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Time Scale of Intrinsic Resistive Fluctuations in Thin Superconducting Wires
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(Received 4 September 1969)

A thermal-activation theory of intrinsic Quctuations in thin superconducting wires has been proposed by
Langer and Ambegaokar (LA). Their fluctuation rate equals an exponential activation factor c ~"+&r times
a prefactor 0 which Axes the Quctuation time scale. Using a model based upon a time-dependent Ginzburg-
Landau equation, we obtain a new estimate of 0 which is different in functional form from the LA
estimate, and smaller than that estimate by more than 10 orders of magnitude for the conditions in recent
experiments. To within corrections which are roughly of order unity, our expression is ft = (L/t) (AF/k+T) &/~,
where (L/p) is the length of the sample in units of the Ginzburg-Landau coherence length e, (nF/ksT)&
is a correction for overlap of fluctuations at different places along the wire, and r =10 8 sec is the relaxation
time in the Ginzburg-Landau equation. Although our specific expressions have been derived from a time-
dependent Ginzburg-Landau theory, we expect from general physical arguments that they are relatively
insensitive to the starting model.

I. INTRODUCTION

XPERIMENTS by Webb and Warburton' on the
~ intrinsic resistive transition of thin supercon-

ducting whisker-crystal wires of Sn for T near but
below T.(bulk) have been successfully interpreted in
terms of a theory developed by Langer and Ambegaokar
(LA).' This theory derives from a suggestion by Little'
that dissipation occurs in superconducting wires when
thermal fluctuations cause the magnitude of the order
parameter to vanish briefly at some point along the
wire. This model was refined by LA, who expressed the
dissipation rate as the product of a time-scale prefactor
which they related to electronic properties in the
normal state and a thermal-activation exponential
which they computed from a novel utilization of the
Ginzburg-Landau theory. Using a time-dependent
Ginzburg-Landau equation, 45 we have calculated a
revised prefactor which in the Webb-Karburton
geometry is more than 10 orders of magnitude. 'smaller

than the LA estimate. The reported shifts AT. in the
effective transition temperature' are about twice those
predicted with the new prefactor.

It is useful to compare the two prefactors using a
statistical description appropriate to the LA model.
In that model resistance is a manifestation of thermal
fluctuations which cause the total phase change along

the wire of the superconductor order parameter to
jump by 2~. The important fluctuations extend over a

length of the wire comparable to the coherence length

$(T),' because a greater or lesser length is energetically

more expensive. If AF(T))&knT. is the free-energy

barrier for a particular transition in the I A model,
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that transition occurs with an average rate

I'(T) =Q(T) exp& —AF(T)/ktsTj, (1.1)

where the prefactor Q(T) 6xes the fluctuation time
scale and is the focus of our present attention. LA
argue that AF(T) can be correctly calculated using the
ordinary (time-independent) Ginzburg-Landau equa-
tions. Ke accept their arguments and use their results
for AF(T) in this paper.

The prefactor Q(T) is related to the frequency of
random excursions in the order-parameter function
space of the LA model and is only weakly sensitive to
AT=—T, (bulk) —T and to the current in the wire. The
exponential factor in (1.1) varies by several orders of
magnitude for small changes in hT or in current, so
Q(T) need only be known to within that la, titude for
accurate coniputation of fluctuation-induced tempera-
ture shifts.

LA proposed that'

Q(T) =(V,/r„
where X, is the number of conduction electrons in the
wire and ~,=10 " sec is a typical electron scattering
time in the normal state. Our own result can be written
in the form

Q(T) =tV(T)/r(T),

where /V(T) is in effect the number of statistically
independent subsystems along the length of the wire' '
alld

r (T) =sch/SknAT

is a microscopic diffusion time inversely proportional
to AT. Under the conditions of the Webb-Warburton
experiment, the effective number tV(T) of coarse-
grained phase-space elements' is approximately equal
to the length of the wire measured in units of the
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Wesley Publishing Co., Inc. , Reading, Mass. , 1958), pp. 1—8.
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coherence length $(T),s

N(T) =f—=I./P(T). (1 5)

For ET=1 m'K, r(T) =3.00&(10 ' sec, which to
within the accuracy we require is comparable to ~,.
Taking r(T)=r, and using (1.5), we find that the
prefactor {1.2) is greater than (1.3) by a factor

Nf= X.—/iV (T), (1.6)

approximately equal to the number of conduction
electrons in a length $(T) of the wire. In the Webb-
Warburton geometry Ã~& 10".

Although the specific expression (1.4) for r(T) and
those to be derived below for N(T) follow from the
time-dependent Ginzburg-Landau theory, rather gen-
eral arguments intrinsic to the LA statistical model
suggest that, even if the time-dependent Ginzburg-
Landau theory is not exactly correct (as recent results
suggest' "), the prefactor (1.2) is still much too large.
Independent of the detailed form of the dynamics, we
expect that, when the statistical theory obtains, the
prefactor Q{T) should have the form (1.3), with N(T)
approximately as in (1.5) and r(T) some microscopic
time possibly different from (1.4). If we rewrite (1.2)
in the form (1.3), we are led to a time

r =r./Nf, (1 &)

which in the Webb-Warburton geometry (r,/Xf& 10 "
sec) is much less than any reasonable microscopic
relaxation time in solids. A similar statement holds for
the wirelike thin films studied by Lukens and
Goodkind. "

The available experimental evidence is not decisive,
although the alternatives (1.2) and (1.3) differ by
more than 10 orders of magnitude for both the Webb-
Warburton and the Lukens-Goodkind samples. ' '4 The
Webb-Warburton measurements of critical current
versus AT in whisker crystals of Sn favor the LA
estimate (1.2), but experimental uncertainties are
such that the smaller prefactor (1.3) cannot be definitely
excluded. "

Webb and Warburton measured the onset of dis-
sipation by detecting a small finite voltage ( 2 nV= 10'
transitions/sec). Lukens and Goodkind measured the
transition rate I'(T) directly (for 0.1—10 transitions/
sec) by monitoring the flux through evaporated-film

' The dimensionless length f=L/$(7') should not be confused
with carrier mean free path, which we never explicitly consider.
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Sn rings containing a narrow wirelike weak-link section.
Fitting the I.ukens-Goodkind data to theory, " one
obtains a prefactor which is approximately one order
of magnitude more than (1.3) but 12 orders less than
(1.2). Although the reported geometry only marginally
approximates a long thin wire and evaporated-film
measurements of critical fluctuations may be less
trustworthy than those on carefully selected single-
crystal specimens (evaluated by the width of the
transition region'), these mes, surements support the
revised prefactor (1.3). The theory can be fully tested
only with more extensive experimental data.

As we have indicated above, one cannot interpret
subsequent support for the revised prefactor (1.3) as
quantitative experimental verification of the time-
dependent Ginzburg-Landau theory. If the statistical
fluctuation idea is correct, we expect Q(T) to have the
form (1.3) with 1V (T) approximately equal to its value
in the time-dependent theory and r(T) some effective
microscopic relaxation time is not too different from
T or (1.4). If experiments confirm the original pre-
factor (1.2), we will be left with a puzzling dilemma, .
It might then be necessary to reexamine the use of the
static Ginzburg-Landau theory to calculate the free-
energy barrier hF (T), since a factor-of-2 error in AF (T)
could counteract a factor 10' in the prefactor. "

In Sec. II we outline the time-dependent Ginzburg-
Landau theory and its relation to the fluctuation
problem, describe the free-energy extrema appropriate
to the statistical LA model, and derive a formal general
expression for the prefactor Q(x, T). In Sec. III we
evaluate that expression for the special case of a long
wire carrying no current. The more complicated case
of a long wire carrying a finite current is treated in
Sec. IV. A brief concluding discussion is contained in
Sec. V. The validity of the Ginzburg-Landau free-
energy functional and the relationship of the present
work to some other calculations using the time-
dependent Ginzburg-Landau model, are discussed in
the Appendix.

II. TIME-DEPENDENT GINZBURG-LANDAU
MODEL

A. Free-Energy Considerations

According to the usual (time-independent) Ginzburg-
Landau theory, the Helmholtz free energy" of a thin

"D.E. McCumber, Phys. Rev. 181, 716 (1969).
"Note added in proof. More recent experiments on whiskers

suggest that the resistive transition may in fact be fit to the
formulas of the present paper, using the correct prefactor, if one
properly chooses "7'. (bulk). " PR. J. Warburton, B. R. Patton,
W. W. Webb, and J. W. Wilkins, in Proceedings of the Conference
on the Science of Superconductivity, Stanford, 1969 (un-
published). g Furthermore, there is reason for questioning the
validity of the previous methods of finding "T', (bulk)" by
extrapolation. With further experiments it may even be possible
to check the magnitude of the prefactor with some degree of
accuracy. (See also the experimental results of D. R. Overcash
and M. Skove (to be published). j"D. E. McCumber, Phys. Rev. 172, 427 (1968).
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superconducting wire at a temperature T near, but
below, T. can be expressed as a functional Fg (x)) of
the normalized superconducting order parameter P(x)
according to the equation

(2.3) for
I
T—T, I /T, ((1, except in a very small region

of temperature near T,. For the case of zero current,
the Ginzburg-Landau theory is believed to be valid
fol the one-dimensional wile neal T as loIlg as

F9( ))=I H.'(T)~(T)/4 ) ~H,2(T) t(T)/2~&&k, T, . (2 4)

d* —ill'+-: I+I'

pl 2t'
«:P(T—) W. P— . (2.1)

8$ hc

In Eq. (2.1), o. is the cross-sectional area, of the wire,
x is the position along the wire measured in units of
the coherence length $(T), l is the length (1.5) of the
wire measured in the same units, and H, (T) is the
bulk critical field at temperature T. Ke have assumed
that the wire diameter is small compared to P(T) and
to the London penetration depth, so that P can be
treated as uniform across the cross section of the wire.
Under these circumstances we may set the vector
potential A equal to zero, provided the current carried
by the wire is not too great and provided there are no
external magnetic fields.

