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valid and higher powers of (Pq)s must be included.
(Unfortunately, the inclusion of these higher powers
does not actually remove the divergence problem. )
With this larger cutoA', one obtains

br = 2.1mp ln/ (1',p+ 25T,)/25T, j.
Fortunately, for our purposes, the two estimates are
about the same if the shift of T, is significant. They
are exactly the same if 57= ~, which requires zo ——3 or
8~=2.2&(104 Q. This value of the resistance is more
than an order of magnitude larger than that where the
by in our films is observed to be 2. For our dirtiest
Alms E~ 3X10' 0, v-0 0.05, and the two estimates
give a shift of T, due to fluctuations OT, =~" and
6T,=1 .

V. CONCLUSION

We have measured the transition temperature for
Pb alms of varying thickness and found it to decrease
substantially as the thickness decreases, vanishing for

film thicknesses of the order of 10 A. We have discussed
various influences on T, which may occur in very thin
films and decided that the most important was inter-
action of the metal film with the substrate. Our under-
standing of the nature of these thin films is still rather
qualitative. Further experiments, particularly tunneling
experiments to extract the phonon spectrum and
electron-phonon coupling strength, would add a great
deal to our understanding.
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The surface sheath of a semi-infinite half-space for applied magnetic fields JI0&II,2 and Ginzburg- Landau
a values &0.707 was investigated with regard to its current-carrying capacity and stability. It is found
that infinitesimally three-dimensional Quctuations of the order parameter and the vector potential make
the surface sheath unstable and the total stable transport current zero.

I. INTRODUCTION
'

N recent years, Abrikosov, ' Park, ' Christiansen, '
& - and Christiansen and Smith4 have calculated for
certain specific cases the maximum transport current
of the surface sheath of a semi-indnite half-space. Their
calculations are based on the Ginzburg-Landau (GL)
equations, and the maximum current (or critical
current) is defined as that current at which solutions
of the GI. equations cease to exist. Experiments seem
to indicate that these theoretical values are orders of
magnitude too large. ' '
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A different approach was taken in Ref. 11. In order
to obtain reasonable agreement with experiments, the
critical current J, was defined as that current which
raises the total energy of the superconducting specimen
to that of the normal state. ""Various experimenters' '
seem to get fair agreement with this definition of the
critical current. The critical current, however, is
theoretically size-dependent. For example, J, is propor-
tional to E. "', where E is the radius of a long cylinder,
and the critical current is that which circulates on the
surface around the axis of a cylinder when the applied
field Ho is parallel to the axis of the cylinder. The R 'l'

dependence has been questioned by a number of
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the superheated Meissner state were obtained in Ref.
15, and we shall use here the same notation as intro-
duced by K.ramer' and used in Ref. 15.

The GL equations in the usual GI. normalization are
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FIG. 1. Shown is the amplitude of the order parameter F(0) at
the surface of a semi-infinite half-space as a function of the applied
field Ho when the GL parameter I(:=1.5 and H„=H.2, where FI.2
is the bulk nucleation field (V2~H, ) and H„ is the magnetic field
inside the semi-infinite half-space far from the surface at which
the surface sheath exists. F (0) is a solution of Eqs. (4) and (5).

authors, ' ' " but no conclusive experimental evidence
has yet been published which would indicate that J,
is not size-dependent. If the conclusion that J,~E. '"
is correct, then J,=O for a semi-infinite half-space.
As solutions of the GL equations for the semi-infinite
half-space exist, which seem to indicate otherwise, the
discrepancy between experiment and theory cannot be
reconciled unless the GL solutions obtained for the
semi-infinite half-space are unstable. It is the purpose of
the present investigation to prove that infinitesimally
three-dimensional fluctuations of the order parameter
and the vector potential make the surface sheath of a
semi-infinite half-space unstable, hence J,=0.

