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Electron Correlations at Metallic Densities. IV*
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This paper presents an extension of an earlier theory of the dielectric function of the electron liquid in
the metallic density range, which took into account the short-range correlations arising from both Coulomb
and exchange eGects through a local-field correction depending on the pair correlation function. The exten-
sion consists in allowing for the adjustment of the pair correlation function to the external Geld and results
in a screening of the Coulomb potential entering the local Geld. Self-consistent numerical calculations have
been carried out to evaluate the dielectric function and the density correlation function in the metallic-
density range. Results are presented for the static pair correlation function, the correlation energy, the
compressibility, the plasmon dispersion, and the screening of a static point charge. In contrast to the earlier
theories, the present theory satisGes closely the compressibility sum rule and also gives reasonable values
for the pair correlation function. The same approximation has been straightforwardly applied to treat the
spin correlations in the paramagnetic state. The calculation yields fair values for the static paramagnetic
susceptibility and for the internal Geld as a function of wave vector. A simple analytic representation is
presented for the numerical values of the local-Geld correction as a function of wave vector over the metallic
density range, which should prove useful for applications.

I. INTRODUCTION

HE natural, and a very fruitful, formulation of
the theory ot screening in the electron liquid is

based on the introduction of a wave-vector and fre-
quency-dependent dielectric function. ' This function
enters in a large class of calculations for free-electronlike
metals. In an earlier paper, ' hereafter referred to as I,
an improved expression was given for the dielectric
function, which includes explicitly the short-range cor-
relations arising from both Coulomb and exchange
effects. The theory as outlined in I provided a self-
consistent scheme for calculating the dielectric function.
The numerical solution of the self-consistent problem,
as was shown in I, gave for large wave vectors a marked
improvement upon the earlier theories' ' of the dielectric
function, as evidenced by the behavior of the static
pair correlation function at small distances in the
metallic density range. However, for small wave vectors
the new dielectric function shared with the earlier
theories' ' the unsatisfactory feature that the compres-
sibility sum rule was strongly violated. This violation
wouM lead to an incorrect value for the velocity of
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sound in metals. In earlier work, this deficiency in the
dielectric function was rectified by introducting in a
rather ad hoc fashion a parameter in the Hubbard
factor, which takes only exchange into account —the
value of the parameter could be adjusted so as to give
the correct value for the compressibility. However, the
introduction of this parameter does not improve the
poor behavior of the pair-correlation function at small
distances. '

In a recent publication6 the present authors have
outlined a refinement of their earlier theory' and have
shown by a self-consistent numerical calculation that
it gives satisfactory values both for the pair correlation
function and for the compressibility. This refinement
leads to a screening, through the static dielectric
function, of the Coulomb interaction entering the 1ocal-
field term of the effective potential in I. The purpose
of this paper is to discuss in detail this modification of
our earlier theory and the nature of the approximations
involved. Ke present the results of numerical calcula-
tions of the pair correlation function, the screening
charge around an impurity, the correlation energy and
the compressibility of the electron liquid in the metallic-
density range and compare the results with those based
on previous theories. We also discuss a similar modi-
fication of the expression recently derived7 for the
dynamic paramagnetic susceptibility, and present re-
sults for the correlations between different pairs of
spins and for the static susceptibility. An interesting
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result that emerges from the latter calculation is a follow immediately. Here, (p(x, t)p(R, t)),=(p{x,t)p(R, t))
very gentle dependence of the molecular field parameter —(p(x, t))(p(R, t)) is the equal-time density-correlation
on the @rave vector —a result which is in agreement with function, and
observations.

Vlr(R, t) = V, (R,t)+ dxc (R—x)n(x, t) (6)
II. THEORETICAL FORMULATION

A. Equation of Motion for Density Fluctuations is the Hartree potential. Combining Eqs. (4) and (5)
we have

The equation of motion for the single-particle density
matrix (%,t(x,t)@,(x', t)) in the presence of an external 8' 1
potential V, (x,t) can be written in the following form ~(R~t) ——VaVe~ e(R|t)
Lace Eq. (A4) of Ij:

8
zk——

R 2m
(6 '—6,')—V, (x,t)+V,(x', t)

dxv„{V C (R—x)(p(x, t)p (R,t)),}
1

= —V.{n(R,t) V'. V«(R, t)}, (7)
dx"LC (x—x")—C (x' —x")jn (x",t)