When interpreting (2.1), one should not consider
that the value of f(x) has been independently measured
at every point of the wire. Rather, one should imagine
that the value of the order parameter has been mea-
sured at a discrete set of points, closer together than
$(T) but further apart than $(0). )The Ginzburg-
Landau equation is not valid for Ructuations on a
scale short compared to $(0).) We could be more
precise by defining, for example, P(x) to include just
its first (2.V+1) Fourier components,

/8 2e
o= (1—I&I'@+I —«&(»—

(Bx Ac j (2 5)

With A, =O, it is convenient to take f(x) = f(x)e«~&*&

and rewrite (2.5) as a pair of equations

d'f(x)/dx'= f(x)+f'—(g)+J /f«(x) (2.6a)

J=f'(x)d4 (x)/d*, (2.6b)

where J is dimensionless, independent of x, and related
to the supercurrent I in the sample by

I=JcoH, '(T)](T)/Co, (2 &)

where C 0 is the flux quantum I«c/2e. It is convenient to
express J in terms of a new parameter ~ such that

(This condition is discussed further in the Appendix. )
LA have argued' that the temperature where resistive
fluctuations become important is sufficiently below T,
that the Ginzburg-Landau theory remains valid. Under
the experimental conditions where experiments have
been made, ' " the inequality (2.4) is sometimes satis-
fied."' We shall therefore follow LA and shall base our
calculations upon the Ginzburg-Landau free-energy
formula (2.1).

Extrema of the Ginzburg-Landau functional (2.1)
are solutions of the time-independent Ginzburg-Landau
equation

P(x) =+2$2e", k=2«r««/l (2.2)
7=11(1—112), 112(-', . (2.8)

with
I

««
I
&X integral and I((Ã/l(($(T)/$(0) LStrictly

speaking, p2 in (2.2) should be the quantum-mechanical
operator N,~(k) for the kth Fourier component of the
order parameter, but we assert that a classical descrip-
tion is adequate because the quantum-mechanical un-
certainty in (2.2) is very much less than P(x) in the
temperature range of interest. ) Specification of f(x)
is to be interpreted in this picture as specification of the
set of (4N+2) real parameters (Re/1„1m/2), that is,
as the specifica. tion of (4K+2) constraints on the
system. The free-energy functional FQ (x)) would

then be

PL&(x))=so(T) —kaT»(«I exp( —K/&aT)) I ~) (2 3)

where Fo(T) is some reference energy (possibly tem-
perature-dependent), K is the system Hamiltonian,
and the trace is over all states consistent with the
(4&V+2) constraints implicit in P(x)e.

It is well known that the Ginzburg-Landau formula
(2.1) is a very good approximation to the free energy

We assume that the one-dimensional superconducting
wire is suKciently long (t»1) that the actual boundary
conditions at the ends of the wire are not important. "
It is most convenient to impose periodic boundary
conditions on P(x). We specify the total phase difference
along the wire,

~(-', ~)-~(—:~)=&~., (2.9a)

and require that f(x) be periodic,

f(-'1) =f(—l~). (2.9b)

There are two kinds of solutions to (2.5) of interest
to us. The first kind corresponds to a free-energy mini-
mum and is given by

P(g) —(1 &2)1/2ei(gp+rz) (2.10a)

with &2 an arbitrary phase reference. For this solut1on

(2.10b)

The second kind of solution corresponds to a free-energy
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I&&"& = 2s-n/I, I integral. (2.12)

The parameter I& in (2.11) is also quantized, and each
of its values &&&"& is such that K"&'+)&2&"&)«&", ( «"&+' )&s

&3; that is, the quantum values of I(. at the free-energy
minima and saddle points interlace.

For the parameters of interest in this paper the
thermal energy knT is small compared to aH, sg/2n. ,
and the order parameter P(x) will almost always be
near one of the minimum-free-energy solutions (2.10).
If large noise-produced fluctuations in f(x) never
occurred, the winding number e could never change
with time and supercurrents in the wire would persist
forever. Large fluctuations in g (x) introduce the possi-
bility of a transition from the vicinity of one minimum
to another, and it is the rate of these infrequent tran-
sitions which we must calculate. They are ultimately
responsible for the decay of persistent currents in a
superconducting loop.

If the order parameter P(x) is considered to be a
continuous function of time, as is implied by the
treatment of f(x) as a classical variable, the free energy
F=FLP(x,t)$ must also be a continuous function of
time. As the order parameter P(x,t) varies from one
minimum-F con6guration to the next, the value of Ii
must Grst increase, pass through a maximum, and then
decrease again. One can rigorously show that the value
of Ii at this maximum must be equal to or larger than
the value of the free energy at the saddle point (2.11)
lying between the two minima of F. Furthermore, one
can choose a continuous path for f(x,t) such that the
maximum value of F occurs when f(x,i) has the saddle-
point configuration (2.11). The most probable actual
paths connecting the two minima wiH pass close to this
saddle point.

'8%e restrict ourselves to loops for which L,I,&&1, where I.,
is the self-inductance of the loop and I, the critical current of the
wire. For this case the vector potential A(x) remains negligible,
as assumed in (2.6). More general cases are discussed in Ref. 16.

saddle point and is given by

iP(x) = ((1—3«')'ls tanhLx(1 3«')'"/~23
—iV2~}e'«o+"*&, (2.11a)

or by any uniform translation of (2.11a). For this
solution

5p=&&t+2 tan 'L(1—3ss)'I /%2«j. (2.11b)

The order parameters (2.10a) and (2.11a) are identical
(to within a constant phase shift) except in a region
hx of order unity —that is, except over a physical
length of the order of the coherence length $(T).

It is useful conceptually to consider the decay of
persistent current in a closed superconducting loop.
The order parameter f(x) must be periodic in the
length l of the loop perimeter, so that the phase change
hP around the loop must be an integral multiple of
2s..is The parameter I& in (2.10) is quantized with values

The free-energy barriers for P(x,i) to leave the
neighborhood of a minimum-F conlguration (2.10)
and to pass over one of its two adjacent saddle points
(2.11) ares 'r

aF («,T)= PoII,'(T)c(T)/8' j
X ((8/3)v2(1 —3«')"'—8K(1 K )

X tan —'p(1 —31&')'ls/v2«$}, (2.13a)

».(,T)= L-~'(T) ~(T)/8-3
X (8/3)K2(1 —31&')'"+8«(1—I&')

X (s.—tan 't (1—31&s)"'/%2«j}), (2.13b)

for fluctuations which for f(:&0 tend, respectively, to
decrease and increase the current magnitude. Because
hF (1&,T)(2F+(«,T), fluctuations tend on the average
to reduce the current magnitude —that is, they are
dissipative.

Our analysis is restricted to the limit AIi &)k&T.
For zero current, this is equivalent to (2.4), but for
currents much larger than ekiiT, /k, this condition can
be more restrictive than (2.4).

B. Time Deyendence of Order Parameter

In order to calculate the required transition rates,
one must make some assumption regarding the time
dependence of the order parameter lk(x). We use the
simplest possible assumption, a purely dissipative time-
dependent Ginzburg-Landau equation.

Although the time-independent Ginzburg-Landau
equation (2.5) was originally derived from a postulated
free energy of the form (2.1),'s subsequently Gor'kov
demonstrated that Eq. (2.5) follows from the micro-
scopic BCS theory, if A&3cs/k»T, is treated as a small
expansion parameter with slow spatial variations. "
Using an expansion technique similar to that used by
Gor'kov in Ref. 20, Schmid4 and others' have extended
Eq. (2.5) to include the simplest description of tem-
poral relaxation. In this time-dependent Ginzburg-
Landau theory, small Quctuations in the order parame-
ter P(x,t) about a minimum-F configuration decay
according to

( && 2eV.(T)l —+' ~=(1-I~I')~
«&&1 f&

2t'
+ — i)(T) AP,—(2.14—)

8$ A4

where V(x,i) is the electrochemical potential, A(x, i)
is the vector potential, and r(T) is the relaxation time
def&ned in Eq. (1.4). Iii what follows we assume that
the electromagnetic fields are negligible and take
V(x,i)=A (x,i)=0. The assumption A, (x,t)=0 was

19 V. L. Ginzburg and L. D. Landau, Zh. Kksperim. i Teor
Fiz. 20, 1064 (1950).

20 L. P. Gor'kov, Zh Eksperim. i Teor. Fiz. 36, 1918 (1959);37,
1407 (1959) )Soviet Phys. —JETP 9, 1364 (1959); 10, 998
(1960)g.
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already justified, but the choice U(x, t)=0 requires
discussion.

