to the k, =0 energy of the
lowest Landau level. This Fermi energy decreases with
increasing magnetic field as (1/Bo), leading to a cross
section which goes as 80 '

~ This is in direct contrast
with the result for noninteracting electrons [Eq. (25)7
which gives a strength increasing as Bo'. Considering
the experiments of Slusher et al. ' on inter-Landau-level
scattering, the example considered is an oversimpli6-
cation. Their experiments were not performed with
qJ Bp and several I.andau levels were occupied. In this
case, the screening is less dramatic and evaluation
requires a complicated calculation. However, it is clear
that the screening is there and can have important
consequences concerning the magnetic 6eld and electron
density dependence of observed cross sections. Also,
in a typical experiment the q's are so small [(qr,)«17
that, even if one has qJ Bo, one expects scattering from
a Bernstein rnagnetoplasma wave very ~ear co =2~,.
Due to lifetime broadening, scattering from this mode
will not generally be distinguishable from scattering
from the single-particle excitation at co =2', . Scattering
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from the magnetoplasma waves is the subject of Sec.
IV D.

For scattering via a single-electron excitation from
the v =0 to the +=1 I andau level, y is proportional to
k, and is zero in the band-edge approximation. ' The
many-electron contribution to Eq. (24) merely reduces
the cross section from o„,=O/ar*(h~. /E, )(Ei/E, )j by
the factor 6. Groves and Wright" have found by detailed
calculation, including intraband terms, that o.„, (for
10.6-p radiation) is actually much smaller for InSb
than that predicted by the above equation.

d'o. ~ F (n„+1) 4v.e' 1)

dQdG0 M g 7i g 6)
(27)

Again, considering the case of a nondegenerate, spheri-
cally symmetric conduction band, we can use what is
basically the free-electron (nz —+ I*,g —+ g*) dielectric
constant, " being consistent with our neglect of non-
parabolicity in the energy denominators of the I func-
tions. In the long-wavelength limit (q,r.((1) which is
appropriate in typical experiments, ' the magnetoplasma
(charge density) waves are those mentioned in Sec. II:
the magnetoplasmon a&'=co„'+co,'+0(qPr, '), and the
Bernstein modes a&=N~, +Ot (qi2rg)~1, 1V)2. Since
the scattering from the Bernstein modes near 2Vco, is
not likely to be distinguishable experimentally from
single-electron scattering at E~„ it is instructive to
consider the relative strength of these two scattering
processes. Using Mermin and Canel's'5 result for the
response function residue for the free-electron gas, one
can show that

/v~['—~N
dQ (q 'r ')~

(28)

for the Bernstein mode near 1Vcv, . In Eq. (28), y~
=0(y„,„+~) and r~~ (qPr, ')~ is the residue factor
defined by Mermin and Canel. Reducing Eq. (28),
we find

80—=po fv~J',
dQ

where po is the electron density, and we assume cu„~co,.
The point here is that, in terms of the small parameter
(gPr, '), the cross section is of order 1; factors in-
volving the relative population of the various Landau
levels are common to both types of scattering and have
been dropped. For a free-electron gas

~ y~
~

' o v*(qi2i'. ')
and the scattering cross section (do./dQ) po.or*(q,'r, ')

3' S. H. Groves and G. B.Wright, Solid State Research Report,
Lincoln Laboratory, M.I.T., 1968:4, p. 43 (unpublished).

Z. Magnetoplasnsa Waves

The cross section for scattering from well-defined
collective modes of the plasma is

is quite small. This result applies also to the simple
semiconductor for ~I&&A,. The important thing to note
is that Eq. (29) is exactly the estimate one would make
for the inter-Landau-level scattering (in the absence
of significant screening). For example, consider the
case 2K=2 in the III-V semiconductors. We know that
(yz)' o&*(k&u,/E, )', yielding

~p o~

for the Bernstein mode scattering strength near 2', .
Equation (30) is identical with estimates givenl for the
Landau-Raman scattering at 2', . The conclusion that
inter-Landau-level single-electron excitation and Bern-
stein mode excitations scatter with equivalent strengths
is important for interpretation of experiments. Further-
more, this result is contrary to Wolff's' conclusion for
the 2', nonparabolicity induced scattering. Wolff
found the screening of the single-electron excitations
at 2', so strong in his case that the dominant scattering
was from the Bernstein wave. It appears that his result
is not a general one for semiconductors.

Finally, it should be mentioned that the properties
of and scattering from the Bernstein waves in the
geometry il J B„are somewhat special. For q oblique to
80 the Bernstein waves tend to suffer collisionless
damping. " It is also interesting to note that for co~'
= (1V'—1)~,', the 1Vth Bernstein wave and the magneto-
plasmon will become coupled modes. Although this
coupling is rather weak, effects due to it have been
observed" and it can significantly inQuence the scatter-
ing spectrum, particularly for long relaxation times. '

3. SP&s Waves

To the level of approximation considered above,
m p is diagonal in the spin quantum number. Spin-Rip
excitations result only from the interband terms in p ~.
The many-electron (second) term on the right-hand side
of Eq. (11) makes no contribution to spin-excitation
phenomena. This results because Coulomb interactions
in the RPA do not couple the motion of electrons with
opposite spins, if the one electron states are eigenstates
of o., the component of the Pauli-spin operator e along
Bp. However, it has been pointed out" recently that
due to the action of spin-orbit coupling, ns p effectively
does not conserve o-,. This follows since spin-orbit
coupling mixes the space and spin character of the
electron wave functions so that they are no longer
eigenstates of o-,. This effect has novel consequences.
First, there are spin-wave" solutions to a=0 which
one might observe in a light scattering experiment.
Spin waves would ordinarily be expected only in
magnetic semiconductors or under conditions where