X(+,t(x,t)%,(x', t))—iA dx"(C (x—x")—C (x' —x")g

5(+,'(x,t)e.(x', t))
y =o. (1)

8V, (x",t)

Here, C(x) is the Coulomb potential and n{x,t) is the
nonuniform density of electrons. The Kigner phase-
space distribution function f.(p,R,t) is defined by

(e.t(R+ -', r,t)e.(R—-'. r,t))
dP

-e—'i"t"f.(p,R,t) . (2)
(2a)'

In terms of this distribution function, the particle
density n(R, t), the particle current j(R,t), and the
momentum current tensor n(R, t) are, respectively,
given by

where V' denotes di6erentiation with respect to the
uth Cartesian component of R a,nd the usual convention
of summation over repeated indices is used. We con-
sider the deviation of the density from its uniform
equilibrium value m to be caused by an in6nitesimal
external potential. We can then replace n(R, t) on the
right-hand side of Eq. (7) by n.

If one knew the functional dependence of vr(R, t) and

(p(x, t)p(R, t)), on the density n(R, t), Eq. (7) would

give the relationship between n(R, t) and the Hartree
potential V«(R, t). The dielectric response function
e(iI,M) is then given by

e(iI,co) = 1—C (q)n(tl, a&),

where n(tI, ~) is the Fourier transform of the equilibrium
value of tin( Rt) /8 Vrr(R', t') and C (q) = 4ne'/q'.

We may introduce an effective potential V,«(R,t),
defined by

and

n(R, t) =Q dp f.(y,R,t),

P
j(R,t) =Q dp f.(p,R,t), —

o m

PP
a-(R, t) =P dp—f.(p,R,t).

(3a,) V V.„(R,t) =V Vn(R, t)

1
+ — dxVC (R—x)(p(x, t)p(R, t)), . (9)

Then Eq. (7) takes the form

(8'/Bt')n(R, t) —(1/ns)V~Vpa p(R, t)
= (n/m)v V' V.ff(R,t). (10)

Introducing in Eq. (1) the variables (R,r, t) instead of

(x,x', t) and using Eq. (2), we obtain the equa. tion of
motion for f, (p,R,t). The equation of continuity

(a/at)n(R, t)+v j(R,t) =0 (4)

and the equation for the momentum density

P(R,t) =n j(R,t),

—P(R,t)+ V n(R, t)+ dx VC (R—x)(p(x, t)p(R, t)),
Bt = —n(R, t)V V«(R, t), (5)

It should be emphasized that this is the equation of
motion for the electron density, which is an average
over the momentum distribution of the electrons.
V,«(R, t) is the potential in which the charge density
moves, and should not be considered as the potential
acting on a particular electron. The second term on
the right-hand side of Eq. (9) represents the local-field
effects which are neglected in the RPA. Equation (10)
is the starting point of our further discussion. We are
here not particularly concerned about the momentum-
dependent self-energy of an electron, or the momentum-
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dependent vertex correction entering the expression
for the effective interaction between two electrons. In
our procedure, we avoid making explicit approxima-
tions on these quantities, which are unnecessary for
calculating the dielectric response function. e(1,3)e '(3,2)d(3) =b(1,2). (14)

where e(1,2) is the (time-ordered) equilibrium dielectric
function, and the inverse e '(1,2) is defined by

B. Density-Correlation Function

In I, the nonequilibrium density-correlation function

(p(x,t)p(R, t)), was approximated by

(p(x, t)p(R, t)),= Lg(R—x) —1je(x,t)e(R, t), (11)

Introducing the notation

)It (1,2) = n (1,3)n„—'(3,2)d (3), (15)

where g(x) is the static pair correlation function in the
absence of the external 6eld. This approximation was
found to be reasonable at large wave vectors, as one
may expect the pair correlation function will be essen-
tially unaffected by a rapidly varying external field.
Here we attempt to improve upon the earlier treatment
for small wave vectors by taking into account the
adjustment of the pair correlation function to the
external disturbance. We do this under the assumption
that the irreducible part of the density-correlation
function is short ranged in space and time, and, there-
fore, we assume that in the presence of the external
field it depends only on the local density. ' We pursue
the formal development and introduce the above as-
sumption at a later stage, in the hope of clarifying its
connection with the formal many-body theory.