The total current J carried by the wire consists of a
supercurrent (or pair current) plus a quasiparticle
current. The latter is analogous to the current carried
by the wire in its normal state and is characterized for
T near T, by a conductivity comparable to that in the
normal state. The current at point x at time t can thus
be written approximately in the form

I(x,t) = ((rH ~pc/4'p) lp(x t) I'gg(» )t

+LG„r7V (x,t), (2.15)

where p(x, t) is the phase of the order parameter,
4p= ck/2e is the flux quantum, G„ is the normal-state
conductance of the wire, I is its length, and the re-
maining parameters are defined in Eq. (2.1). The
Quctuation time scale is sufficiently slow that it is
correct to use the dc normal conductance for G„in (2.15)
and to require that charge neutrality be maintained
along the wire. The latter condition requires that any
spatial variation in the supercurrent be canceled by an
opposite variation in the normal. current —that is,
V'I(x, t) =0. Equation (2.15) thus gives

Vsv= (oII,syc/LG—.C p)&(IOI'&e), (2.16)

so that the electrochemical potential difference across
a resistance-producing fluctuation is, with BVQ/Bt

(2e/h)VV and lit I'=1,

thin superconducting wire in an external circuit with
an imposed dc current, (V(x)) would be a linear func-
tion of position along the wire. ) The situation could
be different for T well below T„because the quasi-
particle conductance is there substantially less than
6 . This case does not concern us here, although it
might be relevant, for example, to the description of
multiple-quantum transitions in point-contact weak
links "

C. Noise-Driven jFIuctuatious

The time-dependent Ginzburg-Landau equation
(2.14) is alleged to describe the mean motion of lt (x)
in the neighborhood of a minimum-F configuration.
Because we do not expect our final results to depend
sensitively upon the detailed dynamics, we simply
assume that this same equation holds everywhere in
the order-parameter Hilbert space. With A, (x, t)
= V(x,t)=0, Eq. (2.14) has the explicitly dissipative
form

where we consider F as an analytic functional of P(x)
and g*(x). To describe spontaneous fluctuations in the
order parameter, we must add a Langevin noise term
Z(x, t) to (2.19). The simplest assumption is that
Z(x, t) is a complex Gaussian stochastic variable with
autocorrelation function

7'V&4 p/roc,

where gy is the relaxation time

(2 17)
(Z(x, t)Z(x', t')) = 0,

(Z(x,t)*Z(x',t'))= Cb(x —x')b(t —t'), (2.20)

I.G„C0'

rv(T)= - — — — (») '. (2 1g)
2~~a,s(T)P(T)cs

For T near T„ the ratio r(T)/ry(T) computed from

Eqs. (1.4) and (2.18) is independent of ET. For a
superconductor with mean free path comparable to
the zero-temperature coherence length, this ratio is of
order unity, so that on the r(T) time scale the cor-
rections in (2.3) produced by local variations in the
electrochemical potential are not generally negligible.
On the other hand, for P(x) at the saddle point of the
Ginzburg-Landau free energy, the right-hand side of
(2.16) vanishes identically, so the term proportional
to V in (2.14) will not make a qualitative difference in
the rate at which P(x) crosses the free-energy barrier.
Insofar as we only seek an order-of-magnitude estimaet
of the prefactor 0, and insofar as the time-dependent
Ginzburg-Landau equation is probably not strictly
correct in any case, we shall replace V (x,t) by its time
average (V(x)). In a superconducting ring geometry,

(V(x)) is a constant, which by suitable choice of

reference potential can be set equal to zero. (For a

where the constant C is determined by the requirement
that the equilibrium distribution of f(x) be proportional
to exp{ Ffg(x—)j/kiiT)

Rather than use this Langevin formulation of the
problem, we shall actually work with an equivalent
Fokker-Planck formulation, focusing our attention
upon the probability-density functional p$P(x), tj in
the Hilbert space. Using a formalism similar to that
outlined by Landauer and Swanson" and by Langer, ~'

we need to specify the Fokker-Planck equation ex-

plicitly only in the neighborhood of the different free-
energy extrema. In the neighborhood of the extremum
(2.10) or (2.11), we can conveniently express the order
parameter in the form

lt'(x) I rl(x)+rr2(x)+N(x)+so(x)]c'&&p+"*&, (2.21)

"J.E. Zimmerman and A. H. Silver, Phys. Rev. Letters 19,
14 (1967); A. H. Silver and J. E. Zimmerman, Phys. Rev. 157,
317 {1967).

~ R. Landauer and J.A. Swanson, Phys. Rev. 121, 1668 (1961).
2p J. S. Langer, Phys. Rev. Letters 21, 973 i196gl. /The gi'

integrals in Eqs. (11l and (13l should extend from (—Op },which
reduces the fmal rate Z by a factor of 2.g
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where u(x) =m(x) =0 at the extremum and where in u(x) and n(x), we obtain

ri(x) = (1—I~')'~', r, (x) =0

for the F-minimum solution (2.10) and

o H,'(T) ((T)(2.22a) F F ( T)+
4m

l/2

ri(x) = (1—31t.')'t' tanh[x(1 —3z')'t'/%27,
(2.22b)

r, (x) = —1~%2

for the F-saddle solution (2.11). Substituting (2.21)
into (2.1) and retaining terms through second order

X dx%'(x)r M (x) %'(x), (2.23)
—l/2

where F,(g, T) is the value of F[f(x)7 at the u= v=0
extremum [extremum (e) =minimum (nz) with (2.22a)
and saddle (s) with (2.22b)7, M. (x) is the 2X2 self-
adjoint matrix differential operator

—(1—')+3rP+r, ')
dg

d
2f1'r2 —2K—

dx

(2rir2+2K
dx

—(1 ~') +ri'+3—r g'

dx J

(2.24)

and %'(x) is the real two-component vector function

N(x)i
~(*)=

v(x)i
(2.25)

The boundary conditions associated with (2.24) must
be chosen so that M, (x) represents the second vari-
ational derivative of F with respect to P, with the
boundary conditions (2.9) imposed on f. Terms linear
in N(x) and u(x) are absent from (2.23) because m=v=0
is a free-energy extremum.

The eigenfunctions %',„(x) of the operator M, (x)
satisfy the eigenvalue equation

(2.26)

with real eigenvalues ~,„and form a real orthonormal
complete set. )The boundary conditions on %',„(x)
implied by Eqs. (2.9) will be explicitly stated in Sec.
III.7 If 8„ is the Kronecker h symbol, the ortho-
normality condition is

1,/2

—l/2

dxm ..'(x) e..(x). (2.27)

F=F,(lc, T)+PoH, '(T)f(T)/4n7 P c,„g„', (2.28)
n=1

where the e,„are the eigenvalues in (2.26) and the it„
are the real expansion coefhcients

l/2

dx%', r(x) %'(x).
—l/2

(2.29)

The completeness property implies that, for any real
vector function %'(x), Eq. (2.23) can be written in the
form

r(T)[Bit„(t)/Bt7= e. it (t), — (2.31)

where e,„is the eigenvalue from (2.26).
Converting to a Fokker-Planck description at this

stage, we introduce the probability density p.({z„},t)
appropriate to the particular extremum (e=m or s)
and construct the Fokker-Planck equation"

Qp~ 8 2x'kg T 8
~(T) =P. e.n- rt—~+- pe ~

at Brt„aH 2(T)&(T) Brt.'
(2.32)

This equation gives the same mean motion as (2.31)

24 In that we have neglected velocity coordinates conjugate to
the g„, Eq. (2.25) might more appropriately be called a Smolu-
chowski equation. For discussions of the more general case, see
Ref. 22 and S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943),
especially pp. 63—68.

In the neighborhood of the extremum, where Eqs.
(2.23) and (2.28) accura, tely approximate the free
energy, we can usefully describe the different order-
parameter functions (2.21) by the set {q„}of expansion
coefIicients (2.29). Because P(x) as defined in Eq. (2.2)
has a finite number of degrees of freedom, only the
first (4%+2) coefficients it„are truly independent
variables, but, because X/t is large and the results are
convergent for X/t~ ~, only a negligible error will
result if we assume that all of the q„are independent.

Using the representation (2.21) in (2.14), we can
rewrite the la, tter equation for (u, v) small in the form

T(T) (8/Bt)%'(x, t) = —M, (x) %'(x,t), (2.30)

where 7(T) is the relaxation time (1.4), %'(x, t) is the
vector function (2.25), and M. (x) is the matrix operator
(2.24). If {q (t)} is the set of expansion coefficients
(2.29) appropriate to %'(x,t), Eq. (2.30) can equiva-
lently be written
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and yields a steady-state 3oltzmann distribution
p, ({q„})~ expL —F({g„})/knT7, with F({g„})as in
(2.28). It is, moreover, the simplest possible Fokker-
Planck equation consistent with these conditions.

(2.22b) by replacing x with (x—z), ——,'l(x(-,'/. If x
becomes the infinitesimal dS', we can alternatively
represent this translation, as in (2.14), with Lcf. (2.18)7

D. Therma1-Activation Rate

Thermally activated processes of the type with
which we are here concerned have been studied by
Landauer and Swanson22 and by Langer" in systems
with extremum Fokker-Planck equations of the form
(2.32). Two new features require special consideration,
the extension from a finite to a denumerably in6nite
number of degrees of freedom {g„}and the treatment
of those variables g associated with zero eigenvalues
(e.„=0). Both features have previously been con-
sidered in another context by Langer. '"

Using mathematics outlined in Secs. III and IV
below, one can easily verify for the infinitely long wire
(l~ ~) that all of the eigenvalues e,„of (2.26) are
positive except for one zero eigenvalue (which we label
e i ——0) at the free-energy minimum (2.22a) and for
one negative eigenvalue (e,i(0) and two zero eigen-
values (e,&

——e.s=0) at the free-energy saddle (2.22b).
The negative eigenvalue e,~ is associated with that
degree of freedom corresponding to motion over the
saddle point. The zero eigenvalues (e i,e,2, e.s) are
associated with symmetry properties of the system;
the free energy (2.28) is invariant with respect to
changes in the corresponding coordinates g . In par-
ticular, the eigenvalues e ~ ——e,2

——0 are associated with
variations (up) in (2.21) equivalent to a trivial dis-
placement of the phase reference ge, their associated
coordinates (&~i,p») produce exactly compensating
effects in the final transition rate and will hereinafter
be ignored. The eigenvalue e,3——0 is associated with
translations of the saddle solution (2.22b) along the
wire; the contribution of its coordinate to the tran-
sition rate cannot be ignored.