II. GINZBURG-LANDAU AND
FLUCTUATION EQUATIONS

In order to find if the superconducting surface sheath
of a semi-infinite half-space is stable or unstable, we
have to obtain 6rst the detailed solutions of the GI.
equations for the superconducting surface sheath. The
GL equations are the erst variational equations of the
total energy 0 of the superconductor with respect to
the order parameter %(x,y,s) and the vector potential
A(x,y,s). The second variation of 0, which is 5'0, leads
to a number of equations which determine the Quctua-
tions of @and 2, namely, W and 6A. The functions W
and bA and their boundary conditions determine if
20~~0, and thus decide whether qr and A correspond to
stable or unstable solutions.

The variational equations have been derived by
Kramer" and somewhat generalized in Ref. 15. They
are similar to the perturbation equations of Christiansen
and Smith. 4 General solutions for the stability limit of

"J. Matricon and D. Saint-James, Phys. Letters 24A, 241
(1967).' L. Kramer, Phys. Rev. 170, 475 (1968); Phys. Letters 24A,
571 (1967).

'5 H, J, Fink and A. G. Presson, Phys. Rev. 182, 498 (1969).

A is the vector potential; lr=h/$; X(T) is the low-field
penetration depth; $(T) is the coherence length; z, y,
and z are normalized by X; H is normalized by v2H„
and H= curlA= —curlQ. At the boundary surface
H =Hp (Hp is the external magnetic field) and c)F/r)n= 0,
where n is normal to the surface. The variations of Ii
and Q, namely, oF and 6Q are defined by the symbols
f(pp, y,s) and q(x,y, s). The second variation of the
Gibbs free energy 0 is

+f 2

$20 — dP' L3F2+Q2 1)f2+

+4FfQ q+F'q'+ (curlq)', (3)
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FIG. 2. Shown is the "superfluid velocity" Q(0) at the surface
of the semi-infinite half-space as a function of the applied field Ho
when the GL parameter a=1.5 and H„=II,2, where H, 2 is the
bulk nucleation field (&2ItH, ) and H is the magnetic field inside
the semi-infinite half-space far from the surface at which the
surface sheath exists. Q(0) is a solution of Eqs. (4) and (5). There
are three solutions when Ho/H, 2

——1: F(0)=0 and Q(0)=0;
F'(0) =0 and Q(0) = ~; F{0)=0,731 and Q(0) =0.863.

where the integral of Eq. (3) is to be extended over all
space. When 6'Q)0, the solution is stable and when
6 Q&0 it is unstable. Thus the stability limit is deter-
rnined by os0= 0 (a quadratic functional has a minimum
at zero). In order to minimize 8'0 with respect to the
furictions f and q one finds the Euler-Lagrange equa-
tions of f and qfrom 6'0 for a fixed set of the equilibrium
functions F and Q (Hp and x are assumed to be con-
stant). This is done in Refs. 14 and 15 when F and Q
are specialized to the semi-infinite half-space.
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Fro. 3. Shown is the difference between H, (H; ) and H
as a function of the applied field H0, where H, (H; ) is de-
fined as that field at which solutions to the GI, equations cease
to exist when Ho is increased (decreased) beyond II x (H~j~).
H„ is the magnetic field in the bulk of the metal. The points are
calculated results for various f~ and H„/H, ~ values which are used
as parameters in this plot.

=z'FLF'+Q' —1j,
dx2

(4)

—F2Q
dx2

where Q=Q„(x). Then Eq. (3) becomes

We consider a semi-infinite half-space (x)0) which
is filled with a metal which is superconducting near x= 0
and normal at x= ~. The magnetic field 8 is parallel
to the s direction and is defined by the superAuid
velocity Q=(0; Q„(x);0). Because of symmetry con-
siderations we assume that F=F(x). Then Eqs. (1) and
(2) reduce to

f, g„, and g, are the amplitudes of the fluctuations of F
and Q, and k„ is the wave vector in the y direction of a
particular mode. It is shown in detail in Ref. 15 that
the three-dimensional fluctuation equations for the
semi-infinite half-space reduce to the above simple
equations.