We express the time-ordered density correlation func-
tion (Tp(R, t)p(R', t')), in terms of its irreducible part
n(Rt, R't') as follows:

(Tp(1)p(1')&.= (l,1')

+ n(1,2)C (2,3)n(3,1')d(2)d(3)+ . (12)

Here 1, 2, etc., stand for (Rrtr), (Rsts) and so on, and
4 (1,2) stands for C(R,—R,)()(t,—t,). For t= I' we have
on the left-hand side of Eq. (12), the equal-time
correlation function appearing in Eq. (9). Notice that
n(1,1') occurring in Eq. (12) is time-ordered, and so
are all the response functions in the rest of this section.

Separating n(1,2) into its equilibrium part, n,~(1,2),
and its deviation from equilibrium, n(1,2), and lineariz-

ing with respect to n(1,2), Eq. (12) can be written in
the form

(T (1) (1')& -(T (1) (1')&

e r(1,2)n(2, 3)n,„r(3,4)(Tp(4)p(1')&,'s

&&d(2)d(3)d(4), (13)

Our approach can be considered to be an extension to the
dynamical situation of the treatment given in the static case by
P. Hohenberg and W. Kohn, Phys. Rev. 136, 8864 (1964).These
authors calculate the electron density in the presence of a static,
nonuniform potential, including many-body e6'ects, by consider-
ing the total energy to be a functional of the density n(R). They
derive the equation p, (R)+VII(R) =const for the density dis-

and expressing this quantity as a functional of the
mean density, we can write, in general,

A (xrtr, xsts)

rIx, —xs, t,—ts~-;(x,+xs) —x, -', (t +ts) —t,j
)&n(x„,ts)dx, dts, (16)

where I'( . ) is the equilibrium value of the functional
derivative of h with respect to the mean density. Here
we have used the fact that the system in equilibrium
is homogeneous.

Inserting Eqs. (13) and (16) into Eq. (9), the
effective potential in Fourier space becomes

V.rr (q,o)) = Uir (q,o))+C ((t)—
dq'Cko' q q'

(2s.)' q" (qe', )o)

xr(a' —la, '—'*la, »(a' —a,
' —))~(a, ), (»)

where 5(q,o)) is the Fourier transform of (Tp(1)p(1')&;&,
and I'(q'o)' )qo)) is the Fourier transform of I'(rt

~
xt).

The approximation (11) implies that Eq. (12) is
approximated as

( (1)&
(Tp(1)p(1')).= n" (1 1')

+ n,~(1,2)C (2,3)n,„(3,1')d(2)d(3)+ . — — (18)

for t= t'. This leads to an effective potential of the form

V.(g (q,o)) = Vrr (q,o))

(1 dq'do)' q q'+~(v)ll-, ~(a' —a,
' —))~(e, ); (»)

kn (2s )' (I"

which is to be compared with the exact expression (17).

tribution, where p, (R)=5E/Bn(R). This equation follows from
Eq. (7) in the static case by considering m lR) a)rd (p lR) p (R')), to
be functionals of the density n(R).
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0.5

factor entering in it should be determined self-consist-
ently from Eq. (24).

The above expression for the dielectric function
divers from that in I through the static screening of
the Coulomb potential in G(q).

0.11
0.06

0

-O,IS

-0.5-0.55

D. Reduction to Modi6ed Hubbard Dielectric Function

f.. In evaluating G(q) in Eq. (25), we use the Thomas-
Fermi dielectric function

eTp(q) = 1+qTp'/q', (34)

where qTp is the Thomas-Fermi screening constant, and
further we take the Hartree-Fock value for S(q), i.e.,

Fro. 1. Pair correlation function g(r) versus
pe for r, =1 and r,=2.