If the free-energy barriers (2.13) are much larger
than k~T, we may reasonably assume that the effective
domain of all coordinates q„a ssoicated with positive
eigenvalues e,„is limited by free-energy considerations
to values of q„ for which the quadratic approximation
(2.28) is accurate and for which no other physical
constraints enter. For di6erent but related reasons, a
similar assumption pertains to the coordinate g, i asso-
ciated with the negative eigenvalue e,~.22 23 The assump-
tion is clearly not valid for the zero-eigenvalue co-
ordinates. In particular, the domain of the translation
coordinate g,3 is not limited by free-energy consider-
ations but rather by the physical length l))1 of the
wire. LConsistent with (2.28), the exact free energy is
independent of g, s for all values in this domain. ")The
translational symmetry can be exhibited explicitly in

» J. S. Lsnger, Ann. Phys. (N. Y.) 41, 108 (196/).
~'We of course neglect corrections which might be necessary

in the immediate neighborhood of the wire ends.

Xsech'Lx'(1 —3x')/27«' (2.33a)
0

= —dxl8(1 —3")'/97«'e. ,(x), (2.33b)

where %',s(x) is the eigenfunction appropriate to e, 3

in (2.26) Lobtained by applying the normalization
condition (2.27) to (2.33a)7. Rewriting (2.33b) as
dg, 3%',&(x) and recalling that 2 is physically constrained
to an interval of length /, we learn immediately that
g, 3 ranges over an interval of length

A, g(~) = dg. 3
——lt 8(1—3~')'/97'14. (2.34)

If all delicate questions of convergence and of one-
to-one correspondence between eigenvalues e „and e,„
are suitably resolved (cf. Secs. III and IV below), we
can use these results in the formalism of Landauer and
Swanson" and of Langer" to obtain a transition rate

F~(g, T) =0~(K,T) exp( AF~—(g, T)/knT7, (2.35)

where

&m2 &m &m3 &m ~ &mn &m

X (2.36)
&s& Ks n=4 Esn &s

and AF~(g, T) are the barriers defined in (2.13).Implicit
in these results is the assumption ZZ~(a, T)))knT.

The arguments z and ~, in (2.36) are the values of
the parameter s appropriate to the fixed-d, p boundary
condition at the free-energy minimum and saddle
point, respectively. The di8erence &,—I( is of order
l ' and depends upon whether the saddle point is taken
in the direction to increase or to decrease the current.
Although a correction 6& 3 ' is negligible for l&)1 in
any one factor of (2.36), the number of relevant factors
in the infinite product is of order /, so that corrections
due to I(,—z can be of order unity.

In the following two sections we compute the
eigenvalue e,i(~,) and the eigenvalue product ratio

( ) - ( )/I" (")l7II-t - (-)/ ~ ( )7 «stin
Sec. III for the special case re=0 and then in Sec. IV
for general I(.'&3'. The results of the complicated but
rigorous mathematics are sunna. arized in Sec. V, which
also contains a brief physical description of the corn-
ponents of the prefactor (2.36).
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for current-decreasing transitions and

«,—~ = (22r/l) (2—/l) tan —'[(1—3«2)'~2/v2«) (3.1b)

for current-increasing transitions. A uniform shift of
both «, and K by 6«2r/1 will change the eigenvalue
product ratio in (2.36) by an amount of relative order

, which is negligible because l»1. Using this Qexi-

bility, we choose ~,=«and fix 1~ from Eqs. (3.1). We
rewrite the eigenvalue product ratio of Eq, (2.36) in
the form

6m2 Km gams Km 'o 6mn Km

Ks n=4 6sn Ks

where

Gm2 K Gm2 K ~ &mn

=gi(~) II, (3 2)
&sl K "=4 &sn K

III. EVALUATION OF PREFACTOR

A. General Considerations

Before we can calculate the prefactor (2.36), we
must fix the extremum parameters («,«,) and discuss
the boundary conditions on (n, v) at x= &-2'l.

Holding the phase difference (2.9) constant (modulo
22r), we find from (2.10b) and (2.11b) that («) 0)

= —(2/l) tan i[(1—3«2) ii2/v2«] (3.1 a)

where the prime denotes differentiation with respect
to x. At the free-energy saddle point, where (2.22b)
obtains, we must associate modified periodic boundary
conditions with the operator M, (x). The eigenfunctions
%',„(x) at the saddle point satisfy the boundary con-
ditions

s—'e, „(-,'1)= —s m, „(—-', l),
s-'e, .'(-', 1)= —s m, „'(——,', l),

(3.5)

with

sin50 cos50

—cosh, sins, ,

1 (1—31~')"'

(1—~2)'~2 —v2«
(3.6)

(1—3x2)'~2

bp = tan —'[(1—3«')"'/W2«) (3.7)

(We have assumed here and throughout this paper
that l is so large that, tanhD(1 —3z )'i /2v2)= 1.}With
these boundary conditions the operators M, (x) are
self-adjoint; they have real eigenvalues and complete
sets of real eigenfunctions.

To evaluate the function gi(K), it is convenient.
,
to

list explicitly the eigenvalues e (~) of M (x). Because
the functions ri(x) and r2(x) in (2.22a) are constant,
we can use complex eigenfunctions

~mn Kmg()=n
6mn Ks

(3 3)
Npg

%' (x) =e"~' (3 g)

In the ratio on the left-hand side of (3.2), the param-
eters K and K, are different, but the order-parameter
phase difference 6@ is the same (modulo 22r) at the
free-energy minimum and saddle. In the ratio on the
right-hand side of (3.2), the value of « is the same at
the minimum and saddle, but the phase differences 0 g
differ (modulo 22r) by 2 tan '[(1—3«2)" /V2«).

To proceed further, we require (up) boundary con-
ditions for the eigenvalue equation (2.26). Order
parameters P(x) described as in Eq. (2.21) satisfy the
conditions (2.9) if the magnitude (u'1 v')'~' of the two-
component vector function (u, v) is the same at the two
ends of the wire (x= —-', l and -', l) and if that vector
rotates through the same angle (modulo 22r) as does
the vector (ri,r2) when x increases from 2l to —',l, —
where ri and r2 are the functions (2.22). At the free-
energy minimum, where (2.22a) obtains, it follows that
we must associate periodic boundary conditions with
the operator M (x) in order that it represent the second
variational derivative of Fg (x)) with respect to ad-
missible functions P(x). The eigenfunctions %' „(x)= (I „,e „) at the free-energy minimum satisfy the
periodic boundary conditions

(3.4)

~mn K

S(«)=—so —-', kii ln g
~=2 e „(0)

(3.10a)

=sp—22kii ln(1. —1~2)

k„'[k„'+2(1—3 ')))—
+P ln ~, (3.10b)

ppQ k„'(k„'+2)

S(«) =sp-
4x

k'+2(l —3 '))
(dk ln

k'+2
=sp+ (lkii/v2) [1—(1—3~2) 'i2]

(3.10c)

(3.10d)

where (2i„+,v„~) are K-dependent constants and k„=22'/1,
p, integral. These functions satisfy the boundary con-
ditions (3.4). Substituting these functions into the
appropriate form of (2.26), we find for each k„a pair
of eigenvalues

e~(k„2)=1 «2+k '+ [(1——«2)2+4«2k ')'"
p—(k 2) —1 ii2+k 2 [(1 K2)2+4«2k 2)1/2

(3.9)

The eigenvalues for p, and —p, are degenerate. Real
eigenfunctions %' „(x) can be constructed from the
real and imaginary parts of the complex functions (3.8).

Ke introduce a 'function
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where ss is a constant. In (3.10b) we used the eigen-
values (3.9), which are such that

(ks) e (ks) ksLks+ 2(1 3gs) $ ~

in (3.10c) we used the fact l))1 to replace the sum by
an integral. It follows directly from Eqs. (3.3) and
(3.10) that

g, (s) = exp f 2'(~„)—S(z.))/ks} (3.11a)

= exp(v2l)(1 —34. ')'~s —(1—34 s)'~']} (3.11b)

= expL3v2&(1 3~')—"'(K K)i—j. (3.11c)

For a = 0, it follows from (3.1) that (4,—~ )l= &4r and
from (3.11) that gq(K)=1, to within negligible cor-
rections of relative order / '.

3. Zero-Current Case, x=o
With g~(a) determined, we turn next to the remaining

factors in (3.2). The mathematical problem is con-
siderably simpler for K=O than for general K (g. For
both choices (2.22), the differential operator M, (x) is
diagonal when K= 0, and the matrix eigenvalue problem
(2.26) reduces" to a pair of uncoupled scalar eigenvalue
equations. At the minimum these are

8(P) = d'/dx' Ps—ech'(x/v—2), (3.16)

P real, associated with the boundary conditions (3.5).
We introduce real eigenfunctions f„(x,P) and eigen-
values &„(P) such that

The first is the expected negative-eigenvalue solution,
the second is the phase-shift solution analogous to
(3.14), and the third is the translation solution described
in conjunction with Eqs. (2.33). The fourth solution
(3.15d) has no particular physical importance but,
together with (3.15a) and (3.15b), completes the set
of all localized discrete-eigenvalue solutions of Eqs.
(3.13). All other solutions, including the continuurn-
edge solution (3.15b), are nonlocalized continuum-
eigenvalue solutions, as are all solutions of Eqs. (3.12).