Before we can find solution for the critical fluctuation
amplitudes f and g„, we have to know the exact solutions
of Eqs. (4) and (5). These equations were solved with
the following boundary conditions: (dF/dx) p=0 (x(0
is considered vacuum); F(po)=0; (dQ/dx)p= —Hp,
and (dQ/dx)„= H„, wh—ere H„ is the value of the
internal field at x=+ ~. When Eq. (4) is integrated
once with respect to F and Eq. (5) once with respect to
Q between the limits x=0 and x= po and the results
are combined, one obtains

H„'—H p' ——F'(0)
I

1—Q'(0) —-', F'(0)j.
Equation (10) was used to check the consistency of our
results. Note also that the difference H„—Ho is propor-
tional to the total surface current per unit length along
the s direction and that this value depends only on

F(0), Q(0), a,nd (IIp+H„).

III. RESULTS OF GINZBURG-LANDAU
EQUATIONS

As an example we show in Figs. 1 and 2 the solutions

F(0) and Q(0) of Eqs. (3) and (4) for ~= 1.5 when the
magnetic field is equal to the bulk. nucleation field
H, & (=v2~H, ) and the external field Hp was va, ried.
Both F (0) and Q(0) are double'values for a fixed value
of Hp/H, & and one expects intuitively that the lower
branch of F(0) in Fig. 1 is unstable when compared to
the upper branch. Ho can be increased only up to a
field II, above which no solution with the above
boundary conditions exists for a 6xed value of H„and
~. Similarly, there is a minimum field H;„below which
no solution exists. A similar conclusion can be drawn
from Fig. 2. The upper branch of F(0) corresponds to
the Q(0) values with positive slope in Fig. 2. Similar

dx(fA+ j„B+j,C)

1 df" F' dg„"
+ f
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K dx p F +kp dx p
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where A, 8, and C are the Euler-I. agrange equations:

1 d'f ky '
A—= —— + 3F'+Q'+ ——1 f+2FQg„=0, (7)
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FIG. 4. This plot is similar to Fig. 3 except that the logarithm
of (II, —H„) and (H„—H; ) is plotted as a function of ~ with
H jH, 2 as a parameter. (H„—H; ) is always larger than
(H H„) for a axed value of ~ and EI„/H—,~.
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Fro. 5. E(0) and Q(0), which are solutions of Eqs. (4) and (5)
at the surface of a semi-in6nite half-space, are plotted for various
values of f~: when H„/H, ~

——1.0. The curve for If:= was obtained
from extrapolations (see text). The values of P(0) and Q(0) at
Hp =H, at Hp ——H and at H p

——H; are indicated by thin
lines. When J (0), Q(0) and H„are known for a given sc value,
H p can be calculated from Eq. (10).

results were obtained for x=0.707, 1, 1.5, 3 and values
of H„/H, s=1.0, 1.3, and 1.5. These 12 cases were
investigated in detail. %hen Ho ——H„ there are two
values of F(0), one of which is always zero. To F (0)=0
correspond two Q(0) values, namely, Q(0)=0 and

Q(0) = po. The maximum field H,„and the minimum
Geld H;„are summarized in Figs. 3 and 4 for various
H„/H, s and a values. In Fig. 3 the circles correspond to
the calculated values and the logarithmic plot of Fig. 4
emphasizes the larger a values and the higher fields.
The asymmetry of F(0) which can be seen in Fig. 1 and
also that of Q(0) (Fig. 2) reflects itself clearly into
Figs. 3 and 4.

Figures 5-7 summarize the results of F(0) and Q(0)
for various x and H„/H, s values. The values of F(0)

and Q(0) at Hp=H, Hp H„——, and Hp=H;„are
indicated. The curves for x= ~ were obtained by
plotting F(0) and Q(0) at H,„and H;„, as a function
of H, /H, , and H;„/H, p for all available x values
for H„/H, p ——const and extrapolating these curves to
H, =H„and H;„=H„.F(0) and Q(0) for a= po and
Bp= H„were obtained by plotting F(0) and Q(0) as a
function of 1/s at H p=H„ for all available s values for
H„/H, p const ——and extrapolating these curves to
1/s ~ 0. When H p ~ H, p (= 1.695H, &) the value of
F(0)~ 0 and Q(0) -+ 1. This can be seen readily from
Figs. 5—7 and this is consistent with Eq. (10).