~(q) =—

yS(k —k'yq), (35)
energy with density is essentially determined by the ( s) I lkl&sp I~'i&sr

free-particle kinetic energy —a result which is well
con6rmed by the calculations. The foregoing assump-
tion implies replacing Vrr(q, ~) by V,rr(q, co) in Eq. (27), where gp is the Fermi momentum. This leads to
which leads to

N(q, (d) =Xs(q, (d) V,rr(q, M) . (3p) G(q) = dk dk'
(2s') 'I l~l&sp l~'l&s

The proper response function, which gives the re-
sponse of the density to the macroscopic Hartree field,
is then given by

q (q+k —k')
X — . (36)

~
q+k —k'('+qTp'

~(q,~)= xs(q,~)/L1 —G(q)Qo(q ~)j
Qo(q, ~)= —c'(q)xo(q, ~)

(31) If ln the above integral we replace ~q+k —k'~' by
(q'+qp'), as was also done in the original calculation

(32) of Hubbard, ' we find

Hence, using Eq. (8), we have for the dielectric function G(q) = 'V'/6P+(I p-'+ re p')

I,O

( ) 1+Q (q )/$1 G(q)Q (q ~)$ (33) With this value of G(q), the dielectric function given

by Eq. (33) is the same as has been adopted by Sham
where G(q) is,given by Eq. (25) and the structure upon a suggestion by HubbarcL In the context of the

present theory, Hubbard's approximation implies that
local-Geld corrections have been included only to the
extent that the Pauli exchange hole enters through the
free-particle Hartree-Fock pair correlation function,
thus neglecting here completely the eGect of Coulomb

05 interactions. Also, the screening of the Coulomb po-
tential in G(q) has been taken in the Thomas-Fermi
approximation.

0.006
0-0.07

-0.5

III. CALCULATIONS

ln this section we present the results of the self-
consistent determination of the pair correlation func-
tion in the metallic density range, and the pertinent

-I.o

TanLz I. Correlation energy (Ry/electron).

Fro. 2. Pair correlation function g(r) versus
gzr for r, =3 and r, =4.

Present theory
sTLs
Hubbard
Nozieres-Pines
RPA

-0.125
-0.124
—0.131
-0.115
-0.157

—0.097
—0.092
—0.102
-0.094
—0.124

—0.080
—0.075
—0.086
—0.081
-0.105

—0.070
—0.064
—0.076
-0.072
-0.094

—0.063
-0.056
—0.069
—0.065
—0.085

-0.057
-0.050
—0.064
-0.060
—0.078
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values of the correlation energy. Equations (24), (25),
and. (33) are solved self-consistently, following the
procedure outlined in I. The only comment that we
wish to make here is that the numerical work involved
in the present calculation is much longer than that in I.

A. Pair Correlation Function

The pair correlation function g(r) is given by
00

g(r) =1+— q(»nqr)P(q) —1jdq (»)
2t 0

0
-GO2
-0.1 0

05

B. Correlation Energy

As in I, the correlation energy per particle can be
written as

+corr
r.2

where

&a — 4 9 &/3

y(r, )+0.9163 dr, Ry, (39)
0 x 4

where q is expressed in units of qp and r in units of
qF '. The self-consistent values of S(q) were used in
Eq. (38) to calculate g(r). The results are shown
graphically in Figs. 1—3 for various values of r, of
interest. For comparison the curves obtained on the
basis of our earlier theory, ' and on the basis of the
original Hubbard approximation and of the random-
phase approximation (RPA), are also given. It may
be mentioned that the inclusion of a screening pa-
rameter in the original Hubbard formula for G(q) does
actually lead~ to a worse g(r). It is apparent that, as
far as the positiveness of g(r) at small interparticle
separation is concerned, there is some deterioration
from our earlier results, although there still is a marked
improvement over the results based on other approxi-
mations. The negative values of g(r) are still small
enough that g(r) may be considered to be zero in this
region for practical purposes. The price that we have
paid here is more than compensated by the marked
improvement in the long-wavelength behavior of the
dielectric function, as indicated by the excellent values
of the compressibility that we have obtained' from
this limiting behavior. It is this behavior of the di-
electric function that plays an important role in many
calculations of practical interest.

A numerical interpolation scheme between the present
and our earlier values of G(q), that improves the
behavior of g(r) at small separations and preserve the
compressibility sum rule, has been tried and is dis-
cussed in Sec. VII.

-0.92
—I.O

- l.5

-l,70

-2.0

FIG. 3. Pair correlation function g(r) versus
qzr for r,=5 and r, =6.

approximations. The present values are essentially the
same as those given by the interpolation scheme of
Nozieres and Pines. " The present results therefore
lead to practically the same values for the cohesive
energy of the alkali metals as those obtained by
Nozieres and Pines. The comparison vnth the experi-
mental values has already been discussed in I.

where

(qTF/q)'
lirn e(q,0)=1+

1—V(q»/qF)'
(41)

1 "
S(q) —1

dg
'(q)

d Ine(q)-

d lnq
(42)

In our earlier approximation, the expression of y was
the same as the expression of y given in Eq. (40). The
values of y for various values of r, are given in Table

TABLE II. Values of y.