To complete our evaluation of (3.2), we do not
require a list of the remaining eigenvalues e,„, but
rather it is sufficient to determine directly the ratio of
the positive-eigenvalue products. We can do this using
techniques suggested by I.anger, "although the differing
boundary conditions (3.4) and (3.5) cause
complications.

We introduce a difterential operator

(—d'/dx'+2)u„„(x) = e„„u „(x),
—(d'/dx') e„„(x)= e„„e „(x),

(3.12a)

(3.12b)

&(~)f.(*,~)= &.(~)f.(*,P. ) (3.17)

and at the saddle they are

P—d'/dx'+2 —3 sech'(x/&2)fu, (x) = e. u, (x), (3.13a)

f.(-:i,P)= f.( 'l, P)—,
f'(ll, P) = f'( ll; p)—, — (3.18)

e„g——0, e g(x)=l—'". (3.14)

The saddle-point eigenvalues and eigenfunctions are
more difficult to determine; however, we can easily
verify four special cases'~:

~,2
——0,

e,3 ——0,

v.g(x) = 2 @4 sech(x/V2) .

v,s(x) = l—'t' tanh(x/V2);

u s(x) = (9/32)'~4 sech'(x/v2);

u 4(x) = (9/8)'~' tanh(x/v2)
Xsech(x/V2).

(3.15a)

(3.15b)

(3.15c)

(3.15d)

27 L. D. Landau and E. M. Lifshitz, Quorum 3IIechalics
(Addison-Wesley Publishing Co. , Inc. , Reading, Mass. , 1958),
p. 69, problem 4.

P—d'/dx' —sech'(x/v2)jv, „(x)= e,„v,„.(x) . (3.13b)

One component of the vector eigenfunction %',„(x) is
identically zero; the other satisfies one of these differ-
ential equations and boundary conditions derived from
(3.4) and (3.5), where, at s= 0, be=-,'4r and S'= 1.

Eigenfunctions and eigenvalues appropriate to the
minimum have been described in Eqs. (3.8) and (3.9).
With 4:=0, the eigenvalues e+(k„')&2 pertain to
(3.12a) and the eigenvalues e (k„')&0 to (3.12b). The
single zero eigenvalue belongs to the phase-shif t
solution

The eigenvalues (e „,e „.) follow from (3.9) with a=0;
the eigenvalues $„(0) are

$„(0)= (k„+m/l)', (3.21)

with k„as in (3.8). For e)0, we can proceed much as in

which is the form of the boundary conditions (3.5) for
~=0. Comparing Eqs. (3.13) and (3.17), one can easily
verify that the eigenvalues of (3.13a) and (3.13b) are,
respectively,

(3.19a)

(3.19b)

Thus, for each integer p we have two eigenvalues of
(3.13) which we have indexed by 44(u) and u'(p). One
might conclude upon comparing Eqs. (3.12) and (3.17)
that the eigenvalues of (3.12) are e „=2+/„(0) and
e „=]„(0),but this is not correct because the boundary
conditions (3.4) are different from (3.18).

It is useful to introduce a, new function gs(e) which
for K= 0 and e&0 is de6ned as the limit of a convergent
product,

4+ em~ e+ erne'
rr — -rr . (3.20)
~ 4+2+4(0) ~ 4+4(0)
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Eqs. (3.10) and (3.11) to show that
(a+2+k„')(e+k„')

g2(e) =lim exp Q ln
—=-~ [' +k+(k.+ /~}'][ +(k + /&}']~-

(3.22 a)

=lim exp-
27r

(~+2+0') (a+k')
dk ln

[~+2+ (k++//}'] [ + (k+w/P])
(3.22b)

(3.22c)

Using the result (3.22), the eigenvalues (3.15) and (3.19), and our previous evaluation of gi(0), we can rewrite
the product ratio (3.2) for K =0 and l —k 0(} in the form

Cm2 Km &ma Km ~ 6mn Km - L~+~-(~))&
II — =1 1, -II

6s] Ks n=4 6sn Ks n ~ 6 6 K

! ~+2+5,(0))L~+4(0)))
=lim lim —cII

L.+2+(.(3)X~+k.(1))&-

=jim L
—er(&+2, 3)r(e,1)),

&~0+

(3.23a)

(3.23b)

(3.23c)

where, for $&0,
r(f,P) =lim ri(],P),

g+g„(o)
(~,P) =rr

~ 3+4(P) P-(~) =P/I1-~. (~,P)). (3.29b)

Multiplying both sides of (3.27) by ++8(0)) and

(3.24a) rearranging terms, we can rewrite (3.27) in the form

8LP-(~))g-(*,~) = —~g-(,~), (3 29 )
Wltll

In going from (3.23a) to (3.23b), we have interchanged
the order of taking the l —+ ~ and &~0+ limits in
(3.23a). This is permissible in (3.23a) because of an
exact cancellation of the low-lying continuum eigen-
values ~ „and e,„.The order of limits cannot be inter-
changed in (3.23b); in fact, that product diverges for
e —+ 0+ with l large but constant.

If $ is sufFiciently positive, each factor in (3.24b) is
positive and

»ri($,P) = —Z (»I:$+4(P))—»Lh+4(0))&

= —tr(lnt ]+8(P))—inL$+8(0))). (3.25a)

h,P)=II~ (&,P). (3.28)

Because both operators 8(P) and 8(0) are associated
with the same boundary conditions (3.5) )or, equiva-
lently, (3.18)), we can use an operator identity to
rewrite (3.25a) in the form

jnri($, P) = —tr(ln(1+L(+8(0)) 'PV)), (3.25b)

where
V= L8(P) —8(0))/P= —sech'(x/W2). (3.26)

If we introduce a set of eigenvalues A„($,P) such that

(1+LE+8(o)) 'PV)g-(x, k)=~-(k,P)g-(x, &), (327)

where the eigenfunctions g„(x,$) satisfy the boundary
conditions (3.18), it follows from (3.25) that

This is similar to (3.17) but has a different inter-
pretation. Whereas in (3.17) we fix the strength param-
eter P and f(nd the eigenvalues $„(P), in (3.29) we fix
the eigenvalue (—P) and find a consistent set of strength
parameters P„($). For $)0, the eigenfunctions g„(x,()
are localized and the parameters P„($) are positive.

Solving (3.29b) for A„(),P) and using the result in

(3.28), we obtain

~ (&,P) =II
P-(~)

P 5 P—(3.30)

For $)0, the localized solutions are (integer n& 1)

g„(y,$) = sech'("}yti}„(sinhy), (3.32a)

P„($)= 2s(n) [s(e)+1), (3.32b)

with ii/„(t) a polynomial of degree (e—1) and

s(n.)= (2g)"'+n —1. (3.32c)

If in computing the parameters P„($) we neglect ex-

ponentially small boundary corrections to localized
eigenfunctions Las we did, for example, in Kqs. (3.15a),
(3.15c), and (3.15d)), we have in effect taken the/ —+ ~
limit of (3.24a), and (3.30) becomes an expression for

r(E,P).
The localized solutions of (3.29a) for $)0 and (}

infinite are well understood. 2' 'i If we define y=x/v2
and g„(y,$) =g„(x,$), we may rewrite (3.29a) in the
form

P2/dy2 2$+2P ($) sech')g (yk$) 0 (3 31)
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Using these expressions in (3.30), we find that

L -1+(2~)"']L +(2~)"']
(~,w=rr.= P.-1+(2~)"']L +(2~)"']—2~

(3.33)

current-decreasing and current-increasing transitions,

gi (K) = expL —6@2)(bo/(1 —3/(')'/2] (4.1a)

~ ()=-p«~2 (--~.)/(1-3")"], (4»)

and, in particular, that

«(8,1)= I (2()"'+1]/L(26)"'—1], (3.34a)

«(6,3)= E(24)"'+2]L(24)"'+1]/
L(2$)'/' —2]L(2$)'"—1]. (3.34b)

Combining these results in (3.23b), we find finally that

&m2 &m &m3 &m ~ &mn Km
—II

Kgb K3 & 4 6@~ Kg

(3.35)

fol x=0.
If Q(T) is the value at /(=0 of the prefactor Q~(/(, T)

in (2.35), it follows from Eqs. (2.34), (2.36), (3.15a),
and (3.35) that

Q (T)= /(l/27r'T (T)]$V20Hg'(T) $(T)/ki) T])/2
y (3.36)

where 80 is the rotation angle dined in (3.7).
Solutions of the eigenvalue problem (2.26) appro-

priate to the free-energy minimum have been described
in Eqs. (3.8) and (3.9). They derive from the pair of
coupled second-order differential equations

L
—d'/dx'+2(1 —«')]u+2/((dv/dh) = eu, (4.2a)

—2/((du/dk) —d'v/dh'= ev, (4.2b)

plus the boundary conditions (3.4). It is useful to
distinguish two classes of eigenfunctions according to
whether they belong to the set of eigenvalues e+(k„'))2(1—/(') or to the set e (k„')&0. Using the behavior
when /( —& 0 as a label (Sec. III), we call the former
n-type solutions and the latter e-type. The single zero-
eigenvalue solution is e-type and corresponds, as in
(3.14), to an order-parameter phase shift:

where l is the length of the wire in units of the coherence
length P(T) and «(T) is the relaxation time (1.4). The
value at /(=0 of the free-energy barriers (2.13) is

0 ~
e i=0, %' i(x

l—i/2 j (43)

dF(T)=%2 H, '(T)$(T)/3 (3.37)

so that (3.36) can alternatively be written

Q(T) =
I lv3/2ir3 «(T)][AF(T)/ki)T]i/2. (3.38)

IV. FIMTE CURRENTS, x~(3
We now turn to the more difficult case of finite

currents, assuming for definiteness that 0(/((1/v3.
Some of the results we require in order to evaluate
Q~()(,T) from Eq. (2.36) are already available in Sec.
III.