Assuming that the above solutions for the semi-
infinite half-space were stable, one would interpret the
maximum or critical current as that which is determined
by H, or H;„, respectively. The critical current per
unit length along the s direction is then, in Gaussian
units

C

&(x)~x= —(H,„, ,„—H„~.
0 4x

As can be seen from Figs. 3 and 4, these currents are
quite appreciable. They are orders of magnitude larger
than one observes on small specimens. ' ' In Sec. IV
we shall investigate the stability of the solutions F(x)
and Q(x).

IV. RESULTS OF FLUCTUATION EQUATIONS

Equation (6) is the second variation of the total
free energy and Eqs. (7)—(9) are the equations which
describe the critical fluctuations of F and Q which
determine the stability limit 6'Q=O, provided one can
find solutions of f and f„with the desired boundary
conditions which make the constants of integration of
Eq. (6) equal to zero. When 5'Q)0 the solutions of
F(x) and Q(x) are stable and. when 5'Q(0 they are
unstable. It is thus the aim to Gnd solutions of Eqs.
(7) and (8) which make the constants of integration of
Eq. (6) equal to zero.
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FIG. 8. Shown are the solutions of Eqs. (4) and (5) and of the
critical fiuctuation Kqs. (7) and (8) for x=1.5 and Hp=H~=Hi
and IIo——II; =—II~ when the wave vector of the fluctuation
k„=0 (infinite wavelength). For these particular fields (H ~
and II; ) k„=0 is a solution which makes the second variation
of the energy e'0=0 pEq. (6)g. x is in GL normalized units.

BP O'P
PQ=-

z' BF(0) BF(0)Bx p

BQ B'Q
~ (12)

BF(0) BF(0)dx p

As BF/Bx= 0 at x=0 and x= oo, Eq. (12) becomes

BQ BH
PQ=-

BP(0) BF(0) p

BQ BH

BF(0),„BF(0)

Let us 6rst consider the case when k„=0. Possible
solutions for f and g„which satisfy Eqs. (7) and (8)
are: f=dF/dx and g„=dQ/dx; f=BF(x,P(0))/BF(0)
and g„=BQ(x,F(0))/BP(0); f=BF(x,Q(0))/BQ(0) and
g„=BQ(x,Q(o))/BQ(o); f= BP(x,Ho)/BHo and g„
=BQ(x,Hp)/BH p .The derivative with respect to x does
not make 5'0=0. Thus we consider the other three
possibilities, all of which give the same final answer.
For example:

Fin. 9. Shown are the solutions of Eqs. (4) and (5) and of the
critical Quctuation Eqs. (7) and (8) when x=1.5 and 80/H, &

=B„/11,2 ——1 for various values of the wave vector k„.The value
k„=0+ means 0&k„'«0.1. When k„'&0 the term F'q„(dg„/dx)/
(Fo+k„o) in Kq. (6) for x= ~ is zero and thus e'0 =0. x is in GL
normalized units.

(14)

(15)g g es„zing e saxo—

(df/dx)p=0 and f(~)=0, and also (dg„/dx)=0 at
x=0 and x= ~. It therefore follows from Eq. (6) that
5'Q=O and hence F and Q are unstable for at least one
value of k„at H;„and H

When k„')0, solutions with (dg„/dx)„=0 could
not be found. Although the desired boundary conditions
of f(x) could always be satisfied for the proper ratio of
f(0)/g„(0), the value of ldll„/dx~„ is always larger
than zero except when k„=0.

Figure 9 shows the results of F, Q, f, and g„ for
H„/H, o 1.0, H p/H, —

o—1.0, and z =——1.5. Figure 10 shows
similar results for H„/Hcs —1 3 Ho/Heo
x=1.5. It can be seen that neither g„nor dg„/dx are
zero when x~ and k„&0.