IV. LONG-WAVELENGTH LIMIT

A. Compressibility

The dielectric function (33) in the limit q~0 at
zero co has the form

1
7(r.) =—

2 o

LS(q) —1jdq. (40)
0.3341 0.3059 0.2816 0.2601 0.2410 0.2237

The resulting values of the correlation energy are
given in Table I, together with the results of previous "P.Nozieres and D. Pines, Phys. Rev. 111,442 (1958).
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I.O
RPA

O.IS,

O.IO

0.05

5

0

'qFr

Fn. 4. Ratio between the free-electron compressibility and the
compressibility of the electron liquid versus r,. The full curve is
obtained by differentiation of the energy; the bars give the spread
of the results obtained from the available approximations to the
correlation energy. The broken curves are obtained from Eq. (43).

FIG. 6. Screening density hp(r)/qz' versus qrr for r, =3: curve
1, RPA; curve 2, Hubbard; curve 3, Singwi and Tosi; curve 4,
present results.

plasmon dispersion relation

II. From the compressibility sum rule one finds
where

tu„(q) = tu„+akq'/m+ (45)

Kr ./K=1 —y(qTp/qp)', (43)

where Eq„, is the compressibility of the noninteracting
gas. The values of the compressibility obtained by
using Eq. (43) are compared' in Fig. 4 with those
obtained by diGerentiating the energy of the system
with respect to r, Lsee Eq. (43) of I7. As is seen from the
figure, the present theory leads to much smaller devia-
tions from the compressibility sum rule than the earlier
theories at all values of ~„and in fact satisfies closely
this sum rule up to values of r, of about 4.

B. Plasmon Disyersion

The dielectric function (33) in the limit tI —+0 and
o) 6nite has the form

1.0

& O5

lim e(q,a) = 1—(cu,'/a')(1+ (9/5) (q/qTp)'

-v(q/qp)'7+", (44)

where cu~= (4rrmes/m)'ls. From Eq. (44) follows the

V. IMPURITY SCREENING

The polarization density at the distance r from a
static impurity of unit charge is given by" "

Co

8.(r) = --—
2fp P 0

q sin(qr) 1————dq. (47)
e(q, 0)

The results obtained with the present dielectric func-
tion at r, =3 and r, =6 are compared in Figs. 6 and 7
with those given by earlier theories. The present results
still show a deeper minimum than those based on the
Hubbard approximation, although the deviation is
smaller than found previously. '3 We expect that the
correct polarization density should lie between curves
3 and 4 in this region of intermediate distances.

a= (hqp'/3mtor)L9/10 ——,'p(qTp/qp)'7 (46)

In Fig. 5 the quantity n/nRph, where naph=3hqp'/
(10mru~), is plotted as a function of r, for various
theories. The experimental values available" for a few
metals are also reported in the figure. The comparison
between theory and experiment may not have much
signihcance, since the inQuence of the ion lattice on
the measured angular distribution of scattered electrons
is not known. If this inAuence on the scattering were
merely a band effect, the discrepancy between theory
and experiment would be significant for Al and Na, in
which band effects are known to be small.

3
"s

FxG. 5. Coefficient of the leading term in the plasmon dis-
persion (in units of its RPA value) versus r.. The experimental
values (for Se, Al, Sb, Mg, Li, and Na, in order of increasing r,)
g,re taken from Ref. 11.

VI. SPIN CORRELATIONS

Using the formalism of I, the following expression
for the dynamic susceptibility of the electron liquid in

'1 H. Raether, in Springer Tractsin modern I'hysics (Springer-
Verlag, 3erlin, 1965) Vol. 38.