Again choosing /(, =/(, we fix /( from Eqs. (3.1) and
rewrite the eigenvalue product ratio of (2.36) in the
form (3.2). The function gi(/() follows from Eqs. (3.1)
and (3.11c). There are two cases corresponding to

1(((1+K2)2+3(1 3/(2)2]1/2 (1+K2)}(0

$9(1—3 ')/32(1 —4 '+7 ')]' 'e.,(x) =
((1—4g'+7&4)"' —(1—5L')]'&'(

( /(

iI) „(h)=f(1—/(')l]-'/'~
& (1—3/(')'" tanhy

L (1—4)('+7/(4) i/' —(1—5/(')] sechy tanhy

V2 (1—3/(')'/'/( sechy
(4.6a)

(4.6b)

At the free-energy saddle point (2.22b), the eigen-
value problem (2.26) involves the pair of coupled
second-order differential equations

L
—d'/dx'+ (1—3/(') (2—3 sech'y)]u

—2/(LV2 (1—3/(')'" tanhy —d/dx]v = eu, (4.4a)

—2/(f42 (1—3/(')'/2 tanhy+ d/dx]u

+$—d'/dx'+4/(' —(1—3/(') sech'y]v = ev (4.4b)

where here and throughout this section we use Lcf.
Eq. (3.31)]

y=y(x) = (1—3/(')'/'x/V2, (4 5)

and assume that at the ends of the wire ~y(+l/2) ~))1.
The eigenfunctions %',„(x) satisfy the boundary con-
ditions (3.5). We can verify four special solutions:

e,3=0,
/'sech'y

%'. (h) =P9(1—3/(')/32'"I
0

(4.6c)

1(1+g2+f(1+~2)2+3(1 3g2)2]1/2}

P9 (1—3/(')/32 (1—4)('+7/(')]' P(1—4/('+7)(')' '+ (1—5)(')] sechy tanhye..(h)=
P (1—4/('+ 7/(') "'+(1—5/(~)]'/' —V2 (1—3/(') i/'/( sechy

e,(;
——2(1—/('),

(4.6d)
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When I~
—+0, these reduce, respectively, to the I~:=0

solutions described in (3.15). The solutions (4.6a),
(4.6c), and (4.6d) are localized discrete-eigenvalue
solutions; it can be shown that all other solutions are
nonlocalized continuum-eigenvalue solutions. To obtain
the required properties of those continuum', eigenvalues,
we here proceed somewhat differently from Sec. III,
concerning ourselves initially with the asymptotic
phase shift produced by the order-parameter fluctuation
near x=0.

I.et us introduce a differential operator Lcf. (3.6)7

8 (P) = d'/dx—' P(1 —3«') s—ech'y. (4 &)

8(3)u,„=P,„n,„,
8(1)r, = $,.~...

(4.9a)

(4.9b)

with (,„related to E,„by one or the other of the
equations

(4.10a)E= E+((),

E= E (4E) (4.10b)

where E~(() are defined in (3.9). Again using the
behavior when & —+ 0 as a label, we call solutions n-type
when (4.10a) holds and v-type when (4.10b) holds. We
further classify the eigenfunctions according to their
behavior under reQection about x= 0. Thus, we separate
the eigenfunctions into four classes:

Q= 1 )

Q=2)
Q=3)
Q=4,

I-type with I even, e odd;

I-type with I odd, ~ even;

v-type with u even, I odd;

~-type with e odd, I even.

(4.11)

It is convenient to index the $,„as $„+, where (+)
refers to I-type and (—) to w-type functions and where
the index p, runs from —~ to ~. Further, we will use
negative p for the "odd" solution types Q=2 and 4,
while the non-negative p, will be used for the "even"
solution types Q= 1 and 3.

For the present we will not associate any particular
boundary conditions with 8(p). The function e can be
eliminated from (4.2) or (4.4) to obtain the fourth-
order differential equation

{E'—2EI (1—«')+8(P)7
+8(P)L8(P)+2(1- ")7) =o

with p=0 for (4.2) and p=3 for (4.4). Similarly, we
may eliminate I from (4.2) or (4.4) to obtain

{"—2 L(1—')+8(P)7
+8(p)I:8(p)+2(1—3 ')7} =o (4 gb)

with P= 0 for (4.2) and P = 1 for (4.4).
Making use of Eqs. (4.8), one can readily show that

the eigenfunctions %',„(x)=(N, „,w, „) of (4.4) can be
chosen to satisfy the equations

The four solutions (4.6) may be readily identified as
belonging to Q classes 3, 4, 1 and 2, respectively. Spe-
cifically, we have

Gsl —6— 0

6g2 6— —y )

E.3= E+(b+)

&04 &+ —1 )

(0
—————', (1—3«'), (4.12a)

(4.12b)

(,+= —2(1—3«'), (4.12c)

(,+= ——,
' (1—3«') . (4.12d)

The remaining solutions all correspond to continuum
eigenvalues and the appropriate $„+'s are conveniently
expressed in terms of eigenfunction phase shifts. I.et us
define phase shifts 8 (k) according to the asymptotic
behavior for x-+ +~,

(
cos(kx+5 ) i~(*)-s

r~ sin(kx+8 )J
for n=1, 4, (4.13a)

sin(kx+8 )
e'(x) S for n=2, 3, (4.13b)—r~ cos(kx+8 )1

where k= /~2) 0, S is given by (3.6), and.

2k&
. (4.14)

(1 «2)+I (1 «)2+4«2k271/2

The modified periodic boundary conditions (3.5) will
be satisfied for a given value of k&0 and of Q, if and
only if kl+28 (k) is a half-integral multiple of 2~. If
we index these values of k by

k„+1+25,= 27r(p+-', ),
k„+3+282=2s. Ig+-', I,
k„ f+25«= 2n-(p+-', ),
k„ k+284= 2s. I&+k

p: 1) 2) o o ~

2) 3) ~ ~ ~

(4.16)
1) 2) ~ ~ ~

p= 2) 3)

then the corresponding values of $„+, together with the
four eigenstates (4.12), give us a complete list of the
eigenvalues.

The choices r+ and s are to be used with n-type and
~-type solutions, respectively. The behavior for
x~ —~ is determined by (4.13) and (4.11). The
functions (4.13) satisfy the differential equations (4.4)
and (4.9) for large IxI for all values of 5, but the
asymptotic forms will match up with the solution of
(4.4) in the neighborhood of x=0 only for certain
specific choices of b. The definition of the phase shift
implicit in (4.13) is unique only up to an additive
integral multiple of ~. This ambiguity is removed by
requiring that 8 (k) be a continuous function of k and
that I5 (k) I(-,m in the limit k~ 4C. With this con-
vention, the phase shifts at 0=0 can be shown to be

si(0) = 82(0) =~, 83(0)= 84(0)= -',n. . (4.15)
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The product (3.2) may now be written

f002(K00) E 030(«00) 00 600~(«00) [6+E+(k)0 )$[f+E (kP )j
hm —g =g,+(«) lim lim —eQ - =—g,+(«) lim $, (E K), (4.17)

&s1 &s n 4 &sn I)'s — I 6 6+ p 6 6— p

where k„=2~Ii/L Just as in (3.23a), it is permissible to
interchange the order of limits e —+0+ and l~ Go in
(4.17) because of the exact cancellation between con-
tinuum eigenvalues at the minimum and saddle point
for the eigenvalues near zero.

In order to evaluate (R(e,«) it is most convenient to
relate the phase shifts 8 (k) to new phase shifts 8 (k),
which are the even-parity and odd-parity phase shifts
of the differential operator 8(3) for e-type solutions
and phase shifts of 8(1) for i)-type solutions. The new
phase shifts 6 can be defined in terms of the asymptotic
form of the wave functions for x —++0c according to

where
2«'kV2

(k)=—xtan '
(~ —3 ')'") (~ —")+L'0—")'+0"0'3"')~

~

~

(4 2o)

Kith the conventions we are using for 6 and b, the
arc-tangent function in (4.20) has its principal value
lying between zero and ~x. If we impose antiperiodic
boundary conditions on the eigenfunctions of the
operators 8(P), then the eigenvalues $„(P), for /=1
and 3, relate to the eigenvalue g„~ for the actual
boundary conditions by

N(x) ~ cos(kx+b.),
u(x) ~ sin(kx+S„),

v(x) ~ cos(kx+S ),
v(x) ~ sin(kx+S ),

(4.18)

4(3)= [(4+)'"+2X(k)/6'—=4+

4(1)= [(4 )"'—2X(k)/~2—=&.