One can find asymptotic expressions of F, Q, f, and

g„ for x&)1. With Q= H„x it follow—s from Eq. (1)
that F=Fpe ~*', where n= tozH„. Equations (7) and
(8) can then be satisfied by the following expressions:

f=fp(ax+e'o*)e

(13)
BP(0) pBP(0) Ir Ir,

I p i I i I

0.8-

I.O & ~ i i

0.8—

When H„ is kept constant as in Figs. 1, 2, and 5—7,
then it can be seen readily from these figures that
6 0=0 for all f(: values when Hp ——H and IIO ——H

Detailed solutions of Eqs. (4), (5), (7), and (8) are
shown in Fig. 8 for H„/H, o ——1, z= 1.5, and k„=0 when
&&o=H . (=Hi) and Ho—=H;„(—=Ho). These were
obtained on an analog computer by a similar method as
described in detail in Ref. 15. As Eqs. (7) and (8) are
coupled and linear in f and g„, the ratio f(0)/g, „(0) is
not arbitrary and has to be adjusted by trial and error
until the desired boundary conditions are satisfied,
provided they can be satisfied at all. Only then are the
solutions for f and g„ those which make BsD= 0. In Fig. g
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where Fp, fp, o g arid gp are parameters which are
interrelated. The asymptotic behavior of Eqs. (14)
and (15) is consistent with Figs. 8—10. Similar expres-
sions were first suggested by Kramer. ie When Eqs. (14)
and (15) are substituted into F'g„(dq„/dx)/(F'+k„')
one finds that this term approaches zero for x ~00 for
all values of k„&0. Hence it follows from Eq. (6) that
5'0=0 for all values of k„&0.

Thus the surface sheath of a semi-infinite half-space
is unstable as it is sufhcient for one mode to induce
critical fluctuations because the modes are not coupled.
We have found similar results for all the g values
investigated and all fields between II;„and II
The f and g„ function are very similar in nature as
those shown in Figs. 8—10. Hence we conclude that
the superconducting surface sheath of a semi-infinite
half-space is unstable for all magnetic fields and all e
values and therefore the total stable current in the
sheath [Eq. (11)j is zero for a semi-infinite half-space.

The general behavior of the f(x) and the L(x)
functions of the surface sheath are different from those
of the Meissner state. "For the Meissner state L(~) is
always zero and f(x) and q„(x) are always of opposite
sign. For the surface sheaths q„(po) is not zero, in
general, and f(x) may reverse sign so that f(x)/g„(x)
may have either sign. f(op ) is always zero for both cases.

V. CONCLUSIONS

The general solutions of the surface sheath of a
semi-infinite half-space for applied magnetic fields
Bp+H, & and z&0.707 were found and investigated with
regard to their current-carrying capacity and their
stability. It is found that infinitesimally three-dimen-
sional Ructuations of the order parameter and the
vector potential make the surface sheath of a semi-
infinite half-space unstable. %e have shown that at
least one critical Quctuation exists for all ~ values and
all magnetic fields for which the second variation of the

'P L. Kramer (private communication).

total energy PQ LEq. (6)j ceases to be positive definite.
Thus the surface sheath of a semi-infinite half-space
cannot carry a transport current as the sheath itself is
unstable, even when the total transport current is zero.
This conclusion is consistent with that of the critical
current J, as defined in Ref. 11,where it was shown from
energy considerations that J, must be size dependent
and approach zero for an infinite specimen. When the
specimen is finite, one would expect that the sheath is
stable and can carry a finite transport current, but no
rigid proof from erst principle exists at present. The de-
tailed solutions of F(0), Q(0), H and H;„as sum-
marized in Figs. 1—7 should be useful in obtaining an
approximate solution of the same problem for a finite
specimen.

Up to the present it has always been assumed in the
literature that the one-dimensional sheath on a semi-
infinite half-space is a stable configuration. This calcu-
lation shows that this assumption is not correct if the
sheath has the above simple equilibrium configuration.
However, the above proof does not rule out the possi-
bility of a sheath of a different configuration. '~

1Vote added ie Proof. It follows from Eq. (15) that
when k„&0, the value of g„does not remain a small per-
turbation with respect to Q for large values of x. On
first sight this seems to contradict the perturbation
method used in the variational approach. Instead of
investigating the variations of F and Q, one can investi-
gate the variations of F and the current density j(x).
One finds that j(x) and the fluctuations of j(x) for
large values of x converge and are well behaved. Thus
there exists no violation of the perturbation method.
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