"C. K. N. Patel and R. E. Slusher, Phys. Rev. Letters 21,
1563 (1968).
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weak exchange interactions of the Fermi-liquid type ~

are important. The spin-orbit-induced spin waves exist
even in the absence of explicit exchange interactions.
Furthermore, screening 'of the single-particle spin-
excitation processes results. In the long-wavelength
limit for qJ Ss in III-V semiconductors, the funda-
mental spin-wave mode occurs at the frequency

to =to, +8(v+0 (qtsr, '),
where Ro is independent of q~ and vanishes in the absence
of spin-orbit coupling. For InSb with a donor concen-
tration of about 10' cm ' and a magnetic field around
100 kG, (8~/co) =0.01 and ~,= 190 cm '. Although this
frequency shift (from the single-particle spin-fhp line)
is small, effects due to these newly predicted spin
waves might be observed in a high-resolution infrared-
light scattering experiment. Rather narrow spin-Qip
linewidths (as narrow as a few cm ') have been ob-
served in scattering experiments in InSb and InAs
with tl oblique to Bp. An analysis in exact analogy with
that given for the Bernstein modes in Sec. IV B 2 shows
that the total cross section (do/dQ) for scattering from
the fundamental spin-wave mode is of the same order
as the cross section for single-particle spin-Aip
scattering.

There are higher-order spin-wave roots near com-
bined transition (orbital plus a spin change) energies
h(iso, &co,), E&1. For these combined spin waves,
r0= PVro, +co.)+Ot (q, 'r, ') ~j, leading to .a frequency
shift )from the combination single-electron excitation
line at (1Vco,&to.)j which vanishes in the long-wave-
length limit. The combined spin waves suffer the
problems characteristic of Bernstein modes: (a) Because
of their small frequency shifts their scattering peaks
will tend to be indistinguishable from the single-electron
excitation lines, due to relaxation broadening; (b) they
will tend to suffer damping for tl oblique to Bs. Indeed,
there is a striking similarity between the long-wave-
length set of spin-wave modes formed by the funda-
mental (co=~,+ben) plus combined (&slav, + „toi&V1)
excitations and the magnetoplasma wave set consisting
of the magnetoplasmon (res=to~'+a&, ') plus the Bern-
stein waves (&0=1Vcu„ iV& 2).

V. DISCUSSION

Detailed quantitative calculations of scattering cross
sections have not been attempted in this paper. Such
calculations would indeed be tedious, if not compli-
cated, and are probably warranted only for detailed
comparison with experimental results. However, the
general form of the cross section expressions given in
Sec. II has proved itself quite useful in categorizing the

88 Spin waves observed in the alkali metals PG. Dunifer, S.
Schultz, and P. H. Schmidt, J. Appl. Phys. 39, 397 (1968}ghave
been attributed to the existence of signi6cant short-range electron-
electron exchange interactions LP. M. PlatzDIan and P. A. Wolff,
Phys. Rev. Letters 18, 280 (1967)j.

various inelastic scattering processes and studying some
of their general properties. These expressions yield a
rich variety of semiconductor magnetoplasma exci-
tations which one might hope to observe by light
scattering. Light scattering is a most attractive experi-
mental tool by virtue of the fact that the light couples
to so many types of excitations: quasielastic single-
electron excitations, acoustic plasma waves, optical
plasma waves (including Bernstein waves), inter-
Landau-level excitations, spin-Qip excitations, combined
excitations, and spin waves (fundamental and com-
bined). Experiments to date have clearly only scratched
the surface of rather fertile ground. Only the inter-
Landau-level and spin-Rip excitations, and the magneto-
plasmon have been observed3 directly in magnetoplasma
light scattering. A major virtue of the theoretical
treatment given in this paper is that it does in fact
encompass all the above excitations. Furthermore, the
treatment is sufficiently general to permit one to calcu-
late scattering properties which are considerably more
realistic than those calculated on the basis of most
prior theoretical treatments. The complexities of semi-
conductor band structure, many-electron screening
eBects, and collective mode scattering can only be dealt
with using results such as those derived here and/or
those given by McWhorter and Argyres. 7

The results of Sec. IV can serve as a useful guide in
planning magnetoplasma scattering experiments. Be-
cause of the separation and/or isolation of various
scattering processes, it is clearly desirable to perform
experiments in the two characteristic geometries,
scattering perpendicular and parallel to the magnetic
field. Most experiments have been performed with q
oblique to the magnetic field. 3 There is a clear advantage
to studying inter-Landau level and spin-fhp scattering
in the III-V semiconductors in the geometry q~~BO.

For these materials, the one-electron matrix elements
are nonzero in the dipole approximation. Thus, the one-
electron cross sections are independent of q. A non-
interacting electron theory then gives the correct
properties for this scattering when q~~BO. However,
when tl is oblique to Bs, many-electron screening effects
come into play and enormously complicate the interpre-
tation of experimental results. For qJ 80, one has the
additional complication of scattering from the Bernstein
waves. Of course, it would be of considerable interest
to study scattering near Ã~„co„etc., in both geometries,
looking for differences of the kind discussed in Sec. IV.
Finally, one would hope that light scattering experi-
ments would produce observations of excitations such
as the acoustic plasma waves and spin waves which
have not been detected heretofore by any means.
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