(196O).
'2 J. S. Langer and S. H. Vosko, J. Phys. Chem. Solids 12 196

"K.S. Singwi and M. P. Tosi, Phys. Rev. 181, /84 (1969).
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the paramagnetic state has been derived~

xs(q, ~)
x (q,(a) = —g'pn'

1—I(q) xp (q,cu)
(48)

I.O

where the internal 6eld correction is given by

with

q. q' dq'
1(q) = — — e (q )LS(q —q) —1j, (49)

S (2s.)s

0.5

S(q) —1 =ts -', Lgtt(x) —gti(x)je '&'*dx. (50)

Here, gtt(x) and gti(x) are the correlation functions
for a pair of particles with parallel and antiparallel
spins, respectively. The structure factor S(q) and the
dynamic susceptibility were determined self-consist-
ently using the relation

-0.5

S(q) = - des Imx(q, a)).
7f'Sg Pgg p

(51)

It was found that this approximation gives rather good
values for the pair correlations, but is inaccurate for
small wave vectors. Specifically, it yields values of the
static paramagnetic susceptibility for I.i and Na which
are too large by a factor of 2, and it indicates a rapid
decrease of the function I(q) with increasing wave
vector.

We have modified Eq. (49) by introducing a screen-
ing of the Coulomb potential appearing in the integrand
through the static dielectric function, analogously to
the screening derived in Sec. II for the dielectric case.

FIG. 8. Pair correlation function gtt (r) versus ger for various
values of r,. Full curves, present theory; broken curve, l obo
et al. ; dash-dot curve, Hartree-Fock approximation. The results
of I.obo et al. are essentially independent of r, .

The modified expression for I (q) is

q. q'
I(q) = ~(q) —

t S(q —q) -1j —. (52)I q"e(q') (2s.)'

As far as screening is concerned, we have therefore

5.0

0.25

0.20

O.l 5

L
0.5

. . O.lo
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40

00
1
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FIG. 7. Screening density bp(r)/qp' versus qpr for r, =6: curve
1, RPA; curve 2, Hubbard; curve 3, Singwi and Tosi; curve 4,
present results.

Fic. 9. Pair correlation function gtg(r) versus ql-r for various
values of r, . Full curves, present results; broken curves, Lobo
et al.
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4.0 TABLE IV. Parameters of Eq. (54).

0.7756 0.8994 0.9629 0.9959 1.0138 1.0218
0.4307 0.3401 0.2924 0.2612 0.2377 0.2189

1.0

q/qF

Fro. 10. Function I(g) (in eV/electron) versus g/gz for various
values of r,. Full curves, present results; broken curves, Lobo
et ul.

treated on the same footing the interactions between
pairs of electrons with parallel and with antiparallel
spins. Since exchange effects are short range, one might
expect that in fact these interactions should be screened
in a different manner. Nevertheless, we examine the
consequences of our approximate expression (52).

Equations (48), (51), and (52) have been solved
numerically in a self-consistent way. The resulting
correlation functions for various values of r, are com-
pared in Figs. 8 and 9 with the previous results~ based
on Eq. (49). The present approximation leads to a
definite deterioration of the pair correlation functions
at small separations, although they still compare
favorably with the results of other theories, ~ with the
exception of gtt(r) in the Hubbard approximation.
In particular, while the previous valuesr of gt t(r) were
essentially independent of r, and quite close to the
Hartree-Fock values, this appealing simplicity is now

lost, as is apparent from Fig. 8. On the other hand,
the long wavelength behavior of the dynamic suscepti-
bility has improved considerably. In Table III we

give the values of the static susceptibility.

(53)

VII. INTERPOLATION SCHEME
FOR APPLICATIONS

From the foregoing discussion it can be concluded
that the present scheme of approximation is quite ac-
curate at small wave vectors, whereas the approxima-
tion of I leads to somewhat better results at large

I.O-

1.0738

can be made for Li if one corrects for the important
band effects. The theoretical value, corrected by multi-
plying the present result by the theoretical cyclotron
mass" and neglecting the effect of the anisotropy of
the Fermi surface, is X= 1.76&(10 ' cgs, to be compared
with the experimental value, "X= 2.08)&10 ' cgs. Thus,
we see that the susceptibility sum rule is approximately
satisfied.

In. Fig. 10 the present values of I(q) are compared
with the previous results. ' There are two points to
notice. First, the greatly improved value of the static
susceptibility implies a marked reduction of the value
of this function at small wave vectors. Secondly, I(q)
has a very gentle dependence on the wave vector. The
latter behavior is in general agreement with the ex-
perimental observations of Windsor et al."on Ni.