(4.21a)

(4.21b)

where X is given by (4.20) with k=(f„+)" for the
continuum eigenvalues, and X is taken to be zero for
the bound states (4.12). For P =0, we have

where the constants of proportionality are all nonzero.
The arbitrary additive constant in 6 of an integral
multiple of m is chosen in the usual way, namely, that

be a continuous function of k and go to zero for
k-+ 0C. Using (4.13) and (4.14), one can show that
the 8 are related to the 5 by

t„(0)= [k„+m/f]'= (4.21c)

[~+(k')3'= ~+(5')~+(5 ')- (4.22b)

4k d.,(k')
+(4') = +(k.')~ —x(k) (4 22 )

dk

8 (k)=8 (k) —X(k) for n=1, 2,
8 (k)=b (k)+x(k) forn=3, 4,

(4 19) to within corrections of order / . Substituting (4.22)
into the definition (4.17) of (R(e,«), we see that

where

lim (R(e,«) =g~(K)g4(«),
a~0

t'(.+;[4(O)jj(.y. [g„(0)j}—
g3(«) = lim lim —e g ~—

~ (f ++LE.(3)3) + -Li.O)3))-

(4.23)

(4.24a)

OQ

g4(«) = lim exp
l~oo

4kx(k) d
dkln 1— in[a~(k')/e (k')j

dk2

00

=exp~—
~~ 0

dkkX(0) 10) e~(0')/ (0')]),
dk2

(4.24b)

with e~(k') defined in (3.9) and X(k) in (4.20). The function g4(«) decreases monotonically from unity at «'=0 to
zero at the critical-current value «'= 3. For «'« —,', Eq. (4.24b) gives

for z2 —& —'„ it gives

g4(K) ~ 1—4K +' ' ';
g2«1/3

g4(«) —9(1—3«')'.
F2~1/3

(4.25a)

(4.25b)
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{24 1+L2(/(1 —3K2)71/2}{22+L2$/(1—3K2)jl/2}
(~,w=n (4.26)

ee 1={}2—1+t 2t/(1 —3K2)71/2}{22+L2(/(1—3K )j / }—2P

where in going from (4.31b) to (4.31c) we introduce

3K2)ji/2y 1 the new variable 2= 2'/(1 —3K') in the second integral
(4.27a) and for the first integral use

and, in particular,

L2~/(1
r(5,1)=

L2k/(1 —3")I"—1

[2]/ (1—3K2)]1/2+ 2
r($,3) =r($,1) . (4.27b)'

L2(/(1 —3K2)gl/2 —2

We introduce the function gglp($, p) which is the differ-
ence in the density of eigenstates for 0(0) and 8(P).
For all ( greater than

i $0(P) i, we have

d$ Ap($, 1) in' 2+($)2 (f) i

d$ ~p((, 1)DnI PI +»I )+2(1—3")I j
(4.32)

=inner(0,

1)rg2(1 —3K'),1ji =ln3,

The function g2(K) can be evaluated using techniques similar to those used in Sec. III. We introduce functions
r(),P) and r}(),P) as in (3.24), where the eigenvalues $„(P) of (3.17) and (3.18) now pertain to the operator (4.7).
Proceeding much as in Sec. III, we find that

»4'(k P) = di ~p(i P)»(&+i).

dk ~p(k P) =o (4.30)

Returning at this point to the definition (4.24a), we
use these and previous results to obtain

g, ()=liep (—) exp( gg(gep(}3)

Xle[ + e(g)]+gep((, 1) le[e+e (3)]}) (4.31e)

=exp d hp, i ln e+

l L"(~)j
df

[3}/(1-3"»"[1+3(1-3"»)
(4.31b)

(2 " 1
=3 exp' — ds

Xln{1—K2+12 (1—3K')s

+[(1-")'+3'(1-3 ')e]"'}) (4.31c)

It follows from Eqs. (4.27) that

0.(~)
~p(~, 1)=

P~/(1 3 )~ t ~+
—(}L]+12(1—3K')), (4.29a)

~p(~, 3) =~p(~, 1)
», (~)

2rp2(/ (1—3K2) j}/2L(+2 (1—3K2)j
—(}L(+2 (1—3K')), (4.29b)

where the step function 0+($)=0 for $(0 and 1 for
$&0. Both of the functions (4.29) satisfy the expected
sum rule

as follows from (4.28) and (4.27a). The function g2(K)
decreases monotonically from 24 at w =0 to 4 at z = 3.
For K2((2, Eq. (4.31d) gives

g, (K) 24(1—K');
a2((1/3

for it~ —+ 3, it gives

g (K) —4+843 (1—3K')'"
F2~1/3

(4.33a)

(4.33b)

Q+(K, T) Q (K,T) exp . (4.35b)
pe~ 1/e/2 (1 3K2) 1/2

Over the entire range 0(~K(1/V3, Q (K,T) may be ap-
proximated by

Q (K,T) = (1—Kv3)"""(1+24K2)Q(T) (4.36)

V. DISCUSSION

Using the time-dependent Ginzburg-Landau theory
described in Sec. II, we have derived explicit expres-
sions (3.36) and (4.34) for the time-scale prefactor
Q+(K, T) of the LA thermal-activation model. Although
our formulas are specific to the time-dependent
Ginzburg-Landau theory, we expect from the general

It follows from Eqs. (2.34), (2.36), (4.6a), (4.17),
and (4.23) that the prefactor Q+(K, T) in the rate ex-
pression (2.35) is

Qy(K T)= {L(1+K2)2+3(1 3K2)2ii/2 (1+K2)}
y, L(1—3K2)'/'g, +(K)g2(K)g4(K)/24)'/'Q(T) (4 34)

where Q(T) is the K=O prefactor (3.36) Lor (3.38)j.
The functions gl+(K), g2(K), and g4(K) are given by Eqs.
(4.1), (4.31c), and (4.24b). The expression (4.34)
correctly reduces to Q(T) in the limit K2-+0. For
K
—p 1/v3, it gives

Q (K,T) —
i (1—3K2)"'Q(T) (4.35a)

g~l/3/2 8/6 4 j
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physical arguments of Sec. I that very similar results
would follow from any starting theory consistent with
the thermal-activation hypothesis. Our principal con-
clusions remain even if the simple time-dependent
Ginzburg-Landau starting point (2.14) should prove
to be inadequate. 9 "

We undertook the elaborate mathematical analysis
of Secs. II—IV to ensure that no unforeseen mathe-
matical singularities destroyed the qualitative physical
arguments of Sec. I. We have reproduced that analysis
here to substantiate our assertions and to enunciate
the underlying assumptions. The mathematical methods
may be applicable to other systems.

Apart from numerical factors particular to our model,
the general expression (2.36) contains four basic
factors which we can expect in all models. The erst
factor, A, ~(~)/r(T), is in essence the approximation to
0(T) implicit in Eqs. (1.3) and. (1.5). As defined in
(2.34), A, 3(~) is the length of the superconducting wire
as measured in units of a typical dissipative Ructuation
and equals in first approximation the effective number
1V(T) of coarse-grained phase-space elements along the
wire.

The second factor (oH,2(T)&(T)/k&&T]ii2 is a con-
comitant of the translational invariance (reflected in
the zero eigenvalue e.a) and is a subtle scaling correction
to the length of the typical dissipative Quctuation
implicit in A,3(K). In brief, the relevant energy interval
for enumerating the distinct phase-space cells for a
thermal-activation process is the thermal energy k&T
rather than the barrier height M(T). In the Webb-
Warburton and Lukens-Goodkind experiments, ' ' this
second factor is approximately 10, so that its presence
in Q~(a, T) does not qualitatively alter the general
arguments of Sec. I.

The third factor of (2.36), the eigenvalue magnitude
~e»~, is inversely proportional to the square of the
width in phase space of the free-energy saddle. It is
proportional to the rate at which systems diffuse in
phase space over the saddle-point barrier. Except near
~2=3, where

~
e, i(~)

~

vanishes as (1—3i~')', the factor
~
e,i(a)

~
is of order unity.

The final factor in (2.36), the eigenvalue-product
ratio, can be viewed physically as an entropy correction.
As is clear from the discussion in Sec. II A, the
Ginzburg-Landau functional FLg (x)] is an energy with
respect to the (4%+2) macroscopic degrees of freedom
implicit in the order-parameter field P(x), but it is a
free energy with respect to all other (microscopic)
degrees of freedom. "Let the macroscopic state (e] of
a wire loop denote the ensemble of states described by
a temperature T and a discrete value 2~m of the total
phase change. Let P '"&(x) be the order parameter of
the corresponding free-energy minimum and let
F &"&=—FPP '"&(x)]. In thermal equilibrium at tem-
perature T, the probability P( & that the system is in
state Le], at a given instant of time, is then propor-

tional to the Boltzmann factor exp/ —(F " T—S&"&)/

k»T], where S'"& is the entropy associated with (macro-
scopic) order-parameter fluctuations in the neighbor-
hood of g &"&(x). In this picture (F &"&—TS&"&), rather
than F &"~ alone, is the true free energy of the system
in state Pe].