TAnrz III. Static paramagnetic susceptibility (10 cgs).

1.65 1.].3 0.55

'4R. T. Schumacher and C. P. Slichter, Phys. Rev. 101, 58

as a function of r, . The theoretical value at r,=4 is in
fair agreement with the average of the experimental
values for Na, "X=1.04X 10 ' cgs. A similar comparison

2
q/qF

Fzo. 11.Function G(g) versus g/gr for r, =4. The dotted curve
indicates the type of interpolation needed to obtain a positive
g (r). The broken curve is the 6t given by Eq. (54).

(1956); R. T. Schumacher and W. E. Vehse, J. Phys. Chem.
Solids 24, 297 (1963).' F. Ham, Phys. Rev 128, 2524 (1962)."R.T. Schumacher and C. P. Slichter, Ref. 14.' C. G. Windsor, R. D. Lowde, and G. Allan, Phys. Rev.
Letters 22, 849 (1969).
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wave vectors. We have therefore tried a few schemes of
interpolation between the present and the previous
values of G(q), with the purpose of improving the
behavior of the correlation function while at the same
time preserving the validity of the compressibility
sum rule. It is found that, in order to achieve this end,
the interpolation must be started at values of q=-', qp
and must be essentially completed at q=q&. This fact
is illustrated for r,=4 in Fig. 11, which gives an inter-
polated curve for G(q) which yields a pair correlation
function of quality comparable to our previous results.
Analogous results can be achieved at the other values
of r,. It is found, "however, that the dielectric function
determined by this interpolation scheme does not yield
phonon-dispersion curves for sodium as good as those
obtained by a direct use of the dielectric function
calculated in this paper. It therefore appears that, if
one is willing to accept a somewhat poor pair correla-
tion function at small separation, the present dielectric
function is adequate for practical applications. We have
actually found that the self-consistent values of G(q)
can be fitted quite accurately with a simple function of

G(q) =~L-1 (54)

whose parameters are given in Table IV for the values of
r, in the range of metallic densities. As is apparent in
Fig. 11, this simple function deviates from the G(q)
given in Eq. (25) only at large wave vectors, which do not
play any significant role in most practical calculations.

We have also attempted a similar interpolation scheme
for the problem of the spin correlations at r,=4. We
have found that a considerable improvement in gtr (r)
can be achieved if we adjust the value of I(0) so that
the experimental value of the paramagnetic suscepti-
bility is reproduced and then smoothly go over to the
values of I(q) at large q reported previously. '

VIII. CONCLUDING REMARKS

The basic result derived in this paper is expression
(22) for the effective potential, V,«(q, re), in which the

"D.L. Price, K. S. Singwi, and M. P. Tosi (unpublished).

charge density Quctuation induced by an external field
moves. This result is obtained by an extension of the
treatment given in I, by allowing for the adjustment
of the pair correlation function to the external field.
The treatment involves the assumption that the ir-
reducible part of the density correlations is so short
ranged in space and time that its change in the ex-
ternal field may be taken to depend only on the local
density.

This eGective potential'can be used to derive straight-
forwardly an expression for the dielectric function of
the electron liquid if one makes the additional assump-
tion that the liquid responds to the effective potential
via the free-gas response function. The expression (33)
for the dielectric function involves the simplifying, but
not necessary, approximation of replacing the dynamic
screening entering the effective potential by the static
screening. The latter approximation has been introduced
for the purpose of reducing the numerical work involved
in the self-consistent determination of the dielectric
function and the pair correlations, with particular
emphasis on the low-frequency region. It would, how-
ever, be of interest to recalculate the self-consistent
dielectric function with the dynamical screening in the
local-field correction, especially when one is consider-
ing high-frequency phenomena.

We have also considered the spin correlations in the
paramagnetic state in the same scheme of approxima-
tion as that used for the density correlations, in that
we have introduced a static screening in the internal
field acting on the spin density. This simple approxi-
mation makes no allowance for the fact that the inter-
action between different pairs of spins should be
screened in a different manner. This problem needs
further consideration.

Finally, it should be pointed out that there is no
unique relation between our G(q) and the momentum-
dependent vertex function entering, for instance, the
expression of the electron self-energy. This limits the
scope of our theory, in that we cannot, within the
present treatment, calculate the self-energy correction
for arbitrary momentum.