The entropy $'"& is a measure of the P &"& (z) neigh-
borhood in function space for which FQ(x)] is within
k~T of the minimum P ("~. The size of this neighbor-
hood depends upon the curvature of FLQ(x)] at

'"&(x) in the function space and varies with the
parameter z&"& = 2me//. If we assume that (2.28) is an
adequate approximation to FLQ(x)] in that neighbor-
hood, it is easy to demonstrate for a long wire (l))1)
that S'"&=$(z&"&), where $(~) is the function defined
in (3.10) 2s

One can define a corresponding entropy 8(w) for the
free-energy saddle point, but this quantity has less
direct physical relevance than $(~) and has an inherent
ambiguity intrinsic to the negative eigenvalue ~,i and
the zero eigenvalue e,3. One possibly useful definition is

Gm2 K Gma K ~ 6mn K

8()—S()=——',k ln — n ~

(5.1a)
6s] K n=4 fsn K

= ——,'k» inLg, (~)g, (g)], (5.1b)

This factor could be absorbed into the activation
exponential in (2.35) by shifting from the "energy"
barriers hF~(~, T) to new "free-energy" barriers
tidF~(z, T) TDS~(~,T)], but—there is really little to
be gained from this procedure because the definition
(5.1) is somewhat artificial.

One generally overlooked but important consequence
of the order-parameter entropy-$(z) correction to the
Ginzburg-Landau free energy is a correction to the
expression (2.7) for the average supercurrent carried
by the wire. If the phase difference hp is the inde-

28 For the one-dimensional wire an artificial cutoff is not
required for the momentum integral (3.10c); the integrand
derived from the Ginzburg-Landau theory decreases sufEciently
rapidly to assure proper convergence. This is not the case in two
or three dimensions, where artificial cutoffs and special T;
renormalization procedures are required, as discussed in the
literature cited in the Appendix. Even in one dimension we do
not actually neglect the entropy contribution from fluctuations
with wavelengths short compared to g(0), where the Ginzburg-
Landau functional is no longer valid; these fluctuations are
responsible for the temperature dependence of the coefIIcients in
the Ginzburg-Landau free-energy functional.

where g3(~) and g4(it) are de6ned in Eqs. (4.24). With
this definition the eigenvalue-product ratio in (2.36)
can conveniently be represented as an entropy cor-
rection,

~.~(-) -~(-) - -b-&)"'
Gsl Ks n=4 6sn Ks

S(i~) —8(~,)=exp — — — . (5.2)
kg
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pendent thermodynamic variable (as we have assumed
above'r) and if «= hP/l as in (2.10b), the Ginzburg-
Landau minimum free energy consistent with this
constraint is

Foi, («) = —(1—«')'o-lII.s(T)$(T)/Spr, (5.3)

to within an unimportant additive constant. If we add
to this the entropy contribution from order-parameter
fluctuations about the solution (2.10), we obtain the
true total free energy
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F,. (e)«=FoL(«) TS(«—)
The criterion (2.4) for the validity of the Ginzburg-

Landau free-energy functional is essentially the modifi-
cation for a one-dimensional system of the criterion
given by Ginzburg. " Ginzburg's argument was based
on self-consistency and was not really rigorous; never-
theless, a number of calculations have supported the
Ginzburg hypothesis. Thouless has calculated the first
correction to the specific heat of a superconductor
above T, and found a significant enhancement of the
specific heat if, and only if,

~

T T,
~

fell—within the
range determined by the Ginzburg criterion. " More
recent calculations of the free energy of an Ising model
with long-range forces as a function of temperature
and uniform external magnetic field have also supported
the Ginzburg criterion. "

The Ginzburg-Landau theory is valid for tempera-
tures very close to T„ for the superconductor, and for
the Ising model with long-range forces, because for
those systems the zero-temperature coherence length
((0) is very large compared to the interatomic spacing.
The Ginzburg-Landau parameters for the long super-
conducting wire can be calculated in principle from
the band structure and effective electron-electron
interaction in the usual BCS or strong-coupling manner,
if ((0) is large compared to the wire diameter. If the
diameter is larger than ((0), the temperature for break-
down of the Ginzburg-Landau theory given by (2.4)
moves closer to T„and it is probably necessary to
consider the renormalization of T, due to fiuctuations
not included in the BCS theory.

There has also been considerable theoretical and
experimental investigation of the increase in electrical
conductivity of superconductors for T just above T,."
At least in the case of a dirty superconductor, the
temperature at which the enhancement of the electrical
conductivity becomes comparable to the normal con-
ductivity is essentially the same as the temperature
given by the Ginzburg criterion. '2

(1 —«')'~—« '(T)5(T)/g~
+lke(1 —3«')"'/V2. (5.4b)

The average current follows from the thermodynamic
relation' "
I= (27rc/lc p) (c)/8«) F„,(«) (S.Sa)

=«(1 «')~II,'—(T)g(T)c/C o

3/kiiT~2«c/lglp(1 3«z)ils (5 Sb)

where Co ——ck/2e is the flux quantum. The first term is
just the current (2.7) appropriate to the particular
minimum-energy configuration (2.10).The second term
is the first correction to this current due to macroscopic
thermal Ructuations of the order parameter about the
solution (2.10) but with A&p constrained to have its
initial value. For «'( —'„ the second term of (5.5b) will
be much less than the first term as long as AF )&k~T.

It is interesting to note from Eqs. (2.13), (2.35), and
(4.35) that the transition-rate ratio

I'~(«, T)/I' («,T)
=La+(«, T)/n (.,T)j

X exp{—[4F+(«,T) AF («, T)j/—kisT) (5.6a)

= exp( IC p/ckeT), — (5.6b)

where I is the average current (5.5). The relative
proportion of current-increasing and current-decreasing
transitions is determined by the actlal system current
I, including fluctuation corrections.

The rate of decay of a current in a closed super-
conducting loop can be readily converted to give the
voltage drop across a wire in an external circuit with a
given dc current I. This voltage drop is simply

U= C'pi' —(«, T)L1—exp (—IC p/eke T)), (5.7)

with & related to I by 5.5.
In conclusion, the qualitative arguments of Sec. I

summarize the most important components of the
prefactor 0 which, to within a few orders of magnitude,
is 0= l/r(T), where l is the length of the wire in units
of the coherence length $(T) and r(T) is some micro-
scopic time. For the time-dependent Ginzburg-Landau
model described in Sec. II, r(T) is defined in (1.4), but
slightly different definitions might be relevant in other
models.

'o V. L. Ginzburg, Fiz. Tverd. Tela 2, 2031 (1960) /Soviet
Phys. —Solid State 2, 1824 (1960)]."D.J. Thouless, Ann. Phys. (N. Y.) 10, 553 (1960)."D.J. Thouless, Phys. Rev. 181, 954 (1969)."Compare the review by P. C. Hohenberg, in Proceedings of the
eleventh International Conference on Iom Temperature I'hysics,
196$, edited by J. F. Allen, D. M. Finlayson, and D. M. Mccall
(University of St. Andrews Press, St. Andrews, Scotland, 1968),
Vol. 1, p. 33.

APPENDIX: GINZBURG-LANDAU FREE ENERGY
(5.4a)
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The contribution of fluctuations in P(x) to the
electrical conductivity of a wire above T, has been
calculated from the time-dependent Ginzburg-Landau
equation (2.14) by Schmidt" and by Abraharns and

YVoo. ' Their results agree with the Green's function
calculations of Aslamazov and Larkin. " In principle,
at least, the Fokker-Planck equation resulting from

(2.14) and the associated Langevin noise source (2.20)
could be solved to obtain the electrical conductivity of
the time-dependent Ginzburg-Landau model at inter-
mediate values of the temperature as well, i.e., for

~

T T,
~

s—o small that the Ginzburg criterion is violated.
The resulting conductivity would clearly vary smoothly
between the Aslamazov-Larkin form well above T,
and the results of the present paper well below T,. In
the absence of such a calculation, one may still inter-

polate graphically between the two asymptotic forms,
and a reasonable approximation to the answer may be
obtained. By contrast, it is difficult to find a simple

interpolation between the results of the LA theory and

the conductivity predicted above T, (see Fig. 1. of
Ref. 32).

~ H. Schmidt, Z. Physik 216, 336 (1968). See also A. Schmid,
Phys. Rev. 180, 527 (1969).

34 I.. G. Aslamazov and A. I. Larkin, Fiz. Tverd. Tela 10, 1104
(1968) t Soviet Phys. —Solid State 10, 875 (1968)7; Phys. Letters
26K, 238 (1968).

Marcelja'5 has given an approximate treatment of
the time-dependent Ginzburg-Landau model, which
enables him to calculate the electrical resistance in a
one-dimensional geometry for all temperatures in the
vicinity of T,. Marcelja's approximation, which may
be described as an effective linearization of the
Ginzburg-Landau equation, agrees with the Aslamazov-
Larkin results above T„but predicts a conductivity
proportional to (T, T)',—for a thin wire below T„ in
disagreement with the present results. (Marcelja's
formulas, of course, vary smoothly between the
a,symptotic forms for T)T, and T(T,.) We believe
that Marcelja's results are incorrect in the asymptotic
region below T, because his effective linearization
eliminates the free-energy barrier that is a necessary
consequence of the nonlinear Ginzburg-Landau free-
energy functional below T,.

It is also worth pointing our that the calculations of
the electrical conductivity above T, require not only
that one can use the time-dependent Ginzburg-Landau
equation to calculate the contribution to the con-
ductivity of Quctuations in the order parameter, but
that one can neglect any temperature dependence of
the background "normal" or "quasiparticle" con-
ductivity. In the asymptotic region below T„ the
conductivity is much larger then the quasiparticle
conductivity, and we need not consider any temperature
variations of the latter quantity.

"S.Maroelja, Phys. Letters 28A, 180 (1968); W. E. Masker,
S. Maroelja, and R. D. Parks, Phys. Rev. (to be published